Ruderman NB, Williamson JR, Brownlee M: Glucose and diabetic vascular disease. FASEB J. 1992, 6: 2905-2914.
CAS
PubMed
Google Scholar
Lee TS, Saltsman KA, Ohashi H, King GL: Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci U S A. 1989, 86: 5141-5145.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kamata K, Miyata N, Abiru T, Kasuya Y: Functional changes in vascular smooth muscle and endothelium of arteries during diabetes mellitus. Life Sci. 1992, 50: 1379-1387. 10.1016/0024-3205(92)90256-O.
Article
CAS
PubMed
Google Scholar
Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE, .: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders2. N Engl J Med. 1994, 331: 1480-1487. 10.1056/NEJM199412013312203.
Article
CAS
PubMed
Google Scholar
Mogensen CE, Schmitz A, Christensen CK: Comparative renal pathophysiology relevant to IDDM and NIDDM patients5. Diabetes Metab Rev. 1988, 4: 453-483.
Article
CAS
PubMed
Google Scholar
Jarrett RJ, McCartney P, Keen H: The Bedford survey: ten year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia. 1982, 22: 79-84.
CAS
PubMed
Google Scholar
Pirart J: [Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973 (3rd and last part) (author's transl)]. Diabete Metab. 1977, 3: 245-256.
CAS
PubMed
Google Scholar
Muir H: Structure and function of proteoglycans of cartilage and cell-matrix interactions. Soc Gen Physiol Ser. 1977, 32: 87-99.
CAS
PubMed
Google Scholar
Hook M, Kjellen L, Johansson S: Cell-surface glycosaminoglycans. Annu Rev Biochem. 1984, 53: 847-869. 10.1146/annurev.bi.53.070184.004215.
Article
CAS
PubMed
Google Scholar
Kraemer PM: Heparan sulfates of cultured cells. I. Membrane-associated and cell-sap species in Chinese hamster cells. Biochemistry. 1971, 10: 1437-1445. 10.1021/bi00784a026.
Article
CAS
PubMed
Google Scholar
Hedman K, Johansson S, Vartio T, Kjellen L, Vaheri A, Hook M: Structure of the pericellular matrix: association of heparan and chondroitin sulfates with fibronectin-procollagen fibers. Cell. 1982, 28: 663-671. 10.1016/0092-8674(82)90221-5.
Article
CAS
PubMed
Google Scholar
Hardebo JE, Kahrstrom J: Endothelial negative surface charge areas and blood-brain barrier function. Acta Physiol Scand. 1985, 125: 495-499.
Article
CAS
PubMed
Google Scholar
van den BJ, van den Heuvel LP, Bakker MA, Veerkamp JH, Assmann KJ, Berden JH: A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int. 1992, 41: 115-123.
Article
Google Scholar
van den BJ, van den Heuvel LP, Bakker MA, Veerkamp JH, Assmann KJ, Weening JJ, Berden JH: Distribution of GBM heparan sulfate proteoglycan core protein and side chains in human glomerular diseases. Kidney Int. 1993, 43: 454-463.
Article
Google Scholar
Wasty F, Alavi MZ, Moore S: Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia. 1993, 36: 316-322. 10.1007/BF00400234.
Article
CAS
PubMed
Google Scholar
Brown DM, Klein DJ, Michael AF, Oegema TR: 35S-glycosaminoglycan and 35S-glycopeptide metabolism by diabetic glomeruli and aorta. Diabetes. 1982, 31: 418-425.
Article
CAS
PubMed
Google Scholar
Kjellen L, Bielefeld D, Hook M: Reduced sulfation of liver heparan sulfate in experimentally diabetic rats. Diabetes. 1983, 32: 337-342.
Article
CAS
PubMed
Google Scholar
Levy P, Picard J, Bruel A: Evidence for diabetes-induced alterations in the sulfation of heparin sulfate intestinal epithelial cells. Life Sci. 1984, 35: 2613-2620. 10.1016/0024-3205(84)90029-8.
Article
CAS
PubMed
Google Scholar
Freeman C, Browne AM, Parish CR: Evidence that platelet and tumour heparanases are similar enzymes. Biochem J. 1999, 342 ( Pt 2): 361-368. 10.1042/0264-6021:3420361.
Article
CAS
Google Scholar
Katz A, Van Dijk DJ, Aingorn H, Erman A, Davies M, Darmon D, Hurvitz H, Vlodavsky I: Involvement of human heparanase in the pathogenesis of diabetic nephropathy. Isr Med Assoc J. 2002, 4: 996-1002.
