Loh HC, Lim R, Lee KW, Ooi CY, Chuan DR, Looi I, et al. Effects of vitamin E on stroke: a systematic review with meta-analysis and trial sequential analysis. Stroke Vasc Neurol. 2021;6:109–20. https://doi.org/10.1136/svn-2020-000519.
Article
Google Scholar
Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5:70. https://doi.org/10.1038/s41572-019-0118-8.
Article
Google Scholar
Ekker MS, Boot EM, Singhal AB, Tan KS, Debette S, Tuladhar AM, et al. Epidemiology, aetiology, and management of ischaemic stroke in young adults. Lancet Neurol. 2018;17:790–801. https://doi.org/10.1016/s1474-4422(18)30233-3.
Article
Google Scholar
Hu X, Zan X, Xie Z, Li Y, Lin S, Li H, et al. Association between plasminogen activator inhibitor-1 genetic polymorphisms and stroke susceptibility. Mol Neurobiol. 2017;54:328–41. https://doi.org/10.1007/s12035-015-9549-8.
Article
CAS
Google Scholar
Zhang W, Zhou F, Huang H, Mao Y, Ye D. Biomarker of dietary linoleic acid and risk for stroke: a systematic review and meta-analysis. Nutrition. 2020. https://doi.org/10.1016/j.nut.2020.110953.
Article
Google Scholar
Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8:1006–18. https://doi.org/10.1016/s1474-4422(09)70236-4.
Article
Google Scholar
Hankey GJ. Secondary stroke prevention. Lancet Neurol. 2014;13:178–94. https://doi.org/10.1016/s1474-4422(13)70255-2.
Article
Google Scholar
Kauw F, Takx RAP, de Jong H, Velthuis BK, Kappelle LJ, Dankbaar JW. Clinical and imaging predictors of recurrent ischemic stroke: a systematic review and meta-analysis. Cerebrovasc Dis. 2018;45:279–87. https://doi.org/10.1159/000490422.
Article
Google Scholar
Rujirachun P, Wattanachayakul P, Phichitnitikorn P, Charoenngam N, Kewcharoen J, Winijkul A. Association of premature ventricular complexes and risk of ischemic stroke: a systematic review and meta-analysis. Clin Cardiol. 2021;44:151–9. https://doi.org/10.1002/clc.23531.
Article
Google Scholar
Jiao Y, Su Y, Shen J, Hou X, Li Y, Wang J, et al. Evaluation of the long-term prognostic ability of triglyceride-glucose index for elderly acute coronary syndrome patients: a cohort study. Cardiovasc Diabetol. 2022;21:3. https://doi.org/10.1186/s12933-021-01443-y.
Article
CAS
Google Scholar
Sánchez-García A, Rodríguez-Gutiérrez R, Mancillas-Adame L, González-Nava V, Díaz González-Colmenero A, Solis RC, et al. Diagnostic accuracy of the triglyceride and glucose index for insulin resistance: a systematic review. Int J Endocrinol. 2020;2020:4678526. https://doi.org/10.1155/2020/4678526.
Article
CAS
Google Scholar
Tian X, Zuo Y, Chen S, Liu Q, Tao B, Wu S, et al. Triglyceride-glucose index is associated with the risk of myocardial infarction: an 11-year prospective study in the Kailuan cohort. Cardiovasc Diabetol. 2021;20:19. https://doi.org/10.1186/s12933-020-01210-5.
Article
CAS
Google Scholar
Wu S, Xu L, Wu M, Chen S, Wang Y, Tian Y. Association between triglyceride-glucose index and risk of arterial stiffness: a cohort study. Cardiovasc Diabetol. 2021;20:146. https://doi.org/10.1186/s12933-021-01342-2.
Article
CAS
Google Scholar
Lin HY, Zhang XJ, Liu YM, Geng LY, Guan LY, Li XH. Comparison of the triglyceride glucose index and blood leukocyte indices as predictors of metabolic syndrome in healthy Chinese population. Sci Rep. 2021;11:10036. https://doi.org/10.1038/s41598-021-89494-9.
