Murray CJ, Lopez AD (1997) Mortality by cause for eight regions of the world: global burden of disease study. Lancet 349(9061):1269–1276
CAS
PubMed
Google Scholar
Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, de Groote P (2003) Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc Diabetol 2:1
PubMed Central
PubMed
Google Scholar
Simonson DC (1988) Etiology and prevalence of hypertension in diabetic patients. Diabetes Care 11(10):821–827
CAS
PubMed
Google Scholar
Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98(5):596–605
CAS
PubMed
Google Scholar
Yang Q, Li Y (2007) Roles of PPARs on regulating myocardial energy and lipid homeostasis. J Mol Med (Berl) 85(7):697–706
CAS
Google Scholar
Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ et al (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146(12):5341–5349
CAS
PubMed
Google Scholar
Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K et al (2008) High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci USA 105(4):1226–1231
CAS
PubMed Central
PubMed
Google Scholar
Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45(2):120–159
CAS
PubMed
Google Scholar
Madrazo JA, Kelly DP (2008) The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 44(6):968–975
CAS
PubMed
Google Scholar
Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO et al (2005) Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol 46(6):1019–1026
CAS
PubMed
Google Scholar
Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 1734(2):112–126
CAS
PubMed
Google Scholar
Dirkx E, Schwenk RW, Glatz JF, Luiken JJ, van Eys GJ (2011) High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 85(5):219–225
CAS
PubMed
Google Scholar
Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277(52):50230–50236
CAS
PubMed
Google Scholar
Nishida M, Maruyama Y, Tanaka R, Kontani K, Nagao T, Kurose H (2000) G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature 408(6811):492–495
CAS
PubMed
Google Scholar
Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63(3):467–475
CAS
PubMed
Google Scholar
Puthanveetil P, Wan A, Rodrigues B (2013) FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res 97(3):393–403
CAS
PubMed
Google Scholar
Fang CX, Dong F, Thomas DP, Ma H, He L, Ren J (2008) Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription. Am J Physiol Heart Circ Physiol 295(3):H1206–H1215
CAS
PubMed Central
PubMed
Google Scholar
Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H et al (2002) Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105(4):509–515
CAS
PubMed
Google Scholar
Varga ZV, Giricz Z, Liaudet L, Hasko G, Ferdinandy P, Pacher P (2015) Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852(2):232–242
CAS
PubMed
Google Scholar
Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC et al (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306(4):717–726
CAS
PubMed
Google Scholar
Pizon V, Iakovenko A, Van Der Ven PF, Kelly R, Fatu C, Furst DO et al (2002) Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci 115(Pt 23):4469–4482
CAS
PubMed
Google Scholar
McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC (2004) Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci 117(Pt 15):3175–3188
CAS
PubMed
Google Scholar
Perera S, Mankoo B, Gautel M (2012) Developmental regulation of MURF E3 ubiquitin ligases in skeletal muscle. J Muscle Res Cell Motil 33(2):107–122
CAS
PubMed Central
PubMed
Google Scholar
Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski M et al (2012) Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest 122(3):1109–1118
CAS
PubMed Central
PubMed
Google Scholar
Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD et al (2007) FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci USA 104(51):20517–20522
CAS
PubMed Central
PubMed
Google Scholar
Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C (2007) Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res 100(4):456–459
