Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004, 27: 1047-1053. 10.2337/diacare.27.5.1047.
Article
PubMed
Google Scholar
Verspohl EJ: Novel pharmacological approaches to the treatment of type 2 diabetes. Pharmacol Rev. 2012, 64: 188-237. 10.1124/pr.110.003319.
Article
CAS
PubMed
Google Scholar
Dixon JB, le Roux CW, Rubino F, Zimmet P: Bariatric surgery for type 2 diabetes. Lancet. 2012, 379: 2300-2311. 10.1016/S0140-6736(12)60401-2.
Article
PubMed
Google Scholar
de Koning EJ, Bodkin NL, Hansen BC, Clark A: Diabetes mellitus in macaca mulatta monkeys is characterised by islet amyloidosis and reduction in beta-cell population. Diabetologia. 1993, 36: 378-384. 10.1007/BF00402271.
Article
CAS
PubMed
Google Scholar
Xi S, Yin W, Wang Z, Kusunoki M, Lian X, Koike T, Fan J, Zhang Q: A minipig model of high-fat/high-sucrose diet-induced diabetes and atherosclerosis. Int J Exp Pathol. 2004, 85: 223-231. 10.1111/j.0959-9673.2004.00394.x.
Article
PubMed Central
PubMed
Google Scholar
Hummel KP, Dickie MM, Coleman DL: Diabetes, a new mutation in the mouse. Science. 1966, 153: 1127-1128. 10.1126/science.153.3740.1127.
Article
CAS
PubMed
Google Scholar
Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F: Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995, 269: 540-543. 10.1126/science.7624776.
Article
CAS
PubMed
Google Scholar
Parker G, Taylor R, Jones D, McClain D: Hyperglycemia and inhibition of glycogen synthase in streptozotocin-treated mice: role of O-linked N-acetylglucosamine. J Biol Chem. 2004, 279: 20636-20642. 10.1074/jbc.M312139200.
Article
CAS
PubMed
Google Scholar
Liang Q, Carlson EC, Donthi RV, Kralik PM, Shen X, Epstein PN: Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes. 2002, 51: 174-181. 10.2337/diabetes.51.1.174.
Article
CAS
PubMed
Google Scholar
Bugger H, Boudina S, Hu XX, Tuinei J, Zaha VG, Theobald HA, Yun UJ, McQueen AP, Wayment B, Litwin SE, Abel ED: Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes. 2008, 57: 2924-2932. 10.2337/db08-0079.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boudina S, Abel ED: Diabetic cardiomyopathy revisited. Circulation. 2007, 115: 3213-3223. 10.1161/CIRCULATIONAHA.106.679597.
Article
PubMed
Google Scholar
Boudina S, Abel ED: Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010, 11: 31-39. 10.1007/s11154-010-9131-7.
Article
PubMed Central
PubMed
Google Scholar
Schaper J, Meiser E, Stämmler G: Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res. 1985, 56: 377-391. 10.1161/01.RES.56.3.377.
Article
CAS
PubMed
Google Scholar
Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED: Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes. 2007, 56: 2457-2466. 10.2337/db07-0481.
Article
CAS
PubMed
Google Scholar
Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED: Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005, 112: 2686-2695. 10.1161/CIRCULATIONAHA.105.554360.
Article
PubMed
Google Scholar
Mansor LS, Gonzalez ER, Cole MA, Tyler DJ, Beeson JH, Clarke K, Carr CA, Heather LC: Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovasc Diabetol. 2013, 12: 1-1. 10.1186/1475-2840-12-136.
Article
Google Scholar
König A, Bode C, Bugger H: Diabetes mellitus and myocardial mitochondrial dysfunction: bench to bedside. Heart Fail Clin. 2012, 8: 551-561. 10.1016/j.hfc.2012.06.001.
Article
PubMed
Google Scholar
Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM, Klein JB, Epstein PN: Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab. 2004, 287: E896-E905. 10.1152/ajpendo.00047.2004.
Article
CAS
PubMed
Google Scholar
Broderick TL, Haloftis G, Paulson DJ: L-propionylcarnitine enhancement of substrate oxidation and mitochondrial respiration in the diabetic rat heart. J Mol Cell Cardiol. 1996, 28: 331-340. 10.1006/jmcc.1996.0031.
Article
CAS
PubMed
Google Scholar
Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, Chopin C, Neviere R: Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 2006, 48: 377-385. 10.1016/j.jacc.2006.02.069.
Article
CAS
PubMed
Google Scholar
Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N: Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 2013, 56: 1129-1139. 10.1007/s00125-013-2846-8.
Article
CAS
PubMed
Google Scholar
Rasouli N, Kern PA: Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab. 2008, 93: S64-S73. 10.1210/jc.2008-1613.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G: Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001, 280: E745-E751.
CAS
PubMed
Google Scholar
Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis HR: Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest. 1997, 99: 385-390. 10.1172/JCI119171.
Article
PubMed Central
CAS
PubMed
Google Scholar
Coppari R, Bjørbæk C: Leptin revisited: its mechanism of action and potential for treating diabetes. Nat Rev Drug Discov. 2012, 11: 692-708. 10.1038/nrd3757.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lago F, Gómez R, Gómez-Reino JJ, Dieguez C, Gualillo O: Adipokines as novel modulators of lipid metabolism. Trends Biochem Sci. 2009, 34: 500-510. 10.1016/j.tibs.2009.06.008.
