Center for Disease Control. National Diabetes Statistics Report 2017. Atlanta: Centers for Disease Control; 2017.
Google Scholar
Stolar M. Glycemic control and complications in type 2 diabetes mellitus. Am J Med. 2010;123(3):S3–11.
Article
PubMed
CAS
Google Scholar
Greenfield S, Kaplan SH. When clinical practice guidelines collide: finding a way forward. Ann Intern Med. 2017;167(9):677–8.
Article
PubMed
Google Scholar
Kannel WB, McGee DL. Diabetes and cardiovascular disease: The Framingham study. JAMA. 1979;241(19):2035–8.
Article
PubMed
CAS
Google Scholar
Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med. 2004;164(13):1422–6.
Article
PubMed
Google Scholar
Emerging Risk Factors Collaboration. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015;314(1):52–60.
Article
CAS
Google Scholar
The Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.
Article
PubMed Central
CAS
Google Scholar
Laakso M. Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care. 2010;33(2):442–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
HEDIS® & Performance Measurement. http://www.ncqa.org/hedis-quality-measurement. Accessed 26 July 2016.
Hospitalization for potentially preventable complications: rate of discharges for ambulatory care sensitive conditions (ACSC) per 1,000 members and the risk-adjusted ratio of observed to expected discharges for ACSC by chronic and acute conditions, for members 67 years of age and older. https://www.qualitymeasures.ahrq.gov/summaries/summary/49840/hospitalization-for-potentially-preventable-complications-rate-of-discharges-for-ambulatory-care-sensitive-conditions-acsc-per-1000-members-and-the-riskadjusted-ratio-of-observed-to-expected-discharges-for-acsc-by-chronic-and-acute-conditions-for-members-67-ye. Accessed 26 July 2016.
Nichols GA, Brown JB. The impact of cardiovascular disease on medical care costs in subjects with and without type 2 diabetes. Diabetes Care. 2002;25(3):482–6.
Article
PubMed
Google Scholar
D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53.
Article
PubMed
Google Scholar
Pencina MJ, D’Agostino RB Sr, Larson MG, Massaro JM, Vasan RS. Predicting the 30-year risk of cardiovascular disease: the framingham heart study. Circulation. 2009;119(24):3078–84.
Article
PubMed
PubMed Central
Google Scholar
Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz S, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.
Article
PubMed
CAS
Google Scholar
Coleman RL, Stevens RJ, Retnakaran R, Holman RR. Framingham, SCORE, and DECODE risk equations do not provide reliable cardiovascular risk estimates in type 2 diabetes. Diabetes Care. 2007;30(5):1292–3.
Article
PubMed
Google Scholar
Garrison LP Jr, Neumann PJ, Erickson P, Marshall D, Mullins CD. Using real-world data for coverage and payment decisions: The ISPOR Real-World Data Task Force report. Value Health. 2007;10(5):326–35.
Article
PubMed
Google Scholar
Cederholm J, Eeg-Olofsson K, Eliasson B, Zethelius B, Nilsson PM, Gudbjornsdottir S, Swedish National Diabetes R. Risk prediction of cardiovascular disease in type 2 diabetes: a risk equation from the Swedish National Diabetes Register. Diabetes Care. 2008;31(10):2038–43.
Article
PubMed
PubMed Central
Google Scholar
Kaasenbrood L, Poulter NR, Sever PS, Colhoun HM, Livingstone SJ, Boekholdt SM, Pressel SL, Davis BR, van der Graaf Y, Visseren FL, et al. Development and validation of a model to predict absolute vascular risk reduction by moderate-intensity statin therapy in individual patients with type 2 diabetes mellitus: The Anglo Scandinavian Cardiac Outcomes Trial, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial, and Collaborative Atorvastatin Diabetes Study. Circ Cardiovasc Qual Outcomes. 2016;9(3):213–21.
Article
PubMed
Google Scholar
Kengne AP, Patel A, Marre M, Travert F, Lievre M, Zoungas S, Chalmers J, Colagiuri S, Grobbee DE, Hamet P, et al. The Framingham and UK Prospective Diabetes Study (UKPDS) risk equations do not reliably estimate the probability of cardiovascular events in a large ethnically diverse sample of patients with diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron-MR Controlled Evaluation (ADVANCE) Study. Diabetologia. 2010;53(5):821–31.
Article
PubMed
CAS
Google Scholar
Robinson T, Elley R, Wells S, Robinson E, Kenealy T, Pylypchuk R, Bramley D, Arrol B, Crengle S, Riddell T, et al. New Zealand Diabetes Cohort Study cardiovascular risk score for people with Type 2 diabetes: validation in the PREDICT cohort. J Prim Healthc. 2012;4(3):181–8.
Google Scholar
Stevens RJ, Kothari V, Adler AI, Stratton IM. The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin Sci. 2001;101(6):671–9.
