Dietz WH. Use of the body mass index (BMI) as a measure of overweight in children and adolescents. J Pediatr. 1998;132:191–3.
Article
CAS
PubMed
Google Scholar
Singh AS, Mulder C, Twisk JW, Van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9:474–88.
Article
CAS
PubMed
Google Scholar
Howe LD, Firestone R, Tilling K, Lawlor DA. Trajectories and transitions in childhood and adolescent obesity. In: Burton-Jeangros C, Cullati S, Sacker A, Blane D, editors. A life course perspective on health trajectories and transitions. Cham: Springer International Publishing; 2015. p. 19–37.
Chapter
Google Scholar
Riedel C, von Kries R, Buyken AE, Diethelm K, Keil T, Grabenhenrich L, et al. Overweight in adolescence can be predicted at age 6 years: a CART analysis in German cohorts. PLoS ONE. 2014;9(3):e93581.
Article
PubMed
PubMed Central
Google Scholar
Cheng G, Bolzenius K, Joslowski G, Gunther AL, Kroke A, Heinrich J, et al. Velocities of weight, height and fat mass gain during potentially critical periods of growth are decisive for adult body composition. Eur J Clin Nutr. 2015;69(2):262–8.
Article
CAS
PubMed
Google Scholar
Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17(2):95–107.
Article
CAS
PubMed
Google Scholar
Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in early childhood and risk of sustained obesity. N Engl J Med. 2018;379(14):1303–12.
Article
PubMed
Google Scholar
Balantekin KN, Hohman EE, Adams EL, Marini ME, Ventura AK, Birch LL, et al. More rapid increase in BMI from age 5–15 is associated with elevated weight status at age 24 among non-Hispanic white females. Eat Behav. 2018;31:12–7. https://doi.org/10.1016/j.eatbeh.2018.07.007.
Article
PubMed
PubMed Central
Google Scholar
Ziyab AH, Karmaus W, Kurukulaaratchy RJ, Zhang H, Arshad SH. Developmental trajectories of body mass index from infancy to 18 years of age: prenatal determinants and health consequences. J Epidemiol Community Health. 2014;68(10):934–41. https://doi.org/10.1136/jech-2014-203808.
Article
PubMed
Google Scholar
Hoekstra T, Twisk JWR. The analysis of individual health trajectories across the life course: Latent class growth models versus mixed models. In: Burton-Jeangros C, Cullati S, Sacker A, et al., editors. A life course perspective on health trajectories and transitions [Internet]. Cham (CH): Springer; 2015. Chapter 9. https://www.ncbi.nlm.nih.gov/books/NBK385363/ https://doi.org/10.1007/978-3-319-20484-0_9.
Lindsay RS, Hanson RL, Roumain J, Ravussin E, Knowler WC, Tataranni PA. Body mass index as a measure of adiposity in children and adolescents: relationship to adiposity by dual energy x-ray absorptiometry and to cardiovascular risk factors. J Clin Endocrinol Metab. 2001;86(9):4061–7.
Article
CAS
PubMed
Google Scholar
Ventura AK, Loken E, Birch LL. Developmental trajectories of girls’ BMI across childhood and adolescence. Obesity (Silver Spring). 2009;17(11):2067–74. https://doi.org/10.1038/oby.2009.123.
Article
Google Scholar
Huang DYC, Lanza HI, Wright-Volel K, Anglin MD. Developmental trajectories of childhood obesity and risk behaviors in adolescence. J Adolesc. 2013;36(1):139–48. https://doi.org/10.1016/j.adolescence.2012.10.005.
Article
PubMed
Google Scholar
Huang RC, Burrows S, Mori TA, Oddy WH, Beilin LJ. Lifecourse adiposity and blood pressure between birth and 17 years old. Am J Hypertens. 2015;28(8):1056–63.
Article
PubMed
Google Scholar
Tu AW, Mâsse LC, Lear SA, Gotay CC, Richardson CG. Body mass index trajectories from ages 1 to 20: results from two nationally representative Canadian longitudinal cohorts. Obesity. 2015;23:1703–11. https://doi.org/10.1002/oby.21158.
