Garcia MJ, McNamara PM, Gordon T, Kannel WB (1974) Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 23:105–111
Article
CAS
PubMed
Google Scholar
(1999) Diabetes mellitus. A major risk factor for cardiovascular disease: a joint editorial statement by the American Diabetes Association; The National Heart, Lung, and Blood Institute; The Juvenile Diabetes Foundation International; The National Institute of Diabetes and Digestive and Kidney Diseases; and The American Heart Association., Circulation 100:1132–3
Zhao TC (2013) Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol 12:90
Article
CAS
PubMed Central
PubMed
Google Scholar
Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602
Article
CAS
PubMed
Google Scholar
Carugo S, Giannattasio C, Calchera I, Paleari F, Gorgoglione MG, Grappiolo A et al (2001) Progression of functional and structural cardiac alterations in young normotensive uncomplicated patients with type 1 diabetes mellitus. J Hypertens 19:1675–1680
Article
CAS
PubMed
Google Scholar
Itoh S, Ding B, Shishido T, Lerner-Marmarosh N, Wang N, Maekawa N et al (2006) Role of p90 ribosomal S6 kinase-mediated prorenin-converting enzyme in ischemic and diabetic myocardium. Circulation 113:1787–1798
Article
CAS
PubMed
Google Scholar
Gross ER, Hsu AK, Gross GJ (2007) Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 56:127–136
Article
CAS
PubMed
Google Scholar
Roe ND, Thomas DP, Ren J (2011) Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. Diabetes Obes Metab 13:465–473
Article
CAS
PubMed
Google Scholar
Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS et al (2001) IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50:1414–1424
Article
CAS
PubMed
Google Scholar
Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N et al (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327
Article
PubMed
Google Scholar
Shiomi T, Matsusaka H, Hayashidani S, Suematsu N, Wen J, Kubota T et al (2003) Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J Am Coll Cardiol 42:165–172
Article
CAS
PubMed
Google Scholar
Dong B, Yu QT, Dai HY, Gao YY, Zhou ZL, Zhang L et al (2012) Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J Am Coll Cardiol 59:739–747
Article
CAS
PubMed
Google Scholar
Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271
Article
CAS
PubMed
Google Scholar
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45
Article
CAS
PubMed
Google Scholar
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260
Article
CAS
PubMed
Google Scholar
Wang D, Fang C, Zong NC, Liem DA, Cadeiras M, Scruggs SB et al (2013) Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 12:3793–3802
Article
CAS
PubMed Central
PubMed
Google Scholar
Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN et al (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113:2579–2588
Article
CAS
PubMed Central
PubMed
Google Scholar
Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42
Article
CAS
PubMed Central
PubMed
Google Scholar
Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113:51–59
Article
CAS
PubMed
Google Scholar
Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T et al (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 22:3549–3560
Article
CAS
PubMed Central
PubMed
Google Scholar
Kao YH, Liou JP, Chung CC, Lien GS, Kuo CC, Chen SA et al (2013) Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J Cardiol 168:4178–4183
Article
PubMed
Google Scholar
Eom GH, Nam YS, Oh JG, Choe N, Min HK, Yoo EK et al (2014) Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 114:1133–1143
Article
CAS
PubMed
Google Scholar
Zhang L, Qin X, Zhao Y, Fast L, Zhuang S, Liu P et al (2012) Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther 341:285–293
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang LX, Zhao Y, Cheng G, Guo TL, Chin YE, Liu PY et al (2010) Targeted deletion of NF-kappaB p50 diminishes the cardioprotection of histone deacetylase inhibition. Am J Physiol Heart Circ Physiol 298:H2154–H2163
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhao TC, Cheng G, Zhang LX, Tseng YT, Padbury JF (2007) Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 76:473–481
Article
CAS
PubMed
Google Scholar
Chen HP, Denicola M, Qin X, Zhao Y, Zhang L, Long XL et al (2011) HDAC inhibition promotes cardiogenesis and the survival of embryonic stem cells through proteasome-dependent pathway. J Cell Biochem 112:3246–3255
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang L, Chen B, Zhao Y, Dubielecka PM, Wei L, Qin GJ et al (2012) Inhibition of histone deacetylase-induced myocardial repair is mediated by c-kit in infarcted hearts. J Biol Chem 287:39338–39348
Article
CAS
PubMed Central
PubMed
Google Scholar
Cox EJ, Marsh SA (2013) Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol 12:101
Article
CAS
PubMed Central
PubMed
Google Scholar
Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S et al (2010) High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 316:2903–2909