CAS
PubMed
Google Scholar
Mandal AK, Puchalski JT, Lemley-Gillespie S, Taylor CA, Kohno M: Effect of insulin and heparin on glucose-induced vascular damage in cell culture15. Kidney Int. 2000, 57: 2492-2501. 10.1046/j.1523-1755.2000.00108.x.
Article
CAS
PubMed
Google Scholar
Zeng G, Quon MJ: Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells8. J Clin Invest. 1996, 98: 894-898.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vallance P, Collier J, Moncada S: Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man20. Lancet. 1989, 2: 997-1000. 10.1016/S0140-6736(89)91013-1.
Article
CAS
PubMed
Google Scholar
Hiebert LM, Wice SM, McDuffie NM, Jaques LB: The heparin target organ--the endothelium. Studies in a rat model. Q J Med. 1993, 86: 341-348.
CAS
PubMed
Google Scholar
Nader HB, Toma L, Pinhal MA, Buonassisi V, Colburn P, Dietrich CP: Effect of heparin and dextran sulfate on the synthesis and structure of heparan sulfate from cultured endothelial cells. Semin Thromb Hemost. 1991, 17 Suppl 1: 47-56.
CAS
PubMed
Google Scholar
Hiebert LM, Liu JM: Heparin protects cultured arterial endothelial cells from damage by toxic oxygen metabolites. Atherosclerosis. 1990, 83: 47-51.
Article
CAS
PubMed
Google Scholar
Moscatelli D: High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol. 1987, 131: 123-130. 10.1002/jcp.1041310118.
Article
CAS
PubMed
Google Scholar
Flaumenhaft R, Moscatelli D, Rifkin DB: Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol. 1990, 111: 1651-1659. 10.1083/jcb.111.4.1651.
Article
CAS
PubMed
Google Scholar
Broadley KN, Aquino AM, Woodward SC, Buckley-Sturrock A, Sato Y, Rifkin DB, Davidson JM: Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair. Lab Invest. 1989, 61: 571-575.
CAS
PubMed
Google Scholar
Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM: Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991, 64: 841-848. 10.1016/0092-8674(91)90512-W.
Article
CAS
PubMed
Google Scholar
Nissen NN, Shankar R, Gamelli RL, Singh A, DiPietro LA: Heparin and heparan sulphate protect basic fibroblast growth factor from non-enzymic glycosylation. Biochem J. 1999, 338 ( Pt 3): 637-642. 10.1042/0264-6021:3380637.
Article
CAS
Google Scholar
Gotlieb AI, Spector W: Migration into an in vitro experimental wound: a comparison of porcine aortic endothelial and smooth muscle cells and the effect of culture irradiation. Am J Pathol. 1981, 103: 271-282.
PubMed Central
CAS
PubMed
Google Scholar
Bresnick GH, Davis MD, Myers FL, de Venecia G: Clinicopathologic correlations in diabetic retinopathy. II. Clinical and histologic appearances of retinal capillary microaneurysms. Arch Ophthalmol. 1977, 95: 1215-1220.
Article
CAS
PubMed
Google Scholar
Steffes MW, Osterby R, Chavers B, Mauer SM: Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes. 1989, 38: 1077-1081.
Article
CAS
PubMed
Google Scholar
Baumgartner-Parzer SM, Wagner L, Pettermann M, Grillari J, Gessl A, Waldhausl W: High-glucose--triggered apoptosis in cultured endothelial cells2. Diabetes. 1995, 44: 1323-1327.
Article
CAS
PubMed
Google Scholar
Lee KT: Swine as animal models in cardiovascular research. Swine in biomedical research. Edited by: Tumbleson ME. 1986, New York, Plenum, 1481-1496.
Google Scholar
Lorenzi M: Glucose toxicity in the vascular complications of diabetes: the cellular perspective. Diabetes Metab Rev. 1992, 8: 85-103.
Article
CAS
PubMed
Google Scholar
Cagliero E, Roth T, Roy S, Lorenzi M: Characteristics and mechanisms of high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes. 1991, 40: 102-110.
Article
CAS
PubMed
Google Scholar
Sank A, Wei D, Reid J, Ertl D, Nimni M, Weaver F, Yellin A, Tuan TL: Human endothelial cells are defective in diabetic vascular disease. J Surg Res. 1994, 57: 647-653. 10.1006/jsre.1994.1195.
Article
CAS
PubMed
Google Scholar
Tamsma JT, van den BJ, Bruijn JA, Assmann KJ, Weening JJ, Berden JH, Wieslander J, Schrama E, Hermans J, Veerkamp JH: Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia. 1994, 37: 313-320. 10.1007/BF00398060.