Article
PubMed
Google Scholar
Araújo J, Severo M, Barros H, Mishra GD, Guimarães JT, Ramos E. Developmental trajectories of adiposity from birth until early adulthood and association with cardiometabolic risk factors. Int J Obes. 2015;39:1443.
Article
Google Scholar
Hao G, Wang X, Treiber FA, Harshfield G, Kapuku G, Su S. Body mass index trajectories in childhood is predictive of cardiovascular risk: results from the 23-year longitudinal Georgia Stress and Heart study. Int J Obes (Lond). 2017. https://doi.org/10.1038/ijo.2017.244.
Article
Google Scholar
Mustillo S, Worthman C, Erkanli A, Keeler G, Angold A, Costello EJ. Obesity and psychiatric disorder: developmental trajectories. Pediatrics. 2003;111:851–9.
Article
PubMed
Google Scholar
Tu Y-K, Tilling K, Sterne JAC, Gilthorpe MS. A critical evaluation of statistical approaches to examining the role of growth trajectories in the developmental origins of health and disease. Int J Epidemiol. 2013;42(5):1327–39.
Article
PubMed
Google Scholar
Munthali RJ, Kagura J, Lombard Z, Norris SA. Childhood adiposity trajectories are associated with late adolescent blood pressure: birth to twenty cohort. BMC Public Health. 2016;16:665.
Article
PubMed
PubMed Central
Google Scholar
Duncan TE, Duncan SC, Strycker LA. Quantitative methodology series. An introduction to latent variable growth curve modeling: concepts, issues, and applications. 2nd ed. Mahwah: Lawrence Erlbaum Associates Publishers; 2006.
Google Scholar
Bays HE, Seger JC, Primack C, McCarthy W, Long J, Schmidt SL, et al. Obesity algorithm, presented by the Obesity Medicine Association. 2016–2017. http://www.obesityalgorithm.org. Accessed 1 June 2018.
Singla P, Bardoloi A, Parkash AA. Metabolic effects of obesity: a review. World J Diabetes. 2010;1(3):76–88. https://doi.org/10.4239/wjd.v1.i3.76.
Article
PubMed
PubMed Central
Google Scholar
Nichols GA, Horberg M, Koebnick C, et al. Cardiometabolic risk factors among 1.3 million adults with overweight or obesity, but not diabetes, in 10 geographically diverse regions of the United States, 2012–2013. Prev Chronic Dis. 2017;14:E22. https://doi.org/10.5888/pcd14.160438.
Article
PubMed
PubMed Central
Google Scholar
Sinaiko AR, Donahue RP, Jacobs DR, Prineas RJ. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children’s Blood Pressure Study. Circulation. 1999;99(11):1471–6.
Article
CAS
PubMed
Google Scholar
Herder C, Schneitler S, Rathmann W, Haastert B, Schneitler H, Winkler H, et al. Low-grade inflammation, obesity, and insulin resistance in adolescents. J Clin Endocrinol Metab. 2007;92(12):4569–74.
Article
CAS
PubMed
Google Scholar
Syme C, Abrahamowicz M, Leonard GT, Perron M, Richer L, Veillette S, et al. Sex differences in blood pressure and its relationship to body composition and metabolism in adolescence. Arch Pediatr Adolesc Med. 2009;163(9):818–25.
Article
PubMed
Google Scholar
Gamborg M, Andersen PK, Baker JL, Budtz-Jørgensen E, Jørgensen T, Jensen G, et al. Life course path analysis of birth weight, childhood growth, and adult systolic blood pressure. Am J Epidemiol. 2009;169(10):1167–78. https://doi.org/10.1093/aje/kwp047.
Article
PubMed
PubMed Central
Google Scholar
Stea TH, Wandel M, Mansoor MA, Uglem S, Frølich W. BMI, lipid profile, physical fitness and smoking habits of young male adults and the association with parental education. Eur J Public Health. 2009;19(1):46–51. https://doi.org/10.1093/eurpub/ckn122.