Article
CAS
Google Scholar
da Silva A, Caldas APS, Hermsdorff HHM, Bersch-Ferreira ÂC, Torreglosa CR, Weber B, et al. Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc Diabetol. 2019;18:89. https://doi.org/10.1186/s12933-019-0893-2.
Article
CAS
Google Scholar
Cui H, Liu Q, Wu Y, Cao L. Cumulative triglyceride-glucose index is a risk for CVD: a prospective cohort study. Cardiovasc Diabetol. 2022;21:22. https://doi.org/10.1186/s12933-022-01456-1.
Article
CAS
Google Scholar
Tian X, Zuo Y, Chen S, Meng X, Chen P, Wang Y, et al. Distinct triglyceride-glucose trajectories are associated with different risks of incident cardiovascular disease in normal-weight adults. Am Heart J. 2022;248:63–71. https://doi.org/10.1016/j.ahj.2022.02.014.
Article
CAS
Google Scholar
Feng X, Yao Y, Wu L, Cheng C, Tang Q, Xu S. Triglyceride-glucose index and the risk of stroke: a systematic review and dose-response meta-analysis. Horm Metab Res. 2022;54:175–86. https://doi.org/10.1055/a-1766-0202.
Article
CAS
Google Scholar
Wang X, Feng B, Huang Z, Cai Z, Yu X, Chen Z, et al. Relationship of cumulative exposure to the triglyceride-glucose index with ischemic stroke: a 9-year prospective study in the Kailuan cohort. Cardiovasc Diabetol. 2022;21:66. https://doi.org/10.1186/s12933-022-01510-y.
Article
CAS
Google Scholar
Huang Z, Ding X, Yue Q, Wang X, Chen Z, Cai Z, et al. Triglyceride-glucose index trajectory and stroke incidence in patients with hypertension: a prospective cohort study. Cardiovasc Diabetol. 2022;21:141. https://doi.org/10.1186/s12933-022-01577-7.
Article
CAS
Google Scholar
Zhao Q, Zhang TY, Cheng YJ, Ma Y, Xu YK, Yang JQ, et al. Triglyceride-glucose index as a surrogate marker of insulin resistance for predicting cardiovascular outcomes in nondiabetic patients with non-st-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention. J Atheroscler Thromb. 2021;28:1175–94. https://doi.org/10.5551/jat.59840.
Article
CAS
Google Scholar
Zhou Y, Pan Y, Yan H, Wang Y, Li Z, Zhao X, et al. Triglyceride glucose index and prognosis of patients with ischemic stroke. Front Neurol. 2020;11:456. https://doi.org/10.3389/fneur.2020.00456.
Article
Google Scholar
Lin SF, Hu HH, Chao HL, Ho BL, Chen CH, Chan L, et al. Triglyceride-glucose index and intravenous thrombolysis outcomes for acute ischemic stroke: a multicenter prospective-cohort study. Front Neurol. 2022;13:737441. https://doi.org/10.3389/fneur.2022.737441.
Article
Google Scholar
Matthew JP, Joanne EM, Patrick MB, Isabelle B, Tammy CH, Cynthia DM, The P, et al. statement an updated guideline for reporting systematic reviews. BMJ. 2020. https://doi.org/10.1136/bmj.n71.
Article
Google Scholar
Zhou F, Zhou J, Wang W, Zhang XJ, Ji YX, Zhang P, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis. Hepatology. 2019;70:1119–33. https://doi.org/10.1002/hep.30702.
Article
Google Scholar
Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63. https://doi.org/10.1111/j.0006-341x.2000.00455.x.
Article
CAS
Google Scholar
Lee M, Kim C-h, Kim Y, Jang MU, Lim J-s, Yu K-h, et al. The effects of triglyceride-glucose (TyG) Index on leptomeningeal collateral status and outcome of reperfusion therapy in patients with acute ischemic stroke. Basel: Karger allschwilerstrasse; 2020.
Google Scholar
Du Z, Xing L, Lin M, Sun Y. Estimate of prevalent ischemic stroke from triglyceride glucose-body mass index in the general population. BMC Cardiovasc Disord. 2020;20:483. https://doi.org/10.1186/s12872-020-01768-8.