Article
CAS
PubMed
Google Scholar
Bame KJ: Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans2. Glycobiology. 2001, 11: 91R-98R. 10.1093/glycob/11.6.91R.
Article
CAS
PubMed
Google Scholar
Desai UR, Wang HM, Linhardt RJ: Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch Biochem Biophys. 1993, 306: 461-468. 10.1006/abbi.1993.1538.
Article
CAS
PubMed
Google Scholar
Liu S, Zhou F, Hook M, Carson DD: A heparin-binding synthetic peptide of heparin/heparan sulfate-interacting protein modulates blood coagulation activities. Proc Natl Acad Sci U S A. 1997, 94: 1739-1744. 10.1073/pnas.94.5.1739.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marchetti D, Liu S, Spohn WC, Carson DD: Heparanase and a synthetic peptide of heparan sulfate-interacting protein recognize common sites on cell surface and extracellular matrix heparan sulfate. J Biol Chem. 1997, 272: 15891-15897. 10.1074/jbc.272.25.15891.
Article
CAS
PubMed
Google Scholar
Ihrcke NS, Parker W, Reissner KJ, Platt JL: Regulation of platelet heparanase during inflammation: role of pH and proteinases. J Cell Physiol. 1998, 175: 255-267. 10.1002/(SICI)1097-4652(199806)175:3<255::AID-JCP3>3.0.CO;2-N.
Article
CAS
PubMed
Google Scholar
Tamsma JT, van der Woude FJ, Lemkes HH: Effect of sulphated glycosaminoglycans on albuminuria in patients with overt diabetic (type 1) nephropathy. Nephrol Dial Transplant. 1996, 11: 182-185.
Article
CAS
PubMed
Google Scholar
Gambaro G, Cavazzana AO, Luzi P, Piccoli A, Borsatti A, Crepaldi G, Marchi E, Venturini AP, Baggio B: Glycosaminoglycans prevent morphological renal alterations and albuminuria in diabetic rats. Kidney Int. 1992, 42: 285-291.
Article
CAS
PubMed
Google Scholar
Fairman RP, Sessler CN, Bierman M, Glauser FL: Protamine sulfate causes pulmonary hypertension and edema in isolated rat lungs. J Appl Physiol. 1987, 62: 1363-1367. 10.1063/1.339639.
Article
CAS
PubMed
Google Scholar
Mandal AK, Lyden TW, Fazel A, Saklayen MG, Mehrotra B, Mehling B, Taylor CA, Yokokawa K, Colvin RV: Heparin-induced endothelial cell cytoskeletal reorganization: a potential mechanism for vascular relaxation. Kidney Int. 1995, 48: 1508-1516.
Article
CAS
PubMed
Google Scholar
Colburn P, Buonassisi V: Anti-clotting activity of endothelial cell cultures and heparan sulfate proteoglycans. Biochem Biophys Res Commun. 1982, 104: 220-227. 10.1016/0006-291X(82)91962-3.
Article
CAS
PubMed
Google Scholar
Colburn P, Buonassisi V, Dietrich CP, Nader HB: N-glycansulfated fibronectin: one of the several sulfated glycoproteins synthesized by endothelial cells in culture. Biochem Biophys Res Commun. 1987, 147: 920-926. 10.1016/S0006-291X(87)80158-4.
Article
CAS
PubMed
Google Scholar
Folkman J, Klagsbrun M: Angiogenic factors. Science. 1987, 235: 442-447.
Article
CAS
PubMed
Google Scholar
Giardino I, Edelstein D, Brownlee M: Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994, 94: 110-117.
Article
PubMed Central
CAS
PubMed
Google Scholar
Coltrini D, Rusnati M, Zoppetti G, Oreste P, Grazioli G, Naggi A, Presta M: Different effects of mucosal, bovine lung and chemically modified heparin on selected biological properties of basic fibroblast growth factor1. Biochem J. 1994, 303 ( Pt 2): 583-590.
Article
CAS
Google Scholar
Fannon M, Forsten KE, Nugent MA: Potentiation and inhibition of bFGF binding by heparin: a model for regulation of cellular response3. Biochemistry. 2000, 39: 1434-1445. 10.1021/bi991895z.
Article
CAS
PubMed
Google Scholar
Hiebert LM, McDuffie NM: The internalization and release of heparins by cultured endothelial cells: the process is cell source, heparin source, time and concentration dependent3. Artery. 1990, 17: 107-118.
CAS
PubMed
Google Scholar
Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH: Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res. 1994, 75: 1086-1095.
Article
CAS
PubMed
Google Scholar