Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, Huang ES, Korytkowski MT, Munshi MN, Odegard PS, et al. Diabetes in older adults. Diabetes Care. 2012;35(12):2650–64.
Article
Google Scholar
Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH Jr, Zheng ZJ, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014;129(8):837–47.
Article
Google Scholar
Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3(1):7–11.
Article
Google Scholar
Butrous H, Hummel SL. Heart failure in older adults. Can J Cardiol. 2016;32(9):1140–7.
Article
Google Scholar
Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS, Deswal A, Dickson VV, Kosiborod MN, Lekavich CL, et al. Type 2 diabetes mellitus and heart failure: a scientific statement from the american heart association and the heart failure society of America: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation. 2019;140(7):e294–324.
Article
CAS
Google Scholar
Nesti L, Pugliese NR, Sciuto P, Natali A. Type 2 diabetes and reduced exercise tolerance: a review of the literature through an integrated physiology approach. Cardiovasc Diabetol. 2020;19(1):134.
Article
CAS
Google Scholar
Nesti L, Pugliese NR, Sciuto P, De Biase N, Mazzola M, Fabiani I, Trico D, Masi S, Natali A. Mechanisms of reduced peak oxygen consumption in subjects with uncomplicated type 2 diabetes. Cardiovasc Diabetol. 2021;20(1):124.
Article
CAS
Google Scholar
Sugumar H, Nanayakkara S, Prabhu S, Voskoboinik A, Kaye DM, Ling LH, Kistler PM. Pathophysiology of atrial fibrillation and heart failure: dangerous interactions. Cardiol Clin. 2019;37(2):131–8.
Article
Google Scholar
Anter E, Jessup M, Callans DJ. Atrial fibrillation and heart failure: treatment considerations for a dual epidemic. Circulation. 2009;119(18):2516–25.
Article
Google Scholar
Kotecha D, Piccini JP. Atrial fibrillation in heart failure: what should we do? Eur Heart J. 2015;36(46):3250–7.
CAS
Google Scholar
Adelborg K, Szépligeti S, Sundbøll J, Horváth-Puhó E, Henderson VW, Ording A, Pedersen L, Sørensen HT. Risk of stroke in patients with heart failure: a population-based 30-year cohort study. Stroke. 2017;48(5):1161–8.
Article
Google Scholar
Eckman MH, Singer DE, Rosand J, Greenberg SM. Moving the tipping point: the decision to anticoagulate patients with atrial fibrillation. Circ Cardiovasc Qual Outcomes. 2011;4(1):14–21.
Article
Google Scholar
Chao TF, Lip GYH, Lin YJ, Chang SL, Lo LW, Hu YF, Tuan TC, Liao JN, Chung FP, Chen TJ, et al. Age threshold for the use of non-vitamin K antagonist oral anticoagulants for stroke prevention in patients with atrial fibrillation: insights into the optimal assessment of age and incident comorbidities. Eur Heart J. 2019;40(19):1504–14.
Article
Google Scholar
Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498.
Article
Google Scholar
Huang HK, Liu PP, Lin SM, Hsu JY, Peng CC, Munir KM, Wu TY, Yeh JI, Loh CH, Tu YK. Risk of developing diabetes in patients with atrial fibrillation taking non-vitamin K antagonist oral anticoagulants or warfarin: a nationwide cohort study. Diabetes Obes Metab. 2021;23(2):499–507.
Article
CAS
Google Scholar
Cheung CL, Sing CW, Lau WCY, Li GHY, Lip GYH, Tan KCB, Cheung BMY, Chan EWY, Wong ICK. Treatment with direct oral anticoagulants or warfarin and the risk for incident diabetes among patients with atrial fibrillation: a population-based cohort study. Cardiovasc Diabetol. 2021;20(1):71.
Article
CAS
Google Scholar
Huang HK, Liu PP, Lin SM, Hsu JY, Yeh JI, Lai EC, Peng CC, Munir KM, Loh CH, Tu YK. Diabetes-related complications and mortality in patients with atrial fibrillation receiving different oral anticoagulants : a nationwide analysis. Ann Intern Med. 2022;175(4):490–8.
Article
Google Scholar
Esmon CT. Targeting factor Xa and thrombin: impact on coagulation and beyond. Thromb Haemost. 2014;111(4):625–33.
Article
CAS
Google Scholar
Tsujino Y, Sakamoto T, Kinoshita K, Nakatani Y, Yamaguchi Y, Kataoka N, Nishida K, Kinugawa K. Edoxaban suppresses the progression of atrial fibrosis and atrial fibrillation in a canine congestive heart failure model. Heart Vessels. 2019;34(8):1381–8.
Article
Google Scholar
Liu J, Nishida M, Inui H, Chang J, Zhu Y, Kanno K, Matsuda H, Sairyo M, Okada T, Nakaoka H, et al. Rivaroxaban suppresses the progression of ischemic cardiomyopathy in a murine model of diet-induced myocardial infarction. J Atheroscler Thromb. 2019;26(10):915–30.
