Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF Diabetes Atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321
Article
PubMed
Google Scholar
Candido R, Srivastava P, Cooper ME, Burrell LM (2003) Diabetes mellitus: a cardiovascular disease. Curr Opin Investig Drugs 4(9):1088–1094
PubMed
Google Scholar
Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34
Article
CAS
PubMed
Google Scholar
Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602
Article
CAS
PubMed
Google Scholar
Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25(4):543–567
Article
CAS
PubMed
Google Scholar
Dhalla N, Takeda N, Rodriguez-Leyva D, Elimban V (2014) Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev 19(1):87–99
Article
CAS
PubMed
Google Scholar
Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40(2):239–247
Article
CAS
PubMed
Google Scholar
Jenkins MJ, Pearson JT, Schwenke DO, Edgley AJ, Sonobe T, Fujii Y et al (2013) Myosin heads are displaced from actin filaments in the in situ beating rat heart in early diabetes. Biophys J 104(5):1065–1072
Article
CAS
PubMed Central
PubMed
Google Scholar
Barefield D, Sadayappan S (2010) Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J Mol Cell Cardiol 48(5):866–875
Article
CAS
PubMed
Google Scholar
Colson BA, Patel JR, Chen PP, Bekyarova T, Abdalla MI, Tong CW et al (2012) Myosin binding protein-C phosphorylation is the principal mediator of protein kinase A effects on thick filament structure in myocardium. J Mol Cell Cardiol 53(5):609–616
Article
CAS
PubMed Central
PubMed
Google Scholar
Moss RL, Fitzsimons DP, Ralphe JC (2015) Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium. Circ Res 116(1):183–192
Article
CAS
PubMed
Google Scholar
Scruggs SB, Solaro RJ (2011) The significance of regulatory light chain phosphorylation in cardiac physiology. Arch Biochem Biophys 510(2):129–134
Article
CAS
PubMed Central
PubMed
Google Scholar
Sheikh F, Ouyang K, Campbell SG, Lyon RC, Chuang J, Fitzsimons D et al (2012) Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. J Clin Invest. 122(4):1209–1221
Article
CAS
PubMed Central
PubMed
Google Scholar
Noma K, Oyama N, Liao JK (2006) Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol 290(3):C661–C668
Article
CAS
PubMed Central
PubMed
Google Scholar
Guan SJ, Ma ZH, Wu YL, Zhang JP, Liang F, Woodrow Weiss J et al (2012) Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats. Food Chem Toxicol 50(6):1874–1882
Article
CAS
PubMed
Google Scholar
Zhou H, Li YJ, Wang M, Zhang L, Guo BY, Zhao ZS et al (2011) Involvement of RhoA/ROCK in myocardial fibrosis in a rat model of type 2 diabetes. Acta Pharmacol Sin 32(8):999–1008
Article
CAS
PubMed Central
PubMed
Google Scholar
Fukui S, Fukumoto Y, Suzuki J, Saji K, Nawata J, Tawara S et al (2008) Long-term inhibition of Rho-kinase ameliorates diastolic heart failure in hypertensive rats. J Cardiovasc Pharmacol 51(3):317–326
Article
CAS
PubMed
Google Scholar
Hattori T, Shimokawa H, Higashi M, Hiroki J, Mukai Y, Tsutsui H et al (2004) Long-term inhibition of rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation 109(18):2234–2239
Article
CAS
PubMed
Google Scholar
Phrommintikul A, Tran L, Kompa A, Wang B, Adrahtas A, Cantwell D et al (2008) Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am J Physiol Heart Circ Physiol 294(4):H1804–H1814
Article
CAS
PubMed
Google Scholar
Guo R, Su Y, Yan J, Sun H, Wu J, Liu W et al (2014) Fasudil improves short-term echocardiographic parameters of diastolic function in patients with type 2 diabetes with preserved left ventricular ejection fraction: a pilot study. Heart Vessels 30(1):89–97
Article
PubMed
Google Scholar
Vahebi S, Kobayashi T, Warren CM, de Tombe PP, Solaro RJ (2005) Functional effects of rho-kinase-dependent phosphorylation of specific sites on cardiac troponin. Circ Res 96(7):740–747
