Tsiachris D, Tsioufis C, Thomopoulos C, Syrseloudis D, Antonakis V, Lioni L et al (2011) New-onset diabetes and cardiovascular events in essential hypertensives: a 6-year follow-up study. Int J Cardiol 153:154–158
Article
PubMed
Google Scholar
Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:e28–e292
Article
PubMed
Google Scholar
Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602
Article
CAS
PubMed
Google Scholar
Seferović PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J (in press)
Miki T, Yuda S, Kouzu H, Miura T (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18:149–166
Article
PubMed Central
PubMed
Google Scholar
Li CJ, Lv L, Li H, Yu DM (2012) Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 11:73
Article
CAS
PubMed Central
PubMed
Google Scholar
Fuentes-Antrás J, Picatoste B, Ramírez E, Egido J, Tuñón J, Lorenzo O (2015) Targeting metabolic disturbance in the diabetic heart. Cardiovasc Diabetol 14:17
Article
PubMed Central
PubMed
Google Scholar
Aksakal E, Akaras N, Kurt M, Tanboga IH, Halici Z, Odabasoglu F et al (2011) The role of oxidative stress in diabetic cardiomyopathy: an experimental study. Eur Rev Med Pharmacol Sci 15:1241–1246
CAS
PubMed
Google Scholar
Liu Q, Wang S, Cai L (2014) Diabetic cardiomyopathy and its mechanisms: role of oxidative stress and damage. J Diabetes Invest 5:623–634
Article
Google Scholar
Zhang S, Liu H, Amarsingh GV, Cheung CC, Hogl S, Narayanan U et al (2014) Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol 13:100
Article
PubMed Central
PubMed
Google Scholar
Maraldi T (2013) Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev 2013:271602
Article
PubMed Central
PubMed
Google Scholar
Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J (2012) The role of oxidative stress and antioxidants in diabetic complications. Sult Qaboos Univ Med J 12:5–18
Article
Google Scholar
Freidja ML, Vessières E, Toutain B, Guihot AL, Custaud MA, Loufrani L et al (2014) AGEs breaking and antioxidant treatment improves endothelium-dependent dilation without effect on flow-mediated remodeling of resistance arteries in old Zucker diabetic rats. Cardiovasc Diabetol 13:55
Article
PubMed Central
PubMed
Google Scholar
Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B (2015) Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int 2015:515042
Article
PubMed Central
PubMed
Google Scholar
Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. J Clin Nutr 74:418–425
CAS
Google Scholar
Annapurna A, Reddy CS, Akondi RB, Rao SR (2009) Cardioprotective actions of two bioflavonoids. Quercetin and rutin in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 61:1365–1374
Article
CAS
PubMed
Google Scholar
Wang J, Sarnola K, Ruotsalainen S, Moilanen L, Lepisto P, Laakso M et al (2010) The metabolic syndrome predicts incident congestive heart failure: a 20-year follow-up study of elderly Finns. Atherosclerosis 210:237–242
Article
CAS
PubMed
Google Scholar
Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223
Article
PubMed
Google Scholar
Wang YB, Ge ZM, Kang WQ, Lian ZX, Yao J, Zhou CY (2015) Rutin alleviates diabetic cardiomyopathy in a rat model of type 2 diabetes. Exp Ther Med 9:451–455
CAS
PubMed Central
PubMed
Google Scholar
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412
Article
PubMed Central
PubMed
Google Scholar
Fernandes AAH, Novelli EL, Okoshi K, Okoshi MP, Di Muzio BP, Guimarães JFC et al (2010) Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother 64:214–219
Article
PubMed
Google Scholar
Gimenes C, Gimenes R, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH et al (2015) Low intensity physical exercise attenuates cardiac remodeling and myocardial oxidative stress and dysfunction in diabetic rats. J Diabetes Res (in press)
Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Martinez PF et al (2013) Diabetes mellitus activates fetal gene program and intensifies cardiac remodeling and oxidative stress in aged spontaneously hypertensive rats. Cardiovasc Diabetol 12:152
Article