Article
CAS
PubMed
Google Scholar
Hue L, Taegtmeyer H: The randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009, 297: E578-E591. 10.1152/ajpendo.00093.2009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Randle PJ, Garland PB, Hales CN, Newsholme EA: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963, 1: 785-789. 10.1016/S0140-6736(63)91500-9.
Article
CAS
PubMed
Google Scholar
Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA: A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr. 2010, 46: 212-223. 10.3164/jcbn.09-83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ahrén J, Ahrén B, Wierup N: Increased β-cell volume in mice fed a high-fat diet: a dynamic study over 12 months. Islets. 2010, 2: 353-356. 10.4161/isl.2.6.13619.
Article
PubMed
Google Scholar
Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M: Prediabetes: a high-risk state for diabetes development. Lancet. 2012, 379: 2279-2290. 10.1016/S0140-6736(12)60283-9.
Article
PubMed Central
PubMed
Google Scholar
Lenzen S: The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008, 51: 216-226. 10.1007/s00125-007-0886-7.
Article
CAS
PubMed
Google Scholar
Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM: A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metab Clin Exp. 2000, 49: 1390-1394. 10.1053/meta.2000.17721.
Article
CAS
PubMed
Google Scholar
Hosokawa M, Dolci W, Thorens B: Differential sensitivity of GLUT1- and GLUT2-expressing beta cells to streptozotocin. Biochem Biophys Res Commun. 2001, 289: 1114-1117. 10.1006/bbrc.2001.6145.
Article
CAS
PubMed
Google Scholar
Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH: Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes. 2002, 51: 1166-1171. 10.2337/diabetes.51.4.1166.
Article
CAS
PubMed
Google Scholar
Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, Limana F, Nadal-Ginard B, Leri A, Anversa P: IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes. 2001, 50: 1414-1424. 10.2337/diabetes.50.6.1414.
Article
CAS
PubMed
Google Scholar
Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM, Decoster B, Ballot C, Blazejewski C, Corseaux D, Lescure B, Motterlini R, Neviere R: Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One. 2012, 7: e41836-10.1371/journal.pone.0041836.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marsh SA, Dell’italia LJ, Chatham JC: Interaction of diet and diabetes on cardiovascular function in rats. Am J Physiol Heart Circ Physiol. 2009, 296: H282-H292. 10.1152/ajpheart.00421.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dinçer UD, Bidasee KR, Güner S, Tay A, Ozçelikay AT, Altan VM: The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes. 2001, 50: 455-461. 10.2337/diabetes.50.2.455.
Article
PubMed
Google Scholar
Boudina S, Bugger H, Sena S, O’Neill BT, Zaha VG, Ilkun O, Wright JJ, Mazumder PK, Palfreyman E, Tidwell TJ, Theobald H, Khalimonchuk O, Wayment B, Sheng X, Rodnick KJ, Centini R, Chen D, Litwin SE, Weimer BE, Abel ED: Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation. 2009, 119: 1272-1283. 10.1161/CIRCULATIONAHA.108.792101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu P-H, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM: Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005, 1: 259-271. 10.1016/j.cmet.2005.03.002.
Article
CAS
PubMed
Google Scholar
Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP: PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005, 3: e101-10.1371/journal.pbio.0030101.
Article
PubMed Central
PubMed
Google Scholar
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP: Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000, 106: 847-856. 10.1172/JCI10268.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, Gulick J, Yue Z, Robbins J, Epstein PN, Liang Q: Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem. 2013, 288: 18077-18092. 10.1074/jbc.M113.474650.
Article
PubMed Central
CAS
PubMed
Google Scholar
Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, Arid El J-M, Mouton S, Sebti Y, Duez H, Preau S, Remy-Jouet I, Zerimech F, Koussa M, Richard V, Neviere R, Edmé JL, Lefebvre P, Staels B: Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients.Circulation 2014, doi:10.1161/CIRCULATIONAHA.113.008476.,
Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Okigaki M, Adachi S, Tanaka H, Takamatsu T, Matsubara H: p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation. Circ Heart Fail. 2012, 5: 106-115. 10.1161/CIRCHEARTFAILURE.111.961565.
Article
CAS
PubMed
Google Scholar
Lashin O, Romani A: Hyperglycemia does not alter state 3 respiration in cardiac mitochondria from type-I diabetic rats. Mol Cell Biochem. 2004, 267: 31-37. 10.1023/B:MCBI.0000049360.75392.89.
Article
CAS
PubMed
Google Scholar
Bugger H, Riehle C, Jaishy B, Wende AR, Tuinei J, Chen D, Soto J, Pires KM, Boudina S, Theobald HA, Luptak I, Wayment B, Wang X, Litwin SE, Weimer BC, Abel ED: Genetic loss of insulin receptors worsens cardiac efficiency in diabetes. J Mol Cell Cardiol. 2012, 52: 1019-1026. 10.1016/j.yjmcc.2012.02.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vadvalkar SS, Baily CN, Matsuzaki S, West M, Tesiram YA, Humphries KM: Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of type 1 diabetes. Biochem J. 2013, 449: 253-261. 10.1042/BJ20121038.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fancher IS, Dick GM, Hollander JM: Diabetes mellitus reduces the function and expression of ATP-dependent K + channels in cardiac mitochondria. Life Sci. 2013, 92: 664-668. 10.1016/j.lfs.2012.11.019.
Article
PubMed Central
CAS
PubMed
Google Scholar