Article
CAS
PubMed
Google Scholar
Borges GR, de Oliveira M, Salgado HC, Fazan R Jr (2006) Myocardial performance in conscious streptozotocin diabetic rats. Cardiovasc Diabetol 5:26
Article
PubMed Central
PubMed
Google Scholar
Litwin SE, Raya TE, Anderson PG, Daugherty S, Goldman S (1990) Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. J Clin Invest 86(2):481–488
Article
CAS
PubMed Central
PubMed
Google Scholar
Pearson JT, Jenkins MJ, Edgley AJ, Sonobe T, Joshi M, Waddingham MT et al (2013) Acute Rho-kinase inhibition improves coronary dysfunction in vivo, in the early diabetic microcirculation. Cardiovasc Diabetol 12:111
Article
CAS
PubMed Central
PubMed
Google Scholar
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412
Article
PubMed Central
PubMed
Google Scholar
Pearson JT, Shirai M, Ito H, Tokunaga N, Tsuchimochi H, Nishiura N et al (2004) In situ measurements of crossbridge dynamics and lattice spacing in rat hearts by X-ray diffraction: sensitivity to regional ischemia. Circulation 109(24):2976–2979
Article
PubMed
Google Scholar
Connelly KA, Prior DL, Kelly DJ, Feneley MP, Krum H, Gilbert RE (2006) Load-sensitive measures may overestimate global systolic function in the presence of left ventricular hypertrophy: a comparison with load-insensitive measures. Am J Physiol Heart Circ Physiol 290(4):H1699–H1705
Article
CAS
PubMed
Google Scholar
Pearson JT, Shirai M, Tsuchimochi H, Schwenke DO, Ishida T, Kangawa K et al (2007) Effects of sustained length-dependent activation on in situ cross-bridge dynamics in rat hearts. Biophys J 93(12):4319–4329
Article
CAS
PubMed Central
PubMed
Google Scholar
Connelly KA, Kelly DJ, Zhang Y, Prior DL, Advani A, Cox AJ et al (2009) Inhibition of protein kinase C–β by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy Circ Heart Fail 2(2):129–137
Connelly KA, Kelly DJ, Zhang Y, Prior DL, Martin J, Cox AJ et al (2007) Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat. Cardiovasc Res 76(2):280–291
Article
CAS
PubMed
Google Scholar
Zhang Y, Edgley AJ, Cox AJ, Powell AK, Wang B, Kompa AR et al (2012) FT011, a new anti-fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur J Heart Fail 14(5):549–562
Article
CAS
PubMed
Google Scholar
Georgakopoulos D, Kass DA (2000) Estimation of parallel conductance by dual-frequency conductance catheter in mice. Am J Physiol Heart Circ Physiol 279(1):H443–H450
CAS
PubMed
Google Scholar
Zaremba R, Merkus D, Hamdani N, Lamers JM, Paulus WJ, Dos Remedios C et al (2007) Quantitative analysis of myofilament protein phosphorylation in small cardiac biopsies. Proteomics Clin Appl 1(10):1285–1290
Article
CAS
PubMed
Google Scholar
Soliman H, Gador A, Lu Y-H, Lin G, Bankar G, MacLeod KM (2012) Diabetes-induced increased oxidative stress in cardiomyocytes is sustained by a positive feedback loop involving Rho-kinase and PKCβ2. Am J Physiol Heart Circ Physiol 303(8):H989–H1000
Article
CAS
PubMed Central
PubMed
Google Scholar
Lin G, Brownsey RW, Macleod KM (2014) Complex regulation of PKCbeta2 and PDK-1/AKT by ROCK2 in diabetic heart. PLoS One 9(1):e86520
Article
PubMed Central
PubMed
Google Scholar
Loganathan R, Bilgen M, Al-Hafez B, Smirnova I (2006) Characterization of alterations in diabetic myocardial tissue using high resolution MRI. Int J Cardiovasc Imaging 22(1):81–90
Article
PubMed
Google Scholar
Fang ZY, Leano R, Marwick TH (2004) Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clin Sci 106(1):53–60
Article
PubMed
Google Scholar
Matsubara I, Yagi N, Endoh M (1982) The state of cardiac contractile proteins during the diastolic phase. Jpn Circ J 46(1):44–48
Article
CAS
PubMed
Google Scholar