CAS
PubMed Central
PubMed
Google Scholar
Makowski L, Zhou C, Zhong Y, Kuan PF, Fan C, Sampey BP et al (2014) Obesity increases tumor aggressiveness in a genetically engineered mouse model of serous ovarian cancer. Gynecol Oncol 133(1):90–97
CAS
PubMed Central
PubMed
Google Scholar
Vaitheesvaran B, LeRoith D, Kurland IJ (2010) MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity. Diabetologia 53(10):2224–2232
CAS
PubMed
Google Scholar
Xin-Long C, Zhao-Fan X, Dao-Feng B, Jian-Guang T, Duo W (2007) Insulin resistance following thermal injury: an animal study. Burns 33(4):480–483
PubMed
Google Scholar
Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G et al (2009) Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem 284(41):27816–27826
CAS
PubMed Central
PubMed
Google Scholar
Furuichi Y, Goto-Inoue N, Manabe Y, Setou M, Masuda K, Fujii NL (2014) Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles. Biochim Biophys Acta 1837(10):1699–1706
CAS
PubMed
Google Scholar
Mapanga RF, Rajamani U, Dlamini N, Zungu-Edmondson M, Kelly-Laubscher R, Shafiullah M et al (2012) Oleanolic Acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction. PLoS One 7(10):e47322
CAS
PubMed Central
PubMed
Google Scholar
Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23(1):131–142
CAS
PubMed
Google Scholar
Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee do Y, Lu Y et al (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 53(4):691–704
CAS
PubMed
Google Scholar
Kind T, Wohlgemuth G, Leedo Y, Lu Y, Palazoglu M, Shahbaz S et al (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048
CAS
PubMed Central
PubMed
Google Scholar
Banerjee R, Bultman SJ, Holley D, Hillhouse C, Bain JR, Newgard CB et al (2015) Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics (in press)
Banerjee R, He J, Spaniel C, Quintana MT, Wang Z, Bain JR et al (2015) Non-targeted metabolomics analysis of cardiac Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes. Metabolomics 11:312–322
CAS
Google Scholar
Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(Web Server issue):W127–W133
CAS
PubMed Central
PubMed
Google Scholar
Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–W660
CAS
PubMed Central
PubMed
Google Scholar
Willis MS, Wadosky KM, Rodriguez JE, Schisler JC, Lockyer P, Hilliard EG et al (2014) Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem Funct 32(1):39–50
CAS
PubMed Central
PubMed
Google Scholar
Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E et al (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308(5728):1599–1603
CAS
PubMed
Google Scholar
Ravingerova T, Adameova A, Carnicka S, Nemcekova M, Kelly T, Matejikova J et al (2011) The role of PPAR in myocardial response to ischemia in normal and diseased heart. Gen Physiol Biophys 30(4):329–341
CAS
PubMed
Google Scholar
Wadosky KM, Willis MS (2012) The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am J Physiol Heart Circ Physiol 302(3):H515–H526
CAS
PubMed Central
PubMed
Google Scholar
Lee TI, Kao YH, Chen YC, Huang JH, Hsiao FC, Chen YJ (2013) Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes Res Clin Pract 100(3):330–339
CAS
PubMed
Google Scholar
How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS (2006) Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 55(2):466–473
CAS
PubMed
Google Scholar
Willis MS, Schisler JC, Li L, Rodriguez JE, Hilliard EG, Charles PC et al (2009) Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res 105(1):80–88
CAS
PubMed Central
PubMed
Google Scholar
Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellinatto I, Danni O et al (2006) Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology 147(12):5967–5974
CAS
PubMed
Google Scholar
Liu X, Liu C, Zhang X, Zhao J, Xu J (2015) Urocortin ameliorates diabetic cardiomyopathy in rats via the Akt/GSK-3beta signaling pathway. Exp Ther Med 9(3):667–674
CAS
PubMed Central
PubMed
Google Scholar