Article
CAS
Google Scholar
Shi W, Xing L, Jing L, Tian Y, Yan H, Sun Q, et al. Value of triglyceride-glucose index for the estimation of ischemic stroke risk: Insights from a general population. Nutr Metab Cardiovasc Dis. 2020;30:245–53. https://doi.org/10.1016/j.numecd.2019.09.015.
Article
CAS
Google Scholar
Hong S, Han K, Park CY. The triglyceride glucose index is a simple and low-cost marker associated with atherosclerotic cardiovascular disease: a population-based study. BMC Med. 2020;18:361. https://doi.org/10.1186/s12916-020-01824-2.
Article
CAS
Google Scholar
Wang A, Wang G, Liu Q, Zuo Y, Chen S, Tao B, et al. Triglyceride-glucose index and the risk of stroke and its subtypes in the general population: an 11-year follow-up. Cardiovasc Diabetol. 2021;20:46. https://doi.org/10.1186/s12933-021-01238-1.
Article
CAS
Google Scholar
Zhao Y, Sun H, Zhang W, Xi Y, Shi X, Yang Y, et al. Elevated triglyceride-glucose index predicts risk of incident ischaemic stroke: The Rural Chinese cohort study. Diabetes Metab. 2021;47:101246. https://doi.org/10.1016/j.diabet.2021.101246.
Article
CAS
Google Scholar
Liu Q, Cui H, Ma Y, Han X, Cao Z, Wu Y. Triglyceride-glucose index associated with the risk of cardiovascular disease: the Kailuan study. Endocrine. 2022;75:392–9. https://doi.org/10.1007/s12020-021-02862-3.
Article
CAS
Google Scholar
Hu L, Bao H, Huang X, Zhou W, Wang T, Zhu L, et al. Relationship between the triglyceride glucose index and the risk of first stroke in elderly hypertensive patients. Int J Gen Med. 2022;15:1271–9. https://doi.org/10.2147/ijgm.S350474.
Article
CAS
Google Scholar
Si S, Li J, Li Y, Li W, Chen X, Yuan T, et al. Causal effect of the triglyceride-glucose index and the joint exposure of higher glucose and triglyceride with extensive cardio-cerebrovascular metabolic outcomes in the UK Biobank: a mendelian randomization study. Front Cardiovasc Med. 2020;7:583473. https://doi.org/10.3389/fcvm.2020.583473.
Article
CAS
Google Scholar
Zhang B, Liu L, Ruan H, Zhu Q, Yu D, Yang Y, et al. Triglyceride-glucose index linked to hospital mortality in critically Ill stroke an observational multicentre study on eICU database. Front Med. 2020;7:591036. https://doi.org/10.3389/fmed.2020.591036.
Article
Google Scholar
Lee M, Kim CH, Kim Y, Jang MU, Mo HJ, Lee SH, et al. High Triglyceride glucose index is associated with poor outcomes in ischemic stroke patients after reperfusion therapy. Cerebrovasc Dis. 2021;50:691–9. https://doi.org/10.1159/000516950.
Article
CAS
Google Scholar
Nam KW, Kang MK, Jeong HY, Kim TJ, Lee EJ, Bae J, et al. Triglyceride-glucose index is associated with early neurological deterioration in single subcortical infarction: early prognosis in single subcortical infarctions. Int J Stroke. 2021;16:944–52. https://doi.org/10.1177/1747493020984069.
Article
Google Scholar
Hou Z, Pan Y, Yang Y, Yang X, Xiang X, Wang Y, et al. An Analysis of the potential relationship of triglyceride glucose and body mass index with stroke prognosis. Front Neurol. 2021;12:630140. https://doi.org/10.3389/fneur.2021.630140.
Article
Google Scholar
Nam KW, Kwon HM, Lee YS. High triglyceride-glucose index is associated with early recurrent ischemic lesion in acute ischemic stroke. Sci Rep. 2021;11:15335. https://doi.org/10.1038/s41598-021-94631-5.