PubMed Central
PubMed
Google Scholar
Okoshi K, Matsubara LS, Okoshi MP, Cicogna AC, Fioretto JR, Padovani CR et al (2002) Food restriction-induced myocardial dysfunction demonstrated by the combination of in vivo and in vitro studies. Nutr Res 22:1353–1364
Article
CAS
Google Scholar
Okoshi K, Ribeiro HB, Okoshi MP, Matsubara BB, Gonçalves G, Barros R et al (2004) Improved systolic ventricular function with normal myocardial mechanics in compensated cardiac hypertrophy. Jpn Heart J 45:647–656
Article
PubMed
Google Scholar
Lima ARR, Martinez PF, Okoshi K, Guizoni DM, Zornoff LAM, Campos DHS et al (2010) Myostatin and follistatin expression in skeletal muscles of rats with chronic heart failure. Int J Exp Path 91:54–62
Article
CAS
Google Scholar
Martinez PF, Okoshi K, Zornoff LAM, Oliveira SA Jr, Campos DHS, Lima ARR et al (2011) Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol 111:543–551
Article
PubMed
Google Scholar
Okoshi MP, Matsubara LS, Franco M, Cicogna AC, Matsubara BB (1997) Myocyte necrosis is the basis for fibrosis in renovascular hypertensive rats. Braz J Med Biol Res 30:1135–1144
Article
CAS
PubMed
Google Scholar
Cicogna AC, Padovani CR, Okoshi K, Matsubara LS, Aragon FF, Okoshi MP (2001) The influence of temporal food restriction on the performance of isolated cardiac muscle. Nutr Res 21:639–648
Article
CAS
Google Scholar
Okoshi MP, Okoshi K, Dal Pai V, Dal Pai-Silva M, Matsubara LS, Cicogna AC (2001) Mechanical, biochemical, and morphological changes in the heart from chronic food-restricted rats. Can J Physiol Pharmacol 79:754–760
Article
CAS
PubMed
Google Scholar
Gut AL, Okoshi MP, Padovani CR, Aragon FF, Cicogna AC (2003) Myocardial dysfunction induced by food restriction is related to calcium cycling and beta-adrenergic system changes. Nutr Res 23:911–919
Article
CAS
Google Scholar
Sugizaki MM, Carvalho RF, Aragon FF, Padovani CR, Okoshi K, Okoshi MP et al (2005) Myocardial dysfunction induced by food restriction is related to morphological damage in normotensive middle-aged rats. J Biomed Sci 12:641–649
Article
PubMed
Google Scholar
Cicogna AC, Matsubara BB, Matsubara LS, Okoshi K, Gut AL, Padovani CR et al (2002) Volume overload influence on hypertrophied myocardium function. Jpn Heart J 43:689–695
Article
PubMed
Google Scholar
Damatto RL, Martinez PF, Lima AR, Cezar MD, Campos DH, Oliveira SA Jr et al (2013) Heart failure-induced skeletal myopathy in spontaneously hypertensive rats. Int J Cardiol 167:698–703
Article
CAS
PubMed
Google Scholar
Martinez PF, Okoshi K, Zornoff LA, Carvalho RF, Oliveira SA Jr, Lima AR et al (2010) Chronic heart failure-induced skeletal muscle atrophy, necrosis, and myogenic regulatory factors changes. Med Sci Monit 16:374–383
Google Scholar
Oliveira SA Jr, Padovani CR, Rodrigues SA, Silva NR, Martinez PF, Campos DH et al (2013) Extensive impact of saturated fatty acids on metabolic and cardiovascular profile in rats with diet-induced obesity: a canonical analysis. Cardiovasc Diabetol 12:65
Article
CAS
Google Scholar
Sarkhail P, Rahmaipour S, Fadyevatan S, Mohammadirad A, Dehghan G, Amin G (2007) Antidiabetic effect of Phlomis anisodonta: effects on hepatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Pharmacol Res 51:261–266
Article
Google Scholar
Kumar S, Singh R, Vasudeva N, Sharma S (2012) Acute and chronic animal models for the evaluation of anti-diabetic agentes. Cardiovasc Diabetol 11:9
Article
CAS
PubMed Central
PubMed
Google Scholar
Gao Y, Kang L, Li C, Wang X, Sun C, Li Q (2015) Resveratrol ameliorates diabetes-induced cardiac dysfunction through AT1R-ERK/p38 MAPK signaling pathway. Cardiovasc Toxicol (in press)
Sattanathan K, Dhanapal CK, Umarani R, Manavalan R (2011) Beneficial health effects of rutin supplementation in patients with diabetes mellitus. J App Pharm Sci 2011:227–231
Google Scholar
Pinent M, Blay M, Bladé MC, Salvadó MJ, Arola L (2004) Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology 145:4985–4990
Article
CAS
PubMed
Google Scholar
