Perrone-Filardi P, Paolillo S, Costanzo P, Savarese G, Trimarco B, Bonow RO. The role of metabolic syndrome in heart failure. Eur Heart J. 2015;36(39):2630–4. https://doi.org/10.1093/eurheartj/ehv350.
Article
CAS
Google Scholar
Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116(4):434–48. https://doi.org/10.1161/CIRCULATIONAHA.107.702795.
Article
CAS
Google Scholar
Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol. 2004;43(8):1439–44. https://doi.org/10.1016/j.jacc.2003.11.039.
Article
Google Scholar
Regitz-Zagrosek V, Lehmkuhl E, Weickert MO. Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin Res Cardiol. 2006;95(3):136–47. https://doi.org/10.1007/s00392-006-0351-5.
Article
CAS
Google Scholar
Sotomi Y, et al. Sex differences in heart failure with preserved ejection fraction. J Am Heart Assoc. 2021. https://doi.org/10.1161/JAHA.120.018574.
Article
Google Scholar
Chen Y, Kim M, Paye S, Benayoun BA. Sex as a biological variable in nutrition research: from human studies to animal models. Annu Rev Nutr. 2022. https://doi.org/10.1146/annurev-nutr-062220-105852.
Article
Google Scholar
Marino M, Masella R, Bulzomi P, Campesi I, Malorni W, Franconi F. Nutrition and human health from a sex–gender perspective. Mol Aspects Med. 2011;32(1):1–70. https://doi.org/10.1016/j.mam.2011.02.001.
Article
CAS
Google Scholar
Li J, Lo K, Shen G, Feng Y-Q, Huang Y-Q. Gender difference in the association of serum selenium with all-cause and cardiovascular mortality. Postgrad Med. 2020;132(2):148–55. https://doi.org/10.1080/00325481.2019.1701864.
Article
CAS
Google Scholar
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. https://doi.org/10.1007/s11906-018-0812-z.
Article
Google Scholar
Wells JC, et al. The double burden of malnutrition: aetiological pathways and consequences for health. The Lancet. 2020;395(10217):75–88. https://doi.org/10.1016/S0140-6736(19)32472-9.
Article
Google Scholar
Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol. 2011;55(4):920–32. https://doi.org/10.1016/j.jhep.2011.05.008.
Article
CAS
Google Scholar
Ruz M, Carrasco F, Rojas P, Basfi-fer K, Hernández MC, Pérez A. Nutritional effects of zinc on metabolic syndrome and type 2 diabetes: mechanisms and main findings in human studies. Biol Trace Elem Res. 2019;188(1):177–88. https://doi.org/10.1007/s12011-018-1611-8.
Article
CAS
Google Scholar
Al-Mubarak AA, et al. High selenium levels associate with reduced risk of mortality and new-onset heart failure: data from PREVEND. Eur J Heart Fail. 2022;24(2):299–307. https://doi.org/10.1002/ejhf.2405.
Article
CAS
Google Scholar
Bomer N, et al. Selenium and outcome in heart failure. Eur J Heart Fail. 2020. https://doi.org/10.1002/ejhf.1644.
Article
Google Scholar
Ford ES, Mokdad AH, Giles WH, Brown DW. The metabolic syndrome and antioxidant concentrations. Diabetes. 2003;52(9):2346–52. https://doi.org/10.2337/diabetes.52.9.2346.
Article
CAS
Google Scholar
Zhou L, et al. Diverse associations of plasma selenium concentrations and SELENOP gene polymorphism with metabolic syndrome and its components. Oxid Med Cell Longev. 2020;2020:1–11. https://doi.org/10.1155/2020/5343014.
Article
CAS
Google Scholar
Lu C-W, Chang H-H, Yang K-C, Chiang C-H, Yao C-A, Huang K-C. Gender differences with dose-response relationship between serum selenium levels and metabolic syndrome—a case-control study. Nutrients. 2019;11(2):477. https://doi.org/10.3390/nu11020477.
Article
CAS
Google Scholar
Obeid O, et al. Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res. 2008;123(1–3):58–65. https://doi.org/10.1007/s12011-008-8112-0.
Article
CAS
Google Scholar
Zhang W, et al. Multiple-element exposure and metabolic syndrome in Chinese adults: a case-control study based on the Beijing population health cohort. Environ Int. 2020. https://doi.org/10.1016/j.envint.2020.105959.
Article
Google Scholar
Ali W, et al. Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: a critical review. Crit Rev Environ Sci Technol. 2021;51(7):704–50. https://doi.org/10.1080/10643389.2020.1740042.
Article
CAS
Google Scholar
Zwolak I. The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res. 2020;193(1):44–63. https://doi.org/10.1007/s12011-019-01691-w.
Article
CAS
Google Scholar
Bleys J. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med. 2008;168(4):404. https://doi.org/10.1001/archinternmed.2007.74.
Article
CAS
Google Scholar
Brouwers FP, et al. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J. 2013;34(19):1424–31. https://doi.org/10.1093/eurheartj/eht066.
