Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.
Article
PubMed
Google Scholar
Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971–1993. Diabetes Care. 1998;21(7):1138–45.
Article
CAS
PubMed
Google Scholar
Newman JD, Schwartzbard AZ, Weintraub HS, Goldberg IJ, Berger JS. Primary prevention of cardiovascular disease in diabetes mellitus. J Am Coll Cardiol. 2017;70(7):883–93.
Article
PubMed
PubMed Central
Google Scholar
Mellbin LG, Anselmino M, Ryden L. Diabetes, prediabetes and cardiovascular risk. Eur J Cardiovasc Prev Rehabil. 2010;17(Suppl 1):S9–14.
Article
PubMed
Google Scholar
Bao X, Borne Y, Johnson L, Muhammad IF, Persson M, Niu K, Engstrom G. Comparing the inflammatory profiles for incidence of diabetes mellitus and cardiovascular diseases: a prospective study exploring the ‘common soil’ hypothesis. Cardiovasc Diabetol. 2018;17(1):87.
Article
PubMed
PubMed Central
Google Scholar
Ijas P, Saksi J, Soinne L, Tuimala J, Jauhiainen M, Jula A, Kahonen M, Kesaniemi YA, Kovanen PT, Kaste M, et al. Haptoglobin 2 allele associates with unstable carotid plaque and major cardiovascular events. Atherosclerosis. 2013;230(2):228–34.
Article
CAS
PubMed
Google Scholar
Dalan R, Liew H, Goh LL, Gao X, Chew DE, Boehm BO, Leow MK. The haptoglobin 2-2 genotype is associated with inflammation and carotid artery intima-media thickness. Diabetes Vasc Dis Res. 2016;13(5):373–6.
Article
CAS
Google Scholar
Orchard TJ, Backlund JC, Costacou T, Cleary P, Lopes-Virella M, Levy AP, Lachin JM, Group DER. Haptoglobin 2-2 genotype and the risk of coronary artery disease in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). J Diabetes Complications. 2016;30(8):1577–84.
Article
PubMed
PubMed Central
Google Scholar
Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J. 2014;35(29):1917–24.
Article
CAS
PubMed
Google Scholar
Jimenez-Rosales A, Amaya-Chavez A, Dominguez Garcia MV, Camarillo-Romero E, Huitron Bravo GG, Cruz AM. Association of inflammatory and oxidative stress biomarkers in subjects with cardiovascular risk. Am J Ther. 2013;20(4):422–31.
Article
PubMed
Google Scholar
Xuan Y, Gao X, Holleczek B, Brenner H, Schottker B. Prediction of myocardial infarction, stroke and cardiovascular mortality with urinary biomarkers of oxidative stress: results from a large cohort study. Int J Cardiol. 2018;273:223–9. https://doi.org/10.1016/j.ijcard.2018.08.002
Article
PubMed
Google Scholar
Wang S, Wang J, Zhang R, Wang T, Yan D, He Z, Jiang F, Hu C, Jia W. Mendelian randomization analysis to assess a causal effect of haptoglobin on macroangiopathy in Chinese type 2 diabetes patients. Cardiovasc Diabetol. 2018;17(1):14.
Article
PubMed
PubMed Central
Google Scholar
Andersen CBF, Stodkilde K, Saederup KL, Kuhlee A, Raunser S, Graversen JH, Moestrup SK. Haptoglobin. Antioxid Redox Signal. 2017;26(14):814–31.
Article
CAS
PubMed
Google Scholar
Alayash AI, Andersen CB, Moestrup SK, Bulow L. Haptoglobin: the hemoglobin detoxifier in plasma. Trends Biotechnol. 2013;31(1):2–3.
Article
CAS
PubMed
Google Scholar
Can U, Buyukinan M, Guzelant A, Ugur A, Karaibrahimoglu A, Yabanciun S. Investigation of the inflammatory biomarkers of metabolic syndrome in adolescents. J Pediatr Endocrinol Metab. 2016;29(11):1277–83.
CAS
PubMed
Google Scholar
Awadallah S, Madkour M, Hamidi RA, Alwafa EA, Hattab M, Zakkour B, Al-Matroushi A, Ahmed E, Al-Kitbi M. Plasma levels of apolipoprotein A1 and lecithin: cholesterol acyltransferase in type 2 diabetes mellitus: correlations with haptoglobin phenotypes. Diabetes Metab Syndr. 2017;11(Suppl 2):S543–6.
Article
PubMed
Google Scholar
Melander O, Modrego J, Zamorano-Leon JJ, Santos-Sancho JM, Lahera V, Lopez-Farre AJ. New circulating biomarkers for predicting cardiovascular death in healthy population. J Cell Mol Med. 2015;19(10):2489–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cigliano L, Pugliese CR, Spagnuolo MS, Palumbo R, Abrescia P. Haptoglobin binds the antiatherogenic protein apolipoprotein E—impairment of apolipoprotein E stimulation of both lecithin:cholesterol acyltransferase activity and cholesterol uptake by hepatocytes. FEBS J. 2009;276(21):6158–71.
