Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843.
Article
PubMed
Google Scholar
Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376:1407–18. https://doi.org/10.1056/NEJMoa1608664.
Article
PubMed
Google Scholar
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17:83. https://doi.org/10.1186/s12933-018-0728-6.
Article
PubMed
PubMed Central
Google Scholar
Niedziela J, Hiczkiewicz J, Kleinrok A, Pączek P, Leszek P, Lelonek M, et al. Prevalence, characteristics, and prognostic implications of type 2 diabetes in patients with myocardial infarction: the Polish Registry of Acute Coronary Syndromes (PL-ACS) annual 2018 report. Kardiol Pol. 2020;78:243–6. https://doi.org/10.33963/KP.15189.
Article
PubMed
Google Scholar
Leander K, Blombäck M, Wallén H, He S. Impaired fibrinolytic capacity and increased fibrin formation associate with myocardial infarction. Thromb Haemost. 2012;106:1092–9. https://doi.org/10.1160/TH11-11-0760.
Article
CAS
Google Scholar
Zalewski J, Bogaert J, Sadowski M, Woznicka O, Doulaptsis K, Ntoumpanaki M, et al. Plasma fibrin clot phenotype independently affects intracoronary thrombus ultrastructure in patients with acute myocardial infarction. Thromb Haemost. 2015;113:1258–69. https://doi.org/10.1160/TH14-09-0801.
Article
PubMed
Google Scholar
Undas A, Wiek I, Stepien E, Zmudka K, Tracz W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care. 2008;31:1590–5. https://doi.org/10.2337/dc08-0282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn EJ, Ariëns RAS, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia. 2005;48:1198–206. https://doi.org/10.1007/s00125-005-1742-2.
Article
CAS
PubMed
Google Scholar
Hess K, Alzahrani SH, Price JF, Strachan MW, Oxley N, King R, et al. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia. 2014;57:1737–41. https://doi.org/10.1007/s00125-014-3267-z.
Article
CAS
PubMed
Google Scholar
Pieters M, Covic N, Loots DT, van der Westhuizen FH, van Zyl DG, Rheeder P, et al. The effect of glycaemic control on fibrin network structure of type 2 diabetic subjects. Thromb Haemost. 2006;96:623–9. https://doi.org/10.1160/TH06-07-0390.
Article
CAS
PubMed
Google Scholar
Jörneskog G, Egberg N, Fagrell B, Fatah K, Hessel B, Johnsson H, et al. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia. 1996;39:1519–23.
Article
Google Scholar
Konieczynska M, Fil K, Bazanek M, Undas A. Prolonged duration of type 2 diabetes is associated with increased thrombin generation, prothrombotic fibrin clot phenotype and impaired fibrinolysis. Thromb Haemost. 2014;111:685–93. https://doi.org/10.1160/TH13-07-0566.
Article
CAS
PubMed
Google Scholar
Bochenek M, Zalewski J, Sadowski J, Undas A. Type 2 diabetes as a modifier of fibrin clot properties in patients with coronary artery disease. J Thromb Thrombolysis. 2013;35:264–70. https://doi.org/10.1007/s11239-012-0821-8.
Article
CAS
PubMed
Google Scholar
Neergaard-Petersen S, Hvas A-M, Kristensen SD, Grove EL, Larsen SB, Phoenix F, et al. The influence of type 2 diabetes on fibrin clot properties in patients with coronary artery disease. Thromb Haemost. 2014;112:1142–50. https://doi.org/10.1160/TH14-05-0468.
Article
CAS
PubMed
Google Scholar
Alessi MC, Juhan-Vague I. PAI-1 and the metabolic syndrome: links, causes, and consequences. Arterioscler Thromb Vasc Biol. 2006;26:2200–7. https://doi.org/10.1161/01.ATV.0000242905.41404.68.
Article
CAS
PubMed
Google Scholar
Hori Y, Gabazza EC, Yano Y, Katsuki A, Suzuki K, Adachi Y, et al. Insulin resistance is associated with increased circulating level of thrombin-activatable fibrinolysis inhibitor in type 2 diabetic patients. J Clin Endocrinol Metab. 2002;87:660–5. https://doi.org/10.1210/jcem.87.2.8214.