Lin G, Craig GP, Zhang L, Yuen VG, Allard M, McNeill JH et al (2007) Acute inhibition of Rho-kinase improves cardiac contractile function in streptozotocin-diabetic rats. Cardiovasc Res 75(1):51–58
Article
CAS
PubMed
Google Scholar
Goyal BR, Solanki N, Goyal RK, Mehta AA (2009) Investigation into the cardiac effects of spironolactone in the experimental model of type 1 diabetes. J Cardiovasc Pharmacol 54(6):502–509
Article
CAS
PubMed
Google Scholar
Tsounapi P, Saito M, Kitatani K, Dimitriadis F, Ohmasa F, Shimizu S et al (2012) Fasudil improves the endothelial dysfunction in the aorta of spontaneously hypertensive rats. Eur J Pharmacol 691(1–3):182–189
Article
CAS
PubMed
Google Scholar
Satoh K, Fukumoto Y, Shimokawa H (2011) Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol 301(2):H287–H296
Article
CAS
PubMed
Google Scholar
Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 25(9):1767–1775
Article
CAS
PubMed
Google Scholar
Ikeda S, Satoh K, Kikuchi N, Miyata S, Suzuki K, Omura J et al (2014) Crucial role of Rho-kinase in pressure overload–induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol 34(6):1260–1271
Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T et al (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272(19):12257–12260
Article
CAS
PubMed
Google Scholar
Colson BA, Bekyarova T, Locher MR, Fitzsimons DP, Irving TC, Moss RL (2008) Protein kinase A-mediated phosphorylation of cMyBP-C increases proximity of myosin heads to actin in resting myocardium. Circ Res 103(3):244–251
Article
CAS
PubMed Central
PubMed
Google Scholar
Colson BA, Locher MR, Bekyarova T, Patel JR, Fitzsimons DP, Irving TC et al (2010) Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development. J Physiol 588(Pt 6):981–993
Article
CAS
PubMed Central
PubMed
Google Scholar
Chung CS, Mitov MI, Callahan LA, Campbell KS (2013) Increased myocardial short-range forces in a rodent model of diabetes reflect elevated content of β myosin heavy chain. Arch Biochem Biophys 552–553:92–99
PubMed
Google Scholar
Korte FS, Mokelke EA, Sturek M, McDonald KS (2005) Exercise improves impaired ventricular function and alterations of cardiac myofibrillar proteins in diabetic dyslipidemic pigs. J Appl Physiol 98(2):461–467
Article
CAS
PubMed
Google Scholar
Tong C, Nair NA, Doersch K, Liu Y, Rosas P (2014) Cardiac myosin-binding protein-C is a critical mediator of diastolic function. Pflugers Arch 466(3):451–457
Article
CAS
PubMed Central
PubMed
Google Scholar
Soliman H, Craig GP, Nagareddy P, Yuen VG, Lin G, Kumar U et al (2008) Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats. Cardiovasc Res 79(2):322–330
Article
CAS
PubMed
Google Scholar
Cicek FA, Kandilci HB, Turan B (2013) Role of ROCK upregulation in endothelial and smooth muscle vascular functions in diabetic rat aorta. Cardiovasc Diabetol 12:51
Article
PubMed Central
PubMed
Google Scholar
Cazorla O, Szilagyi S, Le Guennec J-Y, Vassort G, Lacampagne A (2005) Transmural stretch-dependent regulation of contractile properties in rat heart and its alteration after myocardial infarction. FASEB J 19:88–90
CAS
PubMed
Google Scholar
Krüger M, Babicz K, von Frieling-Salewsky M, Linke WA (2010) Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J Mol Cell Cardiol 48(5):910–916
Article
PubMed
Google Scholar
Hamdani N, Franssen C, Lourenço A, Falcão-Pires I, Fontoura D, Leite S et al (2013) Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail. 6(6):1239–1249
Article
CAS
PubMed
Google Scholar
Fukuda N, Wu Y, Farman G, Irving TC, Granzier H (2005) Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle. Pflugers Arch 449(5):449–457
Article
CAS
PubMed
Google Scholar
Hanft LM, Greaser ML, McDonald KS (2014) Titin-mediated control of cardiac myofibrillar function. Arch Biochem Biophys 552–553:83–91
Article
PubMed
Google Scholar