Li J, Peng L, Du H, Wang Y, Lu B, Xu Y et al (2014) The protective effect of beraprost sodium on diabetic cardiomyopathy through the inhibition of the p38 MAPK signaling pathway in high-fat-induced SD rats. Int J Endocrinol 2014:901437
PubMed Central
PubMed
Google Scholar
Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47(4):693–700
CAS
PubMed
Google Scholar
Factor SM, Minase T, Bhan R, Wolinsky H, Sonnenblick EH (1983) Hypertensive diabetic cardiomyopathy in the rat: ultrastructural features. Virchows Arch A Pathol Anat Histopathol 398(3):305–317
CAS
PubMed
Google Scholar
Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N et al (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103(4):319–327
PubMed
Google Scholar
Aguilar H, Fricovsky E, Ihm S, Schimke M, Maya-Ramos L, Aroonsakool N et al (2014) Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis. Am J Physiol Cell Physiol 306(9):C794–C804
CAS
PubMed Central
PubMed
Google Scholar
Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117(12):3930–3939
CAS
PubMed Central
PubMed
Google Scholar
Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K et al (2007) Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest 117(10):2791–2801
CAS
PubMed Central
PubMed
Google Scholar
Liu S, Hatano B, Zhao M, Yen CC, Kang K, Reilly SM et al (2011) Role of peroxisome proliferator-activated receptor delta}/{beta in hepatic metabolic regulation. J Biol Chem 286(2):1237–1247
CAS
PubMed Central
PubMed
Google Scholar
Okere IC, Chandler MP, McElfresh TA, Rennison JH, Sharov V, Sabbah HN et al (2006) Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am J Physiol Heart Circ Physiol 291(1):H38–H44
CAS
PubMed
Google Scholar
Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, Lund LM et al (2011) Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 52(12):2159–2168
CAS
PubMed Central
PubMed
Google Scholar
Son NH, Yu S, Tuinei J, Arai K, Hamai H, Homma S et al (2010) PPARgamma-induced cardiolipotoxicity in mice is ameliorated by PPARalpha deficiency despite increases in fatty acid oxidation. J Clin Invest 120(10):3443–3454
CAS
PubMed Central
PubMed
Google Scholar
Stanley WC, Recchia FA (2010) Lipotoxicity and the development of heart failure: moving from mouse to man. Cell Metab 12(6):555–556
CAS
PubMed Central
PubMed
Google Scholar
Reichelt ME, Mellor KM, Curl CL, Stapleton D, Delbridge LM (2013) Myocardial glycophagy—a specific glycogen handling response to metabolic stress is accentuated in the female heart. J Mol Cell Cardiol 65:67–75
CAS
PubMed
Google Scholar
Wu Z, Chen Q, Ke D, Li G, Deng W (2014) Emodin protects against diabetic cardiomyopathy by regulating the AKT/GSK-3beta signaling pathway in the rat model. Molecules 19(9):14782–14793
PubMed
Google Scholar
Hemmeryckx B, Hoylaerts MF, Gallacher DJ, Rong Lu H, Himmelreich U, D’Hooge J et al (2013) Does rosiglitazone affect adiposity and cardiac function in genetic diabetic mice? Eur J Pharmacol 700(1–3):23–31
CAS
PubMed
Google Scholar
Hemmeryckx B, Gaekens M, Gallacher DJ, Lu HR, Lijnen HR (2013) Effect of rosiglitazone on liver structure and function in genetically diabetic Akita mice. Basic Clin Pharmacol Toxicol 113(5):353–360
CAS
PubMed
Google Scholar
Marsh SA, Powell PC, Dell’italia LJ, Chatham JC (2013) Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci 92(11):648–656
CAS
PubMed Central
PubMed
Google Scholar
Kim HS, Woo JS, Joo HJ, Moon WK (2012) Cardiac transcription factor Nkx2.5 is downregulated under excessive O-GlcNAcylation condition. PLoS One 7(6):e38053
CAS
PubMed Central
PubMed
Google Scholar
Ruan HB, Nie Y, Yang X (2013) Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics 12(12):3489–3497
CAS
PubMed Central
PubMed
Google Scholar
Yokoe S, Asahi M, Takeda T, Otsu K, Taniguchi N, Miyoshi E et al (2010) Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology 20(10):1217–1226
CAS
PubMed
Google Scholar
Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M et al (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278(45):44230–44237
CAS
PubMed
Google Scholar
Ouwens DM, Boer C, Fodor M, de Galan P, Heine RJ, Maassen JA et al (2005) Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia 48(6):1229–1237
CAS
PubMed
Google Scholar
Thomas CM, Yong QC, Rosa RM, Seqqat R, Gopal S, Casarini DE et al (2014) Cardiac-specific suppression of NF-kappaB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am J Physiol Heart Circ Physiol 307(7):H1036–H1045
CAS
PubMed
Google Scholar
Qi Y, Zhu Q, Zhang K, Thomas C, Wu Y, Kumar R et al (2015) Activation of Foxo1 by insulin resistance promotes cardiac dysfunction and beta-myosin heavy chain gene expression. Circ Heart Fail 8(1):198–208
CAS
PubMed
Google Scholar
Genini D, Catapano CV (2007) Block of nuclear receptor ubiquitination. A mechanism of ligand-dependent control of peroxisome proliferator-activated receptor delta activity. J Biol Chem 282(16):11776–11785
CAS
PubMed
Google Scholar
Witt SH, Granzier H, Witt CC, Labeit S (2005) MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 350(4):713–722
CAS
PubMed
Google Scholar
Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M, Patterson C (2014) The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol 71:43–53
CAS
PubMed
Google Scholar
Rieck M, Wedeken L, Muller-Brusselbach S, Meissner W, Muller R (2007) Expression level and agonist-binding affect the turnover, ubiquitination and complex formation of peroxisome proliferator activated receptor beta. FEBS J 274(19):5068–5076
CAS
PubMed
Google Scholar
Kim JH, Park KW, Lee EW, Jang WS, Seo J, Shin S et al (2014) Suppression of PPARgamma through MKRN1-mediated ubiquitination and degradation prevents adipocyte differentiation. Cell Death Differ 21(4):594–603
CAS
PubMed Central
PubMed
Google Scholar
Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y et al (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522(7556):359–362
CAS
PubMed
Google Scholar
Su M, Wang J, Kang L, Wang Y, Zou Y, Feng X et al (2014) Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int J Mol Sci 15(6):9302–9313
CAS
PubMed Central
PubMed
Google Scholar
Lockyer P, Schisler JC, Patterson C, Willis MS (2010) Minireview: Won’t get fooled again: the nonmetabolic roles of peroxisome proliferator-activated receptors (PPARs) in the heart. Mol Endocrinol 24(6):1111–1119
CAS
PubMed
Google Scholar
Fan W, Evans R (2015) PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol 33:49–54
CAS
PubMed
Google Scholar
Delfosse V, Maire AL, Balaguer P, Bourguet W (2014) A structural perspective on nuclear receptors as targets of environmental compounds. Acta Pharmacol Sin. doi:10.1038/aps.2014.133 [Epub ahead of print]
Rodríguez JE, Liao J, He J, Schisler JC, Newgard CB, Drujan D et al (2015) The ubiquitin ligase MuRF1 regulates PPARα activity in the heart by enhancing nuclear export via monoubiquitination. Mol Cell Endocrinol (in press)
Fu M, Zhang J, Lin Y, Zhu X, Zhao L, Ahmad M et al (2003) Early stimulation and late inhibition of peroxisome proliferator-activated receptor gamma (PPAR gamma) gene expression by transforming growth factor beta in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads. Biochem J 370(Pt 3):1019–1025
CAS
PubMed Central
PubMed
Google Scholar
Jiang X, Yang X, Han Y, Lu S (2013) Transcription factor AP1 binds the functional region of the promoter and regulates gene expression of human PPARdelta in LoVo cell. Tumour Biol 34(6):3619–3625
CAS
PubMed
Google Scholar
Nie L, Sasaki M, Maki CG (2007) Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem 282(19):14616–14625
CAS
PubMed
Google Scholar
Brooks CL, Li M, Gu W (2004) Monoubiquitination: the signal for p53 nuclear export? Cell Cycle 3(4):436–438
CAS
PubMed
Google Scholar
Carter S, Bischof O, Dejean A, Vousden KH (2007) C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 9(4):428–435
CAS
PubMed
Google Scholar