Article
CAS
PubMed
Google Scholar
Dunn EJ, Philippou H, Ariëns RAS, Grant PJ. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia. 2006;49:1071–80. https://doi.org/10.1007/s00125-006-0197-4.
Article
CAS
PubMed
Google Scholar
Svensson J, Bergman A-C, Adamson U, Blombäck M, Wallén H, Jörneskog G. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: a mass spectrometric and isotope labeling study. Biochem Biophys Res Commun. 2012;421:335–42. https://doi.org/10.1016/j.bbrc.2012.03.154.
Article
CAS
PubMed
Google Scholar
Ajjan RA, Gamlen T, Standeven KF, Mughal S, Hess K, Smith KA, et al. Diabetes is associated with posttranslational modifications in plasminogen resulting in reduced plasmin generation and enzyme-specific activity. Blood. 2013;122:134–42. https://doi.org/10.1182/blood-2013-04-494641.
Article
CAS
PubMed
Google Scholar
Wittbrodt E, Bhalla N, Andersson K, Qi S, Dong L, Cavender MA, et al. Assessment of the high risk and unmet need in patients with CAD and type 2 diabetes (ATHENA): US healthcare resource utilization, cost and burden of illness in the Diabetes Collaborative Registry. Endocrinol Diab Metab. 2020;3:e00133. https://doi.org/10.1002/edm2.133.
Article
CAS
Google Scholar
Pignatelli P, Menichelli D, Pastori D, Violi F. Oxidative stress and cardiovascular disease: new insights. Kardiol Pol. 2018;76:713–22. https://doi.org/10.5603/KP.a2018.0071.
Article
PubMed
Google Scholar
Ramanathan R, Gram JB, Sidelmann JJ, Dey D, Kusk MW, Nørgaard BL, et al. Sex difference in fibrin clot lysability: association with coronary plaque composition. Thromb Res. 2019;174:129–36. https://doi.org/10.1016/j.thromres.2018.12.020.
Article
CAS
PubMed
Google Scholar
Zhang L, Xu C, Liu J, Bai X, Li R, Wang L, et al. Baseline plasma fibrinogen is associated with haemoglobin A1c and 2-year major adverse cardiovascular events following percutaneous coronary intervention in patients with acute coronary syndrome: a single-centre, prospective cohort study. Cardiovasc Diabetol. 2019;18:1–12. https://doi.org/10.1186/s12933-019-0858-5.
Article
PubMed
PubMed Central
Google Scholar
Li M, Duan L, Cai YL, Li HY, Hao BC, Chen JQ, et al. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc Diabetol. 2020;19:1–12. https://doi.org/10.1186/s12933-020-01092-7.
Article
CAS
Google Scholar
Sumaya W, Wallentin L, James SK, Siegbahn A, Gabrysch K, Himmelmann A, et al. Impaired fibrinolysis predicts adverse outcome in acute coronary syndrome patients with diabetes: a PLATO sub-study. Thromb Haemost. 2020;120:412–22. https://doi.org/10.1055/s-0039-1701011.
Article
PubMed
PubMed Central
Google Scholar
Neergaard-Petersen S, Larsen SB, Grove EL, Kristensen SD, Ajjan RA, Hvas AM. Imbalance between fibrin clot formation and fibrinolysis predicts cardiovascular events in patients with stable coronary artery disease. Thromb Haemost. 2020;120:75–82. https://doi.org/10.1055/s-0039-1700873.
Article
PubMed
Google Scholar
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255–323. https://doi.org/10.1093/eurheartj/ehz486.
Article
PubMed
Google Scholar
Stepień E, Plicner D, Branicka A, Stankiewicz E, Pazdan A, Sniezek-Maciejewska M, et al. Factors influencing thrombin generation measured as thrombin-antithrombin complexes levels and using calibrated automated thrombogram in patients with advanced coronary artery disease. Pol Arch Med Wewn. 2007;117:297–305. https://doi.org/10.20452/pamw.162.
