Franco OH, Steyerberg EW, Hu FB, Mackenbach J, Nusselder W. Associations of diabetes mellitus with total life expectancy and life expectancy with and without cardiovascular disease. Arch Intern Med Am Med Assoc. 2007;167:1145–51.
Article
Google Scholar
Collaboration Emerging Risk Factors, Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085–95.
Article
Google Scholar
Jensen LO, Thayssen P, Mintz GS, Maeng M, Junker A, Galloe A, et al. Intravascular ultrasound assessment of remodelling and reference segment plaque burden in type-2 diabetic patients. Eur Heart J. 2007;28:1759–64.
Article
PubMed
Google Scholar
Jiménez-Quevedo P, Suzuki N, Corros C, Ferrer C, Angiolillo DJ, Alfonso F, et al. Vessel shrinkage as a sign of atherosclerosis progression in type 2 diabetes: a serial intravascular ultrasound analysis. Am Diab Assoc. 2009;58:209–14.
Google Scholar
Lehto S, Niskanen L, Suhonen M, Rönnemaa T, Laakso M. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16:978–83.
Article
PubMed
CAS
Google Scholar
Stehouwer CDA, Henry RMA, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 2008;51:527–39.
Article
PubMed
CAS
Google Scholar
MRCP PADS, PhD CL, PhD ER, PhD SD, PhD MP-R, FRCP CPG, et al. Articles Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Shah et al. Open Access article distributed under the terms of CC BY; 2014;:1–9.
Preil SAR, Kristensen LP, Beck HC, Jensen PS, Nielsen PS, Steiniche T, et al. Quantitative proteome analysis reveals increased content of basement membrane proteins in arteries from patients with type 2 diabetes mellitus and lower levels among metformin users. Circ Cardiovasc Genet. 2015;8:727–35.
Article
PubMed
CAS
Google Scholar
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cangemi C, Skov V, Poulsen MK, Funder J, Twal WO, Gall M-A, et al. Fibulin-1 is a marker for arterial extracellular matrix alterations in type 2 diabetes. Clin Chem. 2011;57:1556–65.
Article
PubMed
CAS
Google Scholar
Skov V, Knudsen S, Olesen M, Hansen ML, Rasmussen LM. Global gene expression profiling displays a network of dysregulated genes in non-atherosclerotic arterial tissue from patients with type 2 diabetes. Cardiovasc Diabetol. 2012;11:15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du B, Ma L-M, Huang M-B, Zhou H, Huang H-L, Shao P, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010;584:811–6.
Article
PubMed
CAS
Google Scholar
Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284:15676–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Taylor NE, Lu L, Usa K, Cowley AW, Ferreri NR, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010;55:974–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luna C, Li G, Qiu J, Epstein DL, Gonzalez P. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis. 2009;15:2488–97.
PubMed
PubMed Central
CAS
Google Scholar
Maurer B, Stanczyk J, Jüngel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62:1733–43.
Article
PubMed
CAS
Google Scholar
Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells. Genes Cancer. 2010;1:381–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sudo R, Sato F, Azechi T, Wachi H. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells. Genes Cells. 2015;20:1077–87.
Article
PubMed
CAS
Google Scholar
Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med. 2014;6:239ps3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lyck Hansen M, Beck HC, Irmukhamedov A, Jensen PS, Olsen MH, Rasmussen LM. Proteome analysis of human arterial tissue discloses associations between the vascular content of small leucine-rich repeat proteoglycans and pulse wave velocity. Arterioscler Thromb Vasc Biol. 2015;35:1896–903.
Article
PubMed
CAS
Google Scholar
Faarvang A-SA, RørdamPreil SA, Nielsen PS, Beck HC, Kristensen LP, Rasmussen LM. Smoking is associated with lower amounts of arterial type I collagen and decorin. Atherosclerosis. 2016;247:201–6.
Article
PubMed
CAS
Google Scholar
Park K, Mima A, Li Q, Rask-Madsen C, He P, Mizutani K, et al. Insulin decreases atherosclerosis by inducing endothelin receptor B expression. JCI Insight. 2016;1:1–17.