Article
CAS
PubMed
Google Scholar
Sas KM, Karnovsky A, Michailidis G, Pennathur S. Metabolomics and diabetes: analytical and computational approaches. Diabetes. 2015;64(3):718–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017;25(1):43–56.
Article
CAS
PubMed
Google Scholar
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Xie G, Jia W, Jia W. Metabolomics in human type 2 diabetes research. Front Med. 2013;7(1):4–13.
Article
PubMed
Google Scholar
Klupczynska A, Derezinski P, Kokot ZJ. Metabolomics in medical sciences-trends, challenges and perspectives. Acta Pol Pharm. 2015;72(4):629–41.
CAS
PubMed
Google Scholar
Chen P, Hou X, Hu G, Wei L, Jiao L, Wang H, Chen S, Wu J, Bao Y, Jia W. Abdominal subcutaneous adipose tissue: a favorable adipose depot for diabetes? Cardiovasc Diabetol. 2018;17(1):93.
Article
PubMed
PubMed Central
Google Scholar
Qiu Y, Zhou B, Su M, Baxter S, Zheng X, Zhao X, Yen Y, Jia W. Mass spectrometry-based quantitative metabolomics revealed a distinct lipid profile in breast cancer patients. Int J Mol Sci. 2013;14(4):8047–61.
Article
PubMed
PubMed Central
Google Scholar
Suhre K, Raffler J, Kastenmuller G. Biochemical insights from population studies with genetics and metabolomics. Arch Biochem Biophys. 2016;589:168–76.
Article
CAS
PubMed
Google Scholar
Molnos S, Wahl S, Haid M, Eekhoff EMW, Pool R, Floegel A, Deelen J, Much D, Prehn C, Breier M, et al. Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study. Diabetologia. 2018;61(1):117–29.
Article
CAS
PubMed
Google Scholar
Stegemann C, Pechlaner R, Willeit P, Langley SR, Mangino M, Mayr U, Menni C, Moayyeri A, Santer P, Rungger G, et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation. 2014;129(18):1821–31.
Article
CAS
PubMed
Google Scholar
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glomset JA. The mechanism of the plasma cholesterol esterification reaction: plasma fatty acid transferase. Biochim Biophys Acta. 1962;65:128–35.
Article
CAS
PubMed
Google Scholar
Chen L, Liang B, Froese DE, Liu S, Wong JT, Tran K, Hatch GM, Mymin D, Kroeger EA, Man RY, et al. Oxidative modification of low density lipoprotein in normal and hyperlipidemic patients: effect of lysophosphatidylcholine composition on vascular relaxation. J Lipid Res. 1997;38(3):546–53.
CAS
PubMed
Google Scholar
Oka H, Kugiyama K, Doi H, Matsumura T, Shibata H, Miles LA, Sugiyama S, Yasue H. Lysophosphatidylcholine induces urokinase-type plasminogen activator and its receptor in human macrophages partly through redox-sensitive pathway. Arterioscler Thromb Vasc Biol. 2000;20(1):244–50.
Article
CAS
PubMed
Google Scholar
Kim M, Jung S, Kim SY, Lee SH, Lee JH. Prehypertension-associated elevation in circulating lysophosphatidlycholines, Lp-PLA2 activity, and oxidative stress. PLoS ONE. 2014;9(5):e96735.
Article
PubMed
PubMed Central
Google Scholar
Li X, Fang P, Li Y, Kuo YM, Andrews AJ, Nanayakkara G, Johnson C, Fu H, Shan H, Du F, et al. Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation. Arterioscler Thromb Vasc Biol. 2016;36(6):1090–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi M, Okazaki H, Ogata Y, Takeuchi K, Ikeda U, Shimada K. Lysophosphatidylcholine induces apoptosis in human endothelial cells through a p38-mitogen-activated protein kinase-dependent mechanism. Atherosclerosis. 2002;161(2):387–94.
Article
CAS
PubMed
Google Scholar
Paapstel K, Kals J, Eha J, Tootsi K, Ottas A, Piir A, Jakobson M, Lieberg J, Zilmer M. Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis. Nutr Metab Cardiovasc Dis. 2018;28(1):44–52.
Article
CAS
PubMed
Google Scholar
Mannheim D, Herrmann J, Versari D, Gossl M, Meyer FB, McConnell JP, Lerman LO, Lerman A. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke. 2008;39(5):1448–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakhjavani M, Asgharani F, Khalilzadeh O, Esteghamati A, Ghaneei A, Morteza A, Anvari M. Oxidized low-density lipoprotein is negatively correlated with lecithin–cholesterol acyltransferase activity in type 2 diabetes mellitus. Am J Med Sci. 2011;341(2):92–5.