Shmueli A, Oren M (2004) Regulation of p53 by Mdm2: fate is in the numbers. Mol Cell 13(1):4–5
CAS
PubMed
Google Scholar
Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302(5652):1972–1975
CAS
PubMed
Google Scholar
den Besten W, Kuo ML, Tago K, Williams RT, Sherr CJ (2006) Ubiquitination of, and sumoylation by, the Arf tumor suppressor. Isr Med Assoc J 8(4):249–251
Google Scholar
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1):94–102
CAS
PubMed Central
PubMed
Google Scholar
Buchberger A (2002) From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol 12(5):216–221
CAS
PubMed
Google Scholar
Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287(4):C834–C843
CAS
PubMed
Google Scholar
Schaffer SW, Jong CJ, Ito T, Azuma J (2014) Effect of taurine on ischemia-reperfusion injury. Amino Acids 46(1):21–30
CAS
PubMed
Google Scholar
Spichtin H, Mihatsch MJ (1979) Diagnostic progress in familial nephropathy. Alport’s syndrome, nail-patella syndrome and benign familial hematuria (author’s transl). Pathol Res Pract 164(1):80–86
CAS
PubMed
Google Scholar
Wang GG, Li W, Lu XH, Zhao X, Xu L (2013) Taurine attenuates oxidative stress and alleviates cardiac failure in type I diabetic rats. Croat Med J 54(2):171–179
CAS
PubMed Central
PubMed
Google Scholar
Beyranvand MR, Khalafi MK, Roshan VD, Choobineh S, Parsa SA, Piranfar MA (2011) Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol 57(3):333–337
PubMed
Google Scholar
Ito T, Schaffer S, Azuma J (2014) The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids 46(1):111–119
CAS
PubMed
Google Scholar
Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42(5):1529–1539
CAS
PubMed Central
PubMed
Google Scholar
Kuang E, Qi J, Ronai Z (2013) Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem Sci 38(9):453–460
CAS
PubMed Central
PubMed
Google Scholar
Perera S, Holt MR, Mankoo BS, Gautel M (2011) Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev Biol 351(1):46–61
CAS
PubMed Central
PubMed
Google Scholar
Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT et al (2014) Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med 18(8):1599–1611
CAS
PubMed Central
PubMed
Google Scholar
Fuentes-Antras J, Picatoste B, Gomez-Hernandez A, Egido J, Tunon J, Lorenzo O (2015) Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015:656795
CAS
PubMed Central
PubMed
Google Scholar
Wadosky KM, Rodriguez JE, Hite RL, Min JN, Walton BL, Willis MS (2014) Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. Am J Physiol Endocrinol Metab 306(7):E723–E739
CAS
PubMed Central
PubMed
Google Scholar
Cohen S, Lee D, Zhai B, Gygi SP, Goldberg AL (2014) Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation. J Cell Biol 204(5):747–758
CAS
PubMed Central
PubMed
Google Scholar
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708
CAS
PubMed
Google Scholar
Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E et al (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6(5):376–385
CAS
PubMed
Google Scholar
Sarkozy M, Zvara A, Gyemant N, Fekete V, Kocsis GF, Pipis J et al (2013) Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats. Cardiovasc Diabetol 12:16
CAS
PubMed Central
PubMed
Google Scholar
Lee TI, Kao YH, Chen YC, Pan NH, Chen YJ (2010) Oxidative stress and inflammation modulate peroxisome proliferator-activated receptors with regional discrepancy in diabetic heart. Eur J Clin Invest 40(8):692–699
CAS
PubMed
Google Scholar
Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47(4):507–514
CAS
PubMed
Google Scholar
Lee TI, Kao YH, Chen YC, Pan NH, Lin YK, Chen YJ (2011) Cardiac peroxisome-proliferator-activated receptor expression in hypertension co-existing with diabetes. Clin Sci (Lond) 121(7):305–312
CAS
Google Scholar
Yu BC, Chang CK, Ou HY, Cheng KC, Cheng JT (2008) Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozotocin-induced diabetic rats. Cardiovasc Res 80(1):78–87
CAS
PubMed
Google Scholar