Article
PubMed
CAS
Google Scholar
Kengne AP, Patel A, Marre M, Travert F, Lievre M, Zoungas S, Chalmers J, Colagiuri S, Grobbee DE, Hamet P, et al. Contemporary model for cardiovascular risk prediction in people with type 2 diabetes. Eur J Cardiovasc Prev Rehabil. 2011;18(3):393–8.
Article
PubMed
Google Scholar
Kothari V, Stevens RJ, Adler AI, Stratton IM, Manley SE, Neil HA, Holman RR. UKPDS 60: risk of stroke in type 2 diabetes estimated by the UK Prospective Diabetes Study risk engine. Stroke. 2002;33(7):1776–81.
Article
PubMed
Google Scholar
Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.
Article
PubMed
CAS
Google Scholar
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.
Article
PubMed
CAS
Google Scholar
Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ferrannini E, DeFronzo RA. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J. 2015;36(34):2288–96.
Article
PubMed
CAS
Google Scholar
Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM, Sundararajan V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173(6):676–82.
Article
PubMed
Google Scholar
Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, Everson-Stewart S, Kinder L, Oliver M, Boyko EJ, et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Managed Care. 2008;14(1):15–23.
Google Scholar
Cupples LA, D’Agostino RB, Anderson K, Kannel WB. Comparison of baseline and repeated measure covariate techniques in the Framingham heart study. Stat Med. 1988;7(1–2):205–18.
Article
PubMed
CAS
Google Scholar
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.
Article
PubMed
CAS
Google Scholar
Harrell FEJ. Regression modelling strategies. New York: Springer Verlag Inc; 2010.
Google Scholar
Bots SH, van der Graaf Y, Nathoe HM, de Borst GJ, Kappelle JL, Visseren FL, Westerink J, Group SS. The influence of baseline risk on the relation between HbA1c and risk for new cardiovascular events and mortality in patients with type 2 diabetes and symptomatic cardiovascular disease. Cardiovasc Diabetol. 2016;15(1):101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kennedy MW, Fabris E, Suryapranata H, Kedhi E. Is ischemia the only factor predicting cardiovascular outcomes in all diabetes mellitus patients? Cardiovasc Diabetol. 2017;16(1):51.
Article
PubMed
PubMed Central
CAS
Google Scholar
She J, Deng Y, Wu Y, Xia Y, Li H, Liang X, Shi R, Yuan Z. Hemoglobin A1c is associated with severity of coronary artery stenosis but not with long term clinical outcomes in diabetic and nondiabetic patients with acute myocardial infarction undergoing primary angioplasty. Cardiovasc Diabetol. 2017;16(1):97.
Article
PubMed
PubMed Central
Google Scholar
van Steen SC, Schrieks IC, Hoekstra JB, Lincoff AM, Tardif JC, Mellbin LG, Ryden L, Grobbee DE, DeVries JH, AleCardio study g. The haemoglobin glycation index as predictor of diabetes-related complications in the AleCardio trial. Eur J Prev Cardiol. 2017;24(8):858–66.
Article
PubMed
Google Scholar
Yang ZK, Shen Y, Shen WF, Pu LJ, Meng H, Zhang RY, Zhang Q, Chen QJ, De Caterina R, Lu L. Elevated glycated albumin and reduced endogenous secretory receptor for advanced glycation endproducts levels in serum predict major adverse cardio-cerebral events in patients with type 2 diabetes and stable coronary artery disease. Int J Cardiol. 2015;197:241–7.
Article
PubMed
Google Scholar
Niedziela J, Hudzik B, Niedziela N, Gasior M, Gierlotka M, Wasilewski J, Myrda K, Lekston A, Polonski L, Rozentryt P. The obesity paradox in acute coronary syndrome: a meta-analysis. Eur J Epidemiol. 2014;29(11):801–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stokes A, Preston SH. Smoking and reverse causation create an obesity paradox in cardiovascular disease. Obesity. 2015;23(12):2485–90.
Article
PubMed
Google Scholar
Stevens RJ, Coleman RL, Adler AI, Stratton IM, Matthews DR, Holman RR. Risk factors for myocardial infarction case fatality and stroke case fatality in type 2 diabetes. UKPDS 66 Diabetes Care. 2004;27(1):201–7.
Article
PubMed
Google Scholar
van der Leeuw J, van Dieren S, Beulens JWJ, Boeing H, Spijkerman AMW, van der Graaf Y, Nöthlings U, Visseren FLJ, Rutten GEHM, et al. The validation of cardiovascular risk scores for patients with type 2 diabetes mellitus. Heart. 2015;101(3):222–9.
Article
PubMed
Google Scholar
van Dieren S, Beulens JW, Kengne AP, Peelen LM, Rutten GE, Woodward M, van der Schouw YT, Moons KG. Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review. Heart. 2012;98(5):360–9.
Article
PubMed
Google Scholar
National Business Coalition on Health. 2010. Measuring Success: A Coalition Guide for Implementing a Diabetes Recognition Program Initiative. http://www.nbch.org/nbch/files/ccLibraryFiles/Filename/000000001823/DRP%20Implementation%20Techncial%20Guide.pdf. Accessed 27 July 2016.