Article
PubMed
Google Scholar
Ramel A, Pumberger C, Martinéz AJ, Kiely M, Bandarra NM, Thorsdottir I. Cardiovascular risk factors in young, overweight, and obese European adults and associations with physical activity and omega-3 index. Nutr Res. 2009;29(5):305–12. https://doi.org/10.1016/j.nutres.2009.05.004.
Article
CAS
PubMed
Google Scholar
Brenner DR, Tepylo K, Eny KM, Cahill LE, El-Sohemy A. Comparison of body mass index and waist circumference as predictors of cardiometabolic health in a population of young Canadian adults. Diabetol Metab Syndr. 2010;2(1):28. https://doi.org/10.1186/1758-5996-2-28.
Article
PubMed
PubMed Central
Google Scholar
Jung C, Gerdes N, Fritzenwanger M, Figulla HR. Circulating levels of interleukin-1 family cytokines in overweight adolescents. Mediators Inflamm. 2010;2010:958403. https://doi.org/10.1155/2010/958403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tam CS, Garnett SP, Cowell CT, Heilbronn LK, Lee JW, Wong M, et al. IL-6, IL-8 and IL-10 levels in healthy weight and overweight children. Horm Res Paediatr. 2010;73(2):128–34.
Article
CAS
PubMed
Google Scholar
Kuo SM, Halpern MM. Lack of association between body mass index and plasma adiponectin levels in healthy adults. Int J Obes (Lond). 2011;35(12):1487–94. https://doi.org/10.1038/ijo.2011.20.
Article
CAS
Google Scholar
DeLoach S, Huan Y, Keith SW, Martinez Cantarin MP, Falkner B. Relationship of blood pressure and obesity with inflammatory cytokines among African Americans. Ther Adv Cardiovasc Dis. 2011;5(3):149–57.
Article
CAS
PubMed
Google Scholar
Lyngdoh T, Viswanathan B, van Wijngaarden E, Myers GJ, Bovet P. Cross-sectional and longitudinal associations between body mass index and cardiometabolic risk factors in adolescents in a country of the African region. Int J Endocrinol. 2013. https://doi.org/10.1155/2013/801832.
Article
PubMed
PubMed Central
Google Scholar
Würtz P, Wang Q, Kangas AJ, Richmond RC, Skarp J, Tiainen M, et al. Metabolic signatures of adiposity in young adults: mendelian randomization analysis and effects of weight change. PLoS Med. 2014;11(12):e1001765.
Article
PubMed
PubMed Central
Google Scholar
Chorin E, Hassidim A, Hartal M, Havakuk O, Flint N, Ziv-Baran T, et al. Trends in adolescents obesity and the association between BMI and blood pressure: a cross-sectional study in 714,922 healthy teenagers. Am J Hypertens. 2015;28(9):1157–63.
Article
PubMed
Google Scholar
Matia-Garcia I, Munoz-Valle JF, Reyes-Castillo Z, Garcia-Arellano S, Salgado-Bernabe AB, Alarcon-Romero LD, et al. Correlation between cytokine profile and metabolic abnormalities in young subjects. Int J Clin Exp Med. 2016;9(8):16596–604.
CAS
Google Scholar
Menezes AMB, Oliveira PD, Wehrmeister FC, Gonçalves H, Assunção MCF, Tovo-Rodrigues L, et al. Association between interleukin-6, C-reactive protein and adiponectin with adiposity: findings from the 1993 pelotas (Brazil) birth cohort at 18 and 22 years. Cytokine. 2018;110:44–51. https://doi.org/10.1016/j.cyto.2018.04.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geng T, Smith CE, Li C, Huang T. Childhood BMI and adult type 2 diabetes, coronary artery diseases, chronic kidney disease, and cardiometabolic traits: a mendelian randomization analysis. Diabetes Care. 2018;41(5):1089–96.
Article
PubMed
Google Scholar
Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. Br J Nutr. 2008;99(5):931–40.
Article
CAS
PubMed
Google Scholar
OECD Family Database. CO1.7: overweight at ages 11, 13 and 15, by sex. http://www.oecd.org/els/family/database.htm Accessed 1 Oct 2018.