Article
Google Scholar
Madsen JB, Pedersen L, Kidholm CL, Rasmussen LM. Arterial iron content is increased in patients with high plasma ferritin levels. J Vasc Res. 2016;53:301–7.
Article
PubMed
CAS
Google Scholar
Preil SAR, Thorsen A-SF, Christiansen AL, Poulsen MK, Karsdal MA, Leeming DJ, et al. Is cardiovascular disease in patients with diabetes associated with serum levels of MMP-2, LOX, and the elastin degradation products ELM and ELM-2? Scand J Clin Lab Invest. 2017;77:493–7.
Article
PubMed
CAS
Google Scholar
Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics. 2007;23:2700–7.
Article
PubMed
CAS
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:19.
Article
CAS
Google Scholar
Hellemans J, Vandesompele J. Selection of reliable reference genes for RT-qPCR analysis. Methods Mol Biol. 2014;1160:19–26.
Article
PubMed
CAS
Google Scholar
Coleman CB, Lightell DJ, Moss SC, Bates M, Parrino PE, Woods TC. Elevation of miR-221 and -222 in the internal mammary arteries of diabetic subjects and normalization with metformin. Mol Cell Endocrinol. 2013;374:125–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 2010;29:559–73.
Article
PubMed
CAS
Google Scholar
Fiedler J, Stöhr A, Gupta SK, Hartmann D, Holzmann A, Just A, et al. Functional microRNA library screening identifies the hypoxamir miR-24 as a potent regulator of smooth muscle cell proliferation and vascularization. Antioxid Redox Signal. 2014;21:1167–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226:1035–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun L, Bai Y, Zhao R, Sun T, Cao R, Wang F, et al. Oncological miR-182-3p, a novel smooth muscle cell phenotype modulator, evidences from model rats and patients. Arterioscler Thromb Vasc Biol. 2016;36:1386–97.
Article
PubMed
CAS
Google Scholar
Li Y, Huang J, Jiang Z, Zhong Y, Xia M, Wang H, et al. MicroRNA-145 regulates platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration by targeting CD40. Am J Transl Res. 2016;8:1813–25.
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y-N, Xie B-D, Sun L, Chen W, Jiang S-L, Liu W, et al. Phenotypic switching of vascular smooth muscle cells in the “normal region” of aorta from atherosclerosis patients is regulated by miR-145. J Cell Mol Med. 2016;20:1049–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PBL, et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci. 2013;14:11190–207.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu W, Wang M, Yin H, Yao C, He Q, Yin L, et al. MicroRNA-1298 is regulated by DNA methylation and affects vascular smooth muscle cell function by targeting connexin 43. Cardiovasc Res. 2015;107:534–45.
Article
PubMed
CAS
Google Scholar
Li Y, Yan L, Zhang W, Hu N, Chen W, Wang H, et al. MicroRNA-21 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting activator protein-1. Am J Transl Res. 2014;6:507–16.
PubMed
PubMed Central
CAS
Google Scholar
Cheng Z, Zheng L, Almeida FA. Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem. 2017;54:1–10.
Article
PubMed
CAS
Google Scholar
Wang R, Dong L-D, Meng X-B, Shi Q, Sun W-Y. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Biochem Biophys Res Commun. 2015;464:574–9.
Article
PubMed
CAS
Google Scholar
Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88.
Article
PubMed
CAS
Google Scholar
Peiffer V, Sherwin SJ, Weinberg PD. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc Res. 2013;99:242–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mozos I, Malainer C, Horbanczuk J, Gug C, Stoian D, Luca CT, et al. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front Immunol Front. 2017;8:1058.
Article
Google Scholar
Kim J. MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology. BMB Rep. 2018;51:65–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
La Sala L, Cattaneo M, De Nigris V, Pujadas G, Testa R, Bonfigli AR, et al. Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. Cardiovasc Diabetol. 2016;15:71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jansen F, Wang H, Przybilla D, Franklin BS, Dolf A, Pfeifer P, et al. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol. 2016;15:49.
Article
PubMed
PubMed Central
CAS
Google Scholar