Article
CAS
Google Scholar
Voors AA, et al. A systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure: rationale, design, and baseline characteristics of BIOSTAT-CHF. Eur J Heart Fail. 2016. https://doi.org/10.1002/ejhf.531.
Article
Google Scholar
Ellingsen DG, Thomassen Y, Rustad P, Molander P, Aaseth J. The time-trend and the relation between smoking and circulating selenium concentrations in Norway. J Trace Elem Med Biol. 2009;23(2):107–15. https://doi.org/10.1016/j.jtemb.2009.01.004.
Article
CAS
Google Scholar
Moffat AC, Osselton MD, Widdop B, Watts J. Clarke’s analysis of drugs and poisons. 4th ed. London: Pharmaceutical Press; 2011.
Google Scholar
VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiol Methods. 2014. https://doi.org/10.1515/em-2013-0005.
Article
Google Scholar
Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol. 2003;3(1):21. https://doi.org/10.1186/1471-2288-3-21.
Article
Google Scholar
Petersen MR, Deddens JA. A comparison of two methods for estimating prevalence ratios. BMC Med Res Methodol. 2008;8(1):9. https://doi.org/10.1186/1471-2288-8-9.
Article
Google Scholar
Marshall SW. Power for tests of interaction: effect of raising the type I error rate. Epidemiol Perspect Innov. 2007. https://doi.org/10.1186/1742-5573-4-4.
Article
Google Scholar
Hays CC, et al. APOE modifies the interaction of entorhinal cerebral blood flow and cortical thickness on memory function in cognitively normal older adults. Neuroimage. 2019. https://doi.org/10.1016/j.neuroimage.2019.116162.
Article
Google Scholar
Podadera-Herreros A, et al. Long-term consumption of a Mediterranean diet or a low-fat diet on kidney function in coronary heart disease patients: the CORDIOPREV randomized controlled trial. Clin Nutr. 2022;41(2):552–9. https://doi.org/10.1016/j.clnu.2021.12.041.
Article
CAS
Google Scholar
Estruch R, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018. https://doi.org/10.1056/NEJMoa1800389.
Article
Google Scholar
Serra-Majem L, Bes-Rastrollo M, Román-Viñas B, Pfrimer K, Sánchez-Villegas A, Martínez-González MA. Dietary patterns and nutritional adequacy in a Mediterranean country. Br J Nutr. 2009;101(Suppl 2):S21–8. https://doi.org/10.1017/S0007114509990559.
Article
CAS
Google Scholar
Castro-Quezada I, Román-Viñas B, Serra-Majem L. The Mediterranean diet and nutritional adequacy: a review. Nutrients. 2014;6(1):231–48. https://doi.org/10.3390/nu6010231.
Article
Google Scholar
Astrup A, Bügel S. Micronutrient deficiency in the aetiology of obesity. Int J Obes. 2010;34(6):947–8. https://doi.org/10.1038/ijo.2010.81.
Article
CAS
Google Scholar
van Vliet IMY, Gomes-Neto AW, de Jong MFC, Jager-Wittenaar H, Navis GJ. High prevalence of malnutrition both on hospital admission and predischarge. Nutrition. 2020. https://doi.org/10.1016/j.nut.2020.110814.
Article
Google Scholar
de Juras AR, Hsu W-C, Hu SC. The double burden of malnutrition at the individual level among adults: a nationwide survey in the Philippines. Front Nutr. 2021. https://doi.org/10.3389/fnut.2021.760437.
Article
Google Scholar
Chien S-C, et al. Associations of obesity and malnutrition with cardiac remodeling and cardiovascular outcomes in Asian adults: a cohort study. PLoS Med. 2021. https://doi.org/10.1371/journal.pmed.1003661.
Article
Google Scholar
Traissac P, El Ati J, Gartner A, Ben Gharbia H, Delpeuch F. Gender inequalities in excess adiposity and anaemia combine in a large double burden of malnutrition gap detrimental to women in an urban area in North Africa. Public Health Nutr. 2016. https://doi.org/10.1017/S1368980016000689.
Article
Google Scholar
Faulkner JL, Belin de Chantemèle EJ. Sex differences in mechanisms of hypertension associated with obesity. Hypertension. 2018;71(1):15–21. https://doi.org/10.1161/HYPERTENSIONAHA.117.09980.
Article
CAS
Google Scholar
Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37(3):278–316. https://doi.org/10.1210/er.2015-1137.
Article
CAS
Google Scholar
García OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67(10):559–72. https://doi.org/10.1111/j.1753-4887.2009.00228.x.
Article
Google Scholar
Delisle HF. Poverty. Ann N Y Acad Sci. 2008;1136(1):172–84. https://doi.org/10.1196/annals.1425.026.
Article
Google Scholar
Steinbrenner H, Duntas LH, Rayman MP. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol. 2022. https://doi.org/10.1016/j.redox.2022.102236.