Kamalakkannan N, Prince PS (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 98:97–103
Article
CAS
PubMed
Google Scholar
Mezei O, Banz WJ, Steger RW, Peluso MR, Winters TA, Shay N (2003) Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese zucker rats and murine RAW 264.7 cells. J Nutr 133:1238–1243
CAS
PubMed
Google Scholar
Naik SR, Fliho JMB, Dhuley JN, Deshmukh A (1999) Probable mechanism of hypoglycaemic activity of bassic acid, a natural product isolated from Bumelia sartorum. J Ethnopharmacol 33:37–44
Article
Google Scholar
Akula A, Kota MK, Gopisetty SG, Chitrapu RV, Kalagara M, Kalagara S et al (2003) Biochemical, histological and echocardiographic changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacol Res 48:429–435
Article
CAS
PubMed
Google Scholar
Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671
Article
CAS
PubMed Central
PubMed
Google Scholar
Opie LH, Hasenfuss G (2012) Mechanisms of cardiac contraction and relaxation. In: Bonow RO, Mann DL, Zipes DP, Libby P, Braunwald E (eds) Braunwald’s Heart Disease. A textbook of cardiovascular medicine. 8th edn. Elsevier Saunders, Philadelphia, pp 459–486
Ares-Carrasco S, Picatoste B, Camafeita E, Carrasco-Navarro S, Zubiri I, Ortiz A et al (2012) Proteome changes in the myocardium of experimental chronic diabetes and hypertension: role of PPARα in the associated hypertrophy. J Proteomics 75:1816–1829
Article
CAS
PubMed
Google Scholar
Falcão-Pires I, Leite-Moreira AF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17:325–344
Article
PubMed
Google Scholar
Pierce GN, Dhalla NS (1981) Cardiac myofibrillar ATPase activities in diabetic rats. J Mol Cell Cardiol 13:1063–1069
Article
CAS
PubMed
Google Scholar
Sauviat MP, Feuvray D (1986) Electrophysiological analysis of the sensitivity to calcium in ventricular muscle from alloxan diabetic rats. Basic Res Cardiol 81:489–496
Article
CAS
PubMed
Google Scholar
Ward ML, Crossman DJ (2014) Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World J Cardiol 6:577–584
Article
PubMed Central
PubMed
Google Scholar
Malhotra A, Sanghi V (1997) Regulation of contractile proteins in diabetic heart. Cardiovasc Res 34:34–40
Article
CAS
PubMed
Google Scholar
Murat I, Veksler VI, Ventura-Clapier R (1989) Effects of halothane on contractile properties of skinned fibers from cardiomyopathic animals. J Mol Cell Cardiol 21:1293–1304
Article
CAS
PubMed
Google Scholar
Dillmann WH (1982) Influence of thyroid hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the heart of diabetic rats. Metabolism 31:199–204
Article
CAS
PubMed
Google Scholar
Panchal SK, Poudyal H, Arumugam TV, Brown L (2011) Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J Nutr 141:1062–1069
Article
CAS
PubMed
Google Scholar
Bhandary B, Piao CS, Kim DS, Lee GH, Chae SW, Kim HR, Chae HJ (2012) The protective effect of rutin against ischemia/reperfusion-associated hemodynamic alteration through antioxidant activity. Arch Pharm Res 35:1091–1097
Article
CAS
PubMed
Google Scholar
Kandemir FM, Ozkaraca M, Yildirim BA, Hanedan B, Kirbas A, Kilic K et al (2015) Rutin attenuates gentamicin-induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Ren Fail 23:1–8
Google Scholar
Punithavathi VR, Shanmugapriya K, Prince PS (2010) Protective effects of rutin on mitochondrial damage in isoproterenol-induced cardiotoxic rats: an in vivo and in vitro study. Cardiovasc Toxicol 10:181–189
Article
CAS
PubMed
Google Scholar
Muthenna P, Akileshwari C, Saraswat M, Bhanuprakash RG (2012) Inhibition of advanced glycation end-product formation on eye lens protein by rutin. Br J Nutr 107:941–949
Article
CAS
PubMed
Google Scholar
Kappel VD, Zanatta L, Postal BG, Silva FR (2013) Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Arch Biochem Biophys 532:55–60
Article
CAS
PubMed
Google Scholar
Fernandes AAH, NovelliI ELB, Fernandes Junior A, Galhardi CM (2009) Effect of naringerin on biochemical parameters in the streptozotocin-induced diabetic rats. Braz Arch Biol Technol 52:51–59
Article
CAS
Google Scholar