Article
PubMed
Google Scholar
Mills JD, Ariëns RAS, Mansfield MW, Grant PJ. Altered fibrin clot structure in the healthy relatives of patients with premature coronary artery disease. Circulation. 2002;106:1938–42.
Article
CAS
Google Scholar
Undas A, Szułdrzynski K, Stepien E, Zalewski J, Godlewski J, Tracz W, et al. Reduced clot permeability and susceptibility to lysis in patients with acute coronary syndrome: effects of inflammation and oxidative stress. Atherosclerosis. 2008;196:551–7. https://doi.org/10.1016/j.atherosclerosis.2007.05.028.
Article
CAS
PubMed
Google Scholar
Undas A, Podolec P, Zawilska K, Pieculewicz M, Jedliński I, Stgpień E, et al. Altered fibrin clot structure/function in patients with cryptogenic ischemic stroke. Stroke. 2009;40:1499–501. https://doi.org/10.1161/STROKEAHA.108.532812.
Article
CAS
PubMed
Google Scholar
Undas A, Slowik A, Wolkow P, Szczudlik A, Tracz W. Fibrin clot properties in acute ischemic stroke: relation to neurological deficit. Thromb Res. 2010;125:357–61. https://doi.org/10.1016/j.thromres.2009.11.013.
Article
CAS
PubMed
Google Scholar
Lisman T, Leebeek FW, Mosnier LO, Bouma BN, Meijers JC, Janssen HL, et al. Thrombin-activatable fibrinolysis inhibitor deficiency in cirrhosis is not associated with increased plasma fibrinolysis. Gastroenterology. 2001;121:131–9.
Article
CAS
Google Scholar
Williams S, Fatah K, Ivert T, Blomback M. The effect of acetylsalicylic acid on fibrin gel lysis by tissue plasminogen activator. Blood Coagul Fibrinolysis. 1995;6:718–25. https://doi.org/10.1097/00001721-199512000-00004.
Article
CAS
PubMed
Google Scholar
Collet JP, Mishal Z, Lesty C, Mirshahi M, Peynet J, Baumelou A, et al. Abnormal fibrin clot architecture in nephrotic patients is related to hypofibrinolysis: Influence of plasma biochemical modifications. A possible mechanism for the high thrombotic tendency? Thromb Haemost. 1999;82:1482–9. https://doi.org/10.1055/s-0037-1614859.
Article
CAS
Google Scholar
Undas A, Celinska-Löwenhoff M, Löwenhoff T, Szczeklik A. Statins, fenofibrate, and quinapril increase clot permeability and enhance fibrinolysis in patients with coronary artery disease. J Thromb Haemost. 2006;4:1029–36. https://doi.org/10.1111/j.1538-7836.2006.01882.x.
Article
CAS
PubMed
Google Scholar
Formanowicz D, Wanic-Kossowska M, Pawliczak E, Radom M, Formanowicz P. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease-systems and clinical approach. Sci Rep. 2015;5:1–13. https://doi.org/10.1038/srep18332.
Article
CAS
Google Scholar
R Foundation for Statistical Computing. R: a language and environment for statistical computing; 2013.
Carter AM, Cymbalista CM, Spector TD, Grant PJ. Heritability of clot formation, morphology, and lysis: the EuroCLOT study. Arterioscler Thromb Vasc Biol. 2007;27:2783–9. https://doi.org/10.1161/ATVBAHA.107.153221.
Article
CAS
PubMed
Google Scholar
Chernysh IN, Nagaswami C, Kosolapova S, Peshkova AD, Cuker A, Cines DB, et al. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci Rep. 2020;10:5112. https://doi.org/10.1038/s41598-020-59526-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276:618–32. https://doi.org/10.1111/joim.12296.
Article
CAS
PubMed
Google Scholar
Okraska-Bylica A, Wilkosz T, Słowik L, Bazanek M, Konieczyńska M, Undas A. Altered fibrin clot properties in patients with premature peripheral artery disease. Pol Arch Med Wewn. 2012;122:608–15. https://doi.org/10.20452/pamw.1535.