Furer A, Afek A, Orr O, Gershovitz L, Landau Rabbi M, Derazne E, et al. Sex-specific associations between adolescent categories of BMI with cardiovascular and non-cardiovascular mortality in midlife. Cardiovasc Diabetol. 2018;17(1):80.
Article
PubMed
PubMed Central
Google Scholar
Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med. 2015;373(14):1307–17. https://doi.org/10.1056/NEJMoa1502821.
Article
PubMed
Google Scholar
Power C, Atherton K, Strachan DP, Shepherd P, Fuller E, Davis A, et al. Life-course influences on health in British adults: effects of socio-economic position in childhood and adulthood. Int J Epidemiol. 2007;36:532–9.
Article
PubMed
Google Scholar
Alberga AS, Sigal RJ, Goldfield G, Prud’homme D, Kenny GP. Overweight and obese teenagers: why is adolescence a critical period? Pediatr Obes. 2012;7(4):261–73. https://doi.org/10.1111/j.2047-6310.2011.00046.x.
Article
CAS
PubMed
Google Scholar
Kroke A, Manz F, Kersting M, Remer T, Sichert-Hellert W, Alexy U, et al. The DONALD Study. History, current status and future perspectives. Eur J Nutr. 2004;43:45–54.
Article
PubMed
Google Scholar
Kwon S, Janz KF, Letuchy EM, Burns TL, Levy SM. Association between body mass index percentile trajectories in infancy and adiposity in childhood and early adulthood. Obesity. 2017;25(1):166–71.
Article
PubMed
Google Scholar
Buyken AE, Alexy U, Kersting M, Remer T. Die DONALD Kohorte. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55(6):875–84.
Article
CAS
PubMed
Google Scholar
Goletzke J, Buyken AE, Joslowski G, Bolzenius K, Remer T, Carstensen M, et al. Increased intake of carbohydrates from sources with a higher glycemic index and lower consumption of whole grains during puberty are prospectively associated with higher IL-6 concentrations in younger adulthood among healthy individuals. J Nutr. 2014;144(10):1586–93.
Article
CAS
PubMed
Google Scholar
Diederichs T, Herder C, Rossbach S, Roden M, Wudy SA, Nothlings U, et al. Carbohydrates from sources with a higher glycemic index during adolescence: is evening rather than morning intake relevant for risk markers of type 2 diabetes in young adulthood? Nutrients. 2017;9(6):591.
Article
PubMed Central
Google Scholar
Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC, Hesse V, et al. Percentiles of body mass index in children and adolescents evaluated from different regional German studies. Monatsschr Kinderheilkd. 2001;149:807–18. https://doi.org/10.1007/s001120170107.
Article
Google Scholar
Nagin DS. Group-based modeling of development. Cambridge: Harvard University Press; 2005.
Book
Google Scholar
Haviland AM, Jones BL, Nagin DS. Group-based trajectory modeling extended to account for non-random participant attrition. Sociol Methods Res. 2011;40:367–90.
Article
Google Scholar
Andruff H, Carrari N, Thompson A, Gaudreau P, Louvet B. Latent class growth modelling: a tutorial. Tutorials Quant Methods Psychol. 2009;5:11–24.
Article
Google Scholar
Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociol Methods Res. 2001;29:374–93.
Article
Google Scholar
Growth Reference for school-aged children and adolescents. http://www.who.int/growthref/en. Accessed 17 Apr 2018.
De’ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology. 2000;81(11):3178–92.
Article
Google Scholar
Sweeting HN. Sexed dimensions of obesity in childhood and adolescence. Nutr J. 2008;7:1. https://doi.org/10.1186/1475-2891-7-1.
Article
PubMed
PubMed Central
Google Scholar
Stettler N, Tershakovec AM, Zemel BS. Early risk factors for increased adiposity: a cohort study of African American subjects followed from birth to young adulthood. Am J Clin Nutr. 2000;72:378–83.
Article
CAS
PubMed
Google Scholar
Wardle J, Brodersen NH, Cole TJ, Jarvis MJ, Boniface DR. Development of adiposity in adolescence: five year longitudinal study of an ethnically and socioeconomically diverse sample of young people in Britain. BMJ. 2006;332(7550):1130–5.