Article
PubMed
Google Scholar
Eigenbrodt ML, Bursac Z, Rose KM, Couper DJ, Tracy RE, Evans GW, Brancati FL, Mehta JL. Common carotid arterial interadventitial distance (diameter) as an indicator of the damaging effects of age and atherosclerosis, a cross-sectional study of the Atherosclerosis Risk in Community Cohort Limited Access Data (ARICLAD), 1987-89. Cardiovasc Ultrasound. 2006;4:1.
Article
PubMed
PubMed Central
Google Scholar
Naqvi TZ, Lee MS. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging. 2014;7(10):1025–38.
Article
Google Scholar
Saba L, Araki T, Kumar PK, Rajan J, Lavra F, Ikeda N, Sharma AM, Shafique S, Nicolaides A, Laird JR, et al. Carotid inter-adventitial diameter is more strongly related to plaque score than lumen diameter: an automated tool for stroke analysis. J Clin Ultrasound. 2016;44(4):210–20.
Article
PubMed
Google Scholar
Kozakova M, Morizzo C, La Carrubba S, Fabiani I, Della Latta D, Jamagidze J, Chiappino D, Di Bello V, Palombo C. Associations between common carotid artery diameter, Framingham risk score and cardiovascular events. Nutr Metab Cardiovasc Dis. 2017;27(4):329–34.
Article
CAS
PubMed
Google Scholar
Polak JF, Sacco RL, Post WS, Vaidya D, Arnan MK, O’Leary DH. Incident stroke is associated with common carotid artery diameter and not common carotid artery intima-media thickness. Stroke. 2014;45(5):1442–6.
Article
PubMed
PubMed Central
Google Scholar
Eigenbrodt ML, Sukhija R, Rose KM, Tracy RE, Couper DJ, Evans GW, Bursac Z, Mehta JL. Common carotid artery wall thickness and external diameter as predictors of prevalent and incident cardiac events in a large population study. Cardiovasc Ultrasound. 2007;5:11.
Article
PubMed
PubMed Central
Google Scholar
Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.
Article
CAS
PubMed
Google Scholar
Polak JF, Wong Q, Johnson WC, Bluemke DA, Harrington A, O’Leary DH, Yanez ND. Associations of cardiovascular risk factors, carotid intima-media thickness and left ventricular mass with inter-adventitial diameters of the common carotid artery: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2011;218(2):344–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen AK, Krumsiek J, Wagele B, Theis FJ, Wichmann HE, Gieger C, Suhre K. On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies. BMC Bioinform. 2012;13:120.
Article
Google Scholar
Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T, Spector TD. Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis. 2010;69(6):1227–31.
Article
CAS
PubMed
Google Scholar
Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmuller G, Kato BS, Mewes HW, et al. A genome-wide perspective of genetic variation in human metabolism. Nat Genet. 2010;42(2):137–41.
Article
CAS
PubMed
Google Scholar
Shi Y, Liu L, Yu Y, Long Y, Zheng H. Acidic amino acids: a new-type of enzyme mimics with application to biosensing and evaluating of antioxidant behaviour. Spectrochim Acta A Mol Biomol Spectrosc. 2018;201:367–75.
Article
CAS
PubMed
Google Scholar
Aftring RP, Manos PN, Buse MG. Catabolism of branched-chain amino acids by diaphragm muscles of fasted and diabetic rats. Metabolism. 1985;34(8):702–11.
Article
CAS
PubMed
Google Scholar
Adeva-Andany MM, Lopez-Maside L, Donapetry-Garcia C, Fernandez-Fernandez C, Sixto-Leal C. Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids. 2017;49(6):1005–28.
Article
CAS
PubMed
Google Scholar
Katakami N, Mita T, Irie Y, Takahara M, Matsuoka TA, Gosho M, Watada H, Shimomura I, Sitagliptin Preventive study of Intima-media thickness Evaluation C. Effect of sitagliptin on tissue characteristics of the carotid wall in patients with type 2 diabetes: a post hoc sub-analysis of the sitagliptin preventive study of intima-media thickness evaluation (SPIKE). Cardiovasc Diabetol. 2018;17(1):24.
Article
PubMed
PubMed Central
Google Scholar
Bhanpuri NH, Hallberg SJ, Williams PT, McKenzie AL, Ballard KD, Campbell WW, McCarter JP, Phinney SD, Volek JS. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: an open label, non-randomized, controlled study. Cardiovasc Diabetol. 2018;17(1):56.
Article
PubMed
PubMed Central
Google Scholar
Rizzo M, Rizvi AA, Patti AM, Nikolic D, Giglio RV, Castellino G, Li Volti G, Caprio M, Montalto G, Provenzano V, et al. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: an 18-month prospective study. Cardiovasc Diabetol. 2016;15(1):162.
Article
PubMed
PubMed Central
Google Scholar