Article
CAS
PubMed
Google Scholar
Barco S, Konstantinides SV. Risk-adapted management of pulmonary embolism. Thromb Res. 2017;151:S92–6. https://doi.org/10.1016/S0049-3848(17)30076-2.
Article
CAS
PubMed
Google Scholar
Kearney K, Tomlinson D, Smith K, Ajjan R. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol. 2017;16:34. https://doi.org/10.1186/s12933-017-0515-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Standeven KF, Ariens RAS, Whitaker P, Ashcroft AE, Weisel JW, Grant PJ. The effect of dimethylbiguanide on thrombin activity, FXIII activation, fibrin polymerization, and fibrin clot formation. Diabetes. 2002;51:189–97. https://doi.org/10.2337/diabetes.51.1.189.
Article
CAS
PubMed
Google Scholar
Ajjan RA, Grant PJ. Cardiovascular disease prevention in patients with type 2 diabetes: the role of oral anti-diabetic agents. Diabetes Vasc Dis Res. 2006;3:147–58. https://doi.org/10.3132/dvdr.2006.023.
Article
Google Scholar
Weisel JW, Litvinov RI. Fibrin formation, structure and properties. Subcell Biochem. 2017;82:405–56. https://doi.org/10.1007/978-3-319-49674-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lados-Krupa A, Konieczynska M, Chmiel A, Undas A. Increased oxidation as an additional mechanism underlying reduced clot permeability and impaired fibrinolysis in type 2 diabetes. J Diabetes Res. 2015. https://doi.org/10.1155/2015/456189.
Article
PubMed
PubMed Central
Google Scholar
Bryk A, Konieczynska M, Rostoff P, Broniatowska E, Hohendorff J, Malecki M, et al. Plasma protein oxidation as a determinant of impaired fibrinolysis in type 2 diabetes. Thromb Haemost. 2019;119:213–22. https://doi.org/10.1055/s-0038-1676609.
Article
PubMed
Google Scholar
Bhatt DL, Eikelboom JW, Conolly SJ, Steg PG, Anand SS, Verma S, et al. Role of combination antiplatelet and anticoagulation therapy in diabetes mellitus and cardiovascular disease Insights From the COMPASS Trial. Circulation. 2020;141:1841–54. https://doi.org/10.1161/CIRCULATIONAHA.120.046448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ajjan RA, Standeven KF, Khanbhai M, Phoenix F, Gersh KC, Weisel JW, et al. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system. Arterioscler Thromb Vasc Biol. 2009;29:712–7. https://doi.org/10.1161/ATVBAHA.109.183707.
Article
CAS
PubMed
Google Scholar
Carter RLR, Talbot K, Hur WS, Meixner SC, van der Gugten JG, Holmes D, et al. Rivaroxaban and apixaban induce clotting factor Xa fibrinolytic activity. J Thromb Haemost. 2018;16:2276–88. https://doi.org/10.1111/jth.14281.
Article
CAS
PubMed
Google Scholar
Schneider JG, Isermann B, Kleber ME, Wang H, Boehm BO, Grammer TB, et al. Inverse association of the endogenous thrombin potential (ETP) with cardiovascular death: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Int J Cardiol. 2014;176:139–44. https://doi.org/10.1016/j.ijcard.2014.07.026.
Article
PubMed
Google Scholar
Van PPCS, Panova-noeva M, Van OR, Hermanns IM, Prochaska JH, Arnold N, et al. Thrombin generation in cardiovascular disease and mortality—results from the Gutenberg Health Study. Haematologica. 2020;105:2327–34. https://doi.org/10.3324/haematol.2019.221655.
Article
CAS
Google Scholar
Tian R, Tian M, Wang L, Qian H, Zhang S, Pang H, et al. Cytokine C-reactive protein for predicting cardiovascular and all-cause mortality in type 2 diabetic patients: a meta-analysis. Cytokine. 2019;117:59–64. https://doi.org/10.1016/j.cyto.2019.02.005.
Article
CAS
PubMed
Google Scholar
Castoldi E, Rosing J. Thrombin generation tests. Thromb Res. 2011;127:S21–5. https://doi.org/10.1016/S0049-3848(11)70007-X.
Article
CAS
PubMed
Google Scholar