Article
PubMed
PubMed Central
Google Scholar
von Hinke Kessler Scholder S. Maternal employment and overweight children: does timing matter? Health Econ. 2008;17:889–906.
Article
Google Scholar
Hawkins SS, Cole TJ, Law C, The Millennium Cohort Study Child Health Group. Maternal employment and early childhood overweight: findings from the UK Millennium Cohort Study. Int J Obes. 2008;32(1):30–8. https://doi.org/10.1038/sj.ijo.0803682.
Article
CAS
Google Scholar
Derraik JGB, Ahlsson F, Lundgren M, Jonsson B, Cutfield WS. First-borns have greater BMI and are more likely to be overweight or obese: a study of sibling pairs among 26 812 Swedish women. J Epidemiol Community Health. 2016;70(1):78–81. https://doi.org/10.1136/jech-2014-205368.
Article
PubMed
Google Scholar
Brettschneider A-K, Schaffrath Rosario A, Kuhnert R, Schmidt S, Wiegand S, Ellert U, et al. Updated prevalence rates of overweight and obesity in 11- to 17-year-old adolescents in Germany. Results from the telephone-based KiGGS Wave 1 after correction for bias in self-reports. BMC Public Health. 2015;15:1101.
Article
PubMed
Google Scholar
Skurk T, Kolb H, Muller-Scholze S, Rohrig K, Hauner H, Herder C. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. Eur J Endocrinol. 2005;152(6):863–8.
Article
CAS
PubMed
Google Scholar
Trøseid M, Seljeflot I, Arnesen H. The role of interleukin-18 in the metabolic syndrome. Cardiovasc Diabetol. 2010;9(1):11.
Article
PubMed
PubMed Central
Google Scholar
Thorand B, Kolb H, Baumert J, Koenig W, Chambless L, Meisinger C, et al. Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984-2002. Diabetes. 2005;54(10):2932–8.
Article
CAS
PubMed
Google Scholar
Jefferis BJ, Papacosta O, Owen CG, Wannamethee SG, Humphries SE, Woodward M, et al. Interleukin 18 and coronary heart disease: prospective study and systematic review. Atherosclerosis. 2011;217(1):227–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaptoge S, Seshasai SR, Gao P, Freitag DF, Butterworth AS, Borglykke A, et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J. 2014;35(9):578–89.
Article
CAS
PubMed
Google Scholar
Jin DY, Liu CL, Tang JN, Zhu ZZ, Xuan XX, Zhu XD, et al. Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease. J Zhejiang Univ Sci B. 2017;18(8):685–95. https://doi.org/10.1631/jzus.B1700073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L, Zhu X, Wang J, Cheng Y, Ma A, Pan X. Association between interleukin-18 (137G/C and 607C/A) gene polymorphisms and risk of ischemic stroke: a meta-analysis. Neuroreport. 2018;30:89–94.
Article
Google Scholar
Kotnik P, Fischer-Posovszky P, Wabitsch M. RBP4: a controversial adipokine. Eur J Endocrinol. 2011;165(5):703–11. https://doi.org/10.1530/EJE-11-0431.
Article
CAS
PubMed
Google Scholar
Li G, Esangbedo IC, Xu L, Fu J, Li L, Feng D, et al. Childhood retinol-binding protein 4 (RBP4) levels predicting the 10-year risk of insulin resistance and metabolic syndrome: the BCAMS study. Cardiovasc Diabetol. 2018;17(1):69. https://doi.org/10.1186/s12933-018-0707-y.
Article
PubMed
PubMed Central
Google Scholar
González M, del Mar Bibiloni M, Pons A, Llompart I, Tur JA. Inflammatory markers and metabolic syndrome among adolescents. Eur J Clin Nutr. 2012;66(10):1141–5. https://doi.org/10.1038/ejcn.2012.112.
Article
CAS
PubMed
Google Scholar
Heier M, Borja MS, Brunborg C, Seljeflot I, Margeirsdottir HD, Hanssen KF, et al. Reduced HDL function in children and young adults with type 1 diabetes. Cardiovasc Diabetol. 2017;16(1):85.
Article
PubMed
PubMed Central
Google Scholar