Article
CAS
PubMed
Google Scholar
Tsutsui H, Matsushima S, Kinugawa S, Ide T, Inoue N, Ohta Y et al (2007) Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Hypertens Res 30:439–449
Article
CAS
PubMed
Google Scholar
Christensen DP, Dahllof M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N et al (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17:378–390
Article
CAS
PubMed Central
PubMed
Google Scholar
Patel BM, Raghunathan S, Porwal U (2014) Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. Eur J Pharmacol 728:128–134
Article
CAS
PubMed
Google Scholar
Cooper ME, El-Osta A (2010) Epigenetics: mechanisms and implications for diabetic complications. Circ Res 107:1403–1413
Article
CAS
PubMed
Google Scholar
Asrih M, Steffens S (2013) Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol 22:117–125
Article
CAS
PubMed
Google Scholar
Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:884–899
CAS
PubMed
Google Scholar
Busche MN, Walsh MC, McMullen ME, Guikema BJ, Stahl GL (2008) Mannose-binding lectin plays a critical role in myocardial ischaemia and reperfusion injury in a mouse model ofdiabetes. Diabetologia 51:1544–1551
Article
CAS
PubMed Central
PubMed
Google Scholar
Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H (2002) Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 34:223–231
Article
CAS
PubMed
Google Scholar
Hoit BD, Castro C, Bultron G, Knight S, Matlib MA (1999) Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail 5:324–333
Article
CAS
PubMed
Google Scholar
Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang LX, DeNicola M, Qin X, Du J, Ma J, Zhao TY et al (2014) Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. Am J Physiol Cell Physiol 307:C358–C372
Article
CAS
PubMed
Google Scholar
Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488
Article
CAS
PubMed Central
PubMed
Google Scholar
Lieb W, Xanthakis V, Sullivan LM, Aragam J, Pencina MJ, Larson MG et al (2009) Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham offspring study. Circulation 119:3085–3092
Article
PubMed Central
PubMed
Google Scholar
Taegtmeyer H, McNulty P, Young ME (2002) Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation 105:1727–1733
Article
CAS
PubMed
Google Scholar
Li Y, Ma J, Zhu H, Singh M, Hill D, Greer PA et al (2011) Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. Diabetes 60:2985–2994
Article
CAS
PubMed Central
PubMed
Google Scholar
Bojunga J, Nowak D, Mitrou PS, Hoelzer D, Zeuzem S, Chow KU (2004) Antioxidative treatment prevents activation of death-receptor- and mitochondrion-dependent apoptosis in the hearts of diabetic rats. Diabetologia 47:2072–2080
Article
CAS
PubMed
Google Scholar
Shen E, Li Y, Li Y, Shan L, Zhu H, Feng Q et al (2009) Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 58:2386–2395
Article
CAS
PubMed Central
PubMed
Google Scholar
Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M et al (2012) p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation. Circ Heart Fail 5:106–115
Article
CAS
PubMed
Google Scholar
Kuo WW, Wang WJ, Tsai CY, Way CL, Hsu HH, Chen LM (2013) Diallyl trisufide (DATS) suppresses high glucose-induced cardiomyocyte apoptosis by inhibiting JNK/NFκB signaling via attenuating ROS generation. Int J Cardiol 168:270–280
Article
PubMed
Google Scholar
Zhang S, Liu H, Amarsingh GV, Cheung CC, Hogl S, Narayanan U et al (2014) Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol 13:100
Article
PubMed Central
PubMed
Google Scholar
Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72:369–417
CAS
PubMed
Google Scholar
Samuel SM, Thirunavukkarasu M, Penumathsa SV, Koneru S, Zhan L, Maulik G et al (2010) Thioredoxin-1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats. Circulation 121:1244–1255
Article
CAS
PubMed Central
PubMed
Google Scholar
Khazaei M, Fallahzadeh AR, Sharifi MR, Afsharmoghaddam N, Javanmard SH, Salehi E (2011) Effects of diabetes on myocardial capillary density and serum angiogenesis biomarkers in male rats. Clinics (Sao Paulo) 66:1419–1424
Article
Google Scholar
Kainulainen H, Breiner M, Schurmann A, Marttinen A, Virjo A, Joost HG (1994) In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1225:275–282
Article
CAS
PubMed
Google Scholar
Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT et al (2006) Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 317:1106–1113
Article
CAS
PubMed
Google Scholar
Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S (2014) Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc Diabetol 13:118
Article
PubMed Central
PubMed
Google Scholar
DeNicola M, Du J, Wang Z, Yano N, Zhang L, Wang Y et al (2014) Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium. Am J Physiol Endocrinol Metab 307:E630–E643
Article
CAS
PubMed
Google Scholar
Han P, Li W, Lin CH, Yang J, Shang C, Nurnberg ST et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106
Article
CAS
PubMed Central
PubMed
Google Scholar