Article
CAS
Google Scholar
Hsieh CY, Su CC, Shao SC, Sung SF, Lin SJ, Kao Yang YH, Lai EC. Taiwan’s national health insurance research database: past and future. Clin Epidemiol. 2019;11:349–58.
Article
Google Scholar
Hsing AW, Ioannidis JP. Nationwide population science: lessons from the Taiwan national health insurance research database. JAMA Intern Med. 2015;175(9):1527–9.
Article
Google Scholar
Hernán MA. Methods of public health research—strengthening causal inference from observational data. N Engl J Med. 2021;385(15):1345–8.
Article
Google Scholar
Kutcher SA, Brophy JM, Banack HR, Kaufman JS, Samuel M. Emulating a randomised controlled trial with observational data: an introduction to the target trial framework. Can J Cardiol. 2021;37(9):1365–77.
Article
Google Scholar
Chen A, Stecker E, Warden BA. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc. 2020;9(13):e017559.
Article
CAS
Google Scholar
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.
Article
CAS
Google Scholar
Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–72.
Article
Google Scholar
Pamukcu B, Lip GY, Lane DA. Simplifying stroke risk stratification in atrial fibrillation patients: implications of the CHA2DS2-VASc risk stratification scores. Age Ageing. 2010;39(5):533–5.
Article
Google Scholar
Desai RJ, Franklin JM. Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners. BMJ. 2019;367:l5657.
Article
Google Scholar
Heinze G, Jüni P. An overview of the objectives of and the approaches to propensity score analyses. Eur Heart J. 2011;32(14):1704–8.
Article
Google Scholar
Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data in the presence of competing risks. Circulation. 2016;133(6):601–9.
Article
Google Scholar
Austin PC. A tutorial on multilevel survival analysis: methods models and applications. Int Stat Rev. 2017;85(2):185–203.
Article
Google Scholar
Balan TA, Putter H. A tutorial on frailty models. Stat Methods Med Res. 2020;29(11):3424–54.
Article
Google Scholar
Andrade SE, Kahler KH, Frech F, Chan KA. Methods for evaluation of medication adherence and persistence using automated databases. Pharmacoepidemiol Drug Saf. 2006;15(8):565–74.
Article
Google Scholar
Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399–424.
Article
Google Scholar
Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10(2):150–61.
Article
Google Scholar
Gradolí J, Vidal V, Brady AJ, Facila L. Anticoagulation in patients with ischaemic heart disease and peripheral arterial disease: clinical implications of COMPASS study. Eur Cardiol. 2018;13(2):115–8.
Article
Google Scholar
Ferri LA, Bassanelli G, Savonitto S. Use of direct oral anticoagulant in ischaemic heart disease: the COMPASS study. Eur Heart J Suppl. 2019;21(Suppl B):B84-b87.
Article
Google Scholar
van Melle JP, Bot M, de Jonge P, de Boer RA, van Veldhuisen DJ, Whooley MA. Diabetes, glycemic control, and new-onset heart failure in patients with stable coronary artery disease: data from the heart and soul study. Diabetes Care. 2010;33(9):2084–9.
Article
Google Scholar
Iribarren C, Karter AJ, Go AS, Ferrara A, Liu JY, Sidney S, Selby JV. Glycemic control and heart failure among adult patients with diabetes. Circulation. 2001;103(22):2668–73.
Article
CAS
Google Scholar
Li Y, Chen JP, Duan L, Li S. Effect of vitamin K2 on type 2 diabetes mellitus: a review. Diabetes Res Clin Pract. 2018;136:39–51.
Article
CAS
Google Scholar
Manna P, Kalita J. Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: a review. Nutrition. 2016;32(7–8):732–9.
Article
CAS
Google Scholar
Karamzad N, Maleki V, Carson-Chahhoud K, Azizi S, Sahebkar A, Gargari BP. A systematic review on the mechanisms of vitamin K effects on the complications of diabetes and pre-diabetes. BioFactors. 2020;46(1):21–37.
Article
CAS
Google Scholar
Zhao L, Wang WYS, Yang X. Anticoagulation in atrial fibrillation with heart failure. Heart Fail Rev. 2018;23(4):563–71.
Article
CAS
Google Scholar
Brown LAE, Boos CJ. Atrial fibrillation and heart failure: factors influencing the choice of oral anticoagulant. Int J Cardiol. 2017;227:863–8.
Article
Google Scholar
Copeland KT, Checkoway H, McMichael AJ, Holbrook RH. Bias due to misclassification in the estimation of relative risk. Am J Epidemiol. 1977;105(5):488–95.
Article
CAS
Google Scholar
Höfler M. The effect of misclassification on the estimation of association: a review. Int J Methods Psychiatr Res. 2005;14(2):92–101.
Article
Google Scholar