Article
Google Scholar
Gorini F, Vassalle C. Selenium and selenoproteins at the intersection of type 2 diabetes and thyroid pathophysiology. Antioxidants (Basel). 2022. https://doi.org/10.3390/antiox11061188.
Article
Google Scholar
Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes: can we make sense of it? Free Radic Biol Med. 2013;65:1557–64. https://doi.org/10.1016/j.freeradbiomed.2013.04.003.
Article
CAS
Google Scholar
Wang X-L, Yang T-B, Wei J, Lei G-H, Zeng C. Association between serum selenium level and type 2 diabetes mellitus: a non-linear dose-response meta-analysis of observational studies. Nutr J. 2016. https://doi.org/10.1186/s12937-016-0169-6.
Article
Google Scholar
Eisenberg E, di Palo KE, Piña IL. Sex differences in heart failure. Clin Cardiol. 2018. https://doi.org/10.1002/clc.22917.
Article
Google Scholar
Chung AK, et al. Women have higher left ventricular ejection fractions than men independent of differences in left ventricular volume. Circulation. 2006;113(12):1597–604. https://doi.org/10.1161/CIRCULATIONAHA.105.574400.
Article
Google Scholar
Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E. Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr. 2006;84(4):762–73. https://doi.org/10.1093/ajcn/84.4.762.
Article
CAS
Google Scholar
Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ. 2018. https://doi.org/10.1136/bmj.k4247.
Article
Google Scholar
Sun L-H, Zhang N-Y, Zhu M-K, Zhao L, Zhou J-C, Qi D-S. Prevention of aflatoxin B1 hepatoxicity by dietary selenium is associated with inhibition of cytochrome P450 Isozymes and Up-regulation of 6 selenoprotein genes in chick liver. J Nutr. 2015;146(4):655–61. https://doi.org/10.3945/jn.115.224626.
Article
CAS
Google Scholar
Jiang Z, Gu L, Liang X, Cao B, Zhang J, Guo X. The effect of selenium on CYP450 isoform activity and expression in pigs. Biol Trace Elem Res. 2020;196(2):454–62. https://doi.org/10.1007/s12011-019-01945-7.
Article
CAS
Google Scholar
Flockhart DA, Tanus-Santos JE. Implications of cytochrome P450 interactions when prescribing medication for hypertension. Arch Intern Med. 2002;162(4):405–12. https://doi.org/10.1001/archinte.162.4.405.
Article
CAS
Google Scholar
Neuvonen PJ. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Investig Drugs. 2010;11(3):323–32.
CAS
Google Scholar
Pieske B, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297–317. https://doi.org/10.1093/eurheartj/ehz641.
Article
Google Scholar
Tadic M, Cuspidi C. Obesity and heart failure with preserved ejection fraction: a paradox or something else? Heart Fail Rev. 2019;24(3):379–85. https://doi.org/10.1007/s10741-018-09766-x.
Article
Google Scholar
Al-Mubarak AA, van der Meer P, Bomer N. Selenium, selenoproteins, and heart failure: current knowledge and future perspective. Curr Heart Fail Rep. 2021. https://doi.org/10.1007/s11897-021-00511-4.
Article
Google Scholar
Seale LA, Ogawa-Wong AN, Berry MJ. SEXUAL DIMORPHISM IN SELENIUM METABOLISM AND SELENOPROTEINS. Free Radic Biol Med. 2018. https://doi.org/10.1016/j.freeradbiomed.2018.03.036.
Article
Google Scholar
Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017. https://doi.org/10.1111/jcmm.13038.
Article
Google Scholar
Singhai M, Goyal R, Faizy A. Glutathione peroxidase activity in obese and nonobese diabetic patients and role of hyperglycemia in oxidative stress. J Midlife Health. 2011;2(2):72. https://doi.org/10.4103/0976-7800.92529.
Article
Google Scholar
Ahmad A. The role of the endogenous antioxidant enzymes and malondialdehyde in essential hypertension. J Clin Diagn Res. 2013. https://doi.org/10.7860/JCDR/2013/5829.3091.
Article
Google Scholar
Cheng M, Chen C, Ho H, Li J, Chiu DT. Effect of acute myocardial infarction on erythrocytic glutathione peroxidase 1 activity and plasma vitamin E levels. Am J Cardiol. 2009;103(4):471–5. https://doi.org/10.1016/j.amjcard.2008.09.104.
Article
CAS
Google Scholar
Meng Z, et al. Gender and age impacts on the association between thyroid function and metabolic syndrome in Chinese. Medicine. 2015. https://doi.org/10.1097/MD.0000000000002193.
Article
Google Scholar
Wolffenbuttel BHR, et al. Thyroid function and metabolic syndrome in the population-based LifeLines cohort study. BMC Endocr Disord. 2017;17(1):65. https://doi.org/10.1186/s12902-017-0215-1.
Article
CAS
Google Scholar
Razvi S, et al. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 2018;71(16):1781–96. https://doi.org/10.1016/j.jacc.2018.02.045.
Article
CAS
Google Scholar