Article
CAS
Google Scholar
Yang X, Wang G, Jing J, Wang A, Zhang X, Jia Q, et al. Association of triglyceride-glucose index and stroke recurrence among nondiabetic patients with acute ischemic stroke. BMC Neurol. 2022;22:79. https://doi.org/10.1186/s12883-022-02588-3.
Article
CAS
Google Scholar
Toh EMS, Lim AYL, Ming C, Yeo LLL, Sia CH, Tan BWQ, et al. Association of triglyceride-glucose index with clinical outcomes in patients with acute ischemic stroke receiving intravenous thrombolysis. Sci Rep. 2022;12:1596. https://doi.org/10.1038/s41598-022-05467-6.
Article
CAS
Google Scholar
Wang F, Wang J, Han Y, Shi X, Xu X, Hou C, et al. Triglyceride-glucose index and stroke recurrence in elderly patients with ischemic stroke. Front Endocrinol. 2022;13:1005614. https://doi.org/10.3389/fendo.2022.1005614.
Article
Google Scholar
Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6:299–304. https://doi.org/10.1089/met.2008.0034.
Article
CAS
Google Scholar
Russell JC, Ahuja SK, Manickavel V, Rajotte RV, Amy RM. Insulin resistance and impaired glucose tolerance in the atherosclerosis-prone LA/N corpulent rat. Arteriosclerosis. 1987;7:620–6. https://doi.org/10.1161/01.atv.7.6.620.
Article
CAS
Google Scholar
Kitta Y, Nakamura T, Uematsu M, Sugamata W, Deyama J, Fujioka D, et al. Insulin resistance negatively affects long-term outcome in non-diabetic patients with coronary artery disease after therapies to reduce atherosclerotic risk factors. J Cardiol. 2013;62:348–53. https://doi.org/10.1016/j.jjcc.2013.05.006.
Article
Google Scholar
Chen W, Wang S, Lv W, Pan Y. Causal associations of insulin resistance with coronary artery disease and ischemic stroke a mendelian randomization analysis. BMJ Open Diabetes Res Care. 2020. https://doi.org/10.1136/bmjdrc-2020-001217.
Article
Google Scholar
Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14:575–85.
Article
CAS
Google Scholar
Oh J, Riek AE, Darwech I, Funai K, Shao J, Chin K, et al. Deletion of macrophage vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep. 2015;10:1872–86. https://doi.org/10.1016/j.celrep.2015.02.043.
Article
CAS
Google Scholar
Moore SF, Williams CM, Brown E, Blair TA, Harper MT, Coward RJ, et al. Loss of the insulin receptor in murine megakaryocytes/platelets causes thrombocytosis and alterations in IGF signalling. Cardiovasc Res. 2015;107:9–19. https://doi.org/10.1093/cvr/cvv132.
Article
CAS
Google Scholar
Suslova TE, Sitozhevskii AV, Ogurkova ON, Kravchenko ES, Kologrivova IV, Anfinogenova Y, et al. Platelet hemostasis in patients with metabolic syndrome and type 2 diabetes mellitus: cGMP- and NO-dependent mechanisms in the insulin-mediated platelet aggregation. Front Physiol. 2014;5:501. https://doi.org/10.3389/fphys.2014.00501.
Article
Google Scholar
Brown E, Ozawa K, Moccetti F, Vinson A, Hodovan J, Nguyen TA, et al. Arterial platelet adhesion in atherosclerosis-prone arteries of obese, insulin-resistant nonhuman primates. J Am Heart Assoc. 2021;10:e019413. https://doi.org/10.1161/jaha.120.019413.
Article
CAS
Google Scholar
Randriamboavonjy V, Fleming I. Insulin, insulin resistance, and platelet signaling in diabetes. Diabetes Care. 2009;32:528–30.
Article
CAS
Google Scholar
Guo Y, Zhao J, Zhang Y, Wu L, Yu Z, He D, et al. Triglyceride glucose index influences platelet reactivity in acute ischemic stroke patients. BMC Neurol. 2021;21:409. https://doi.org/10.1186/s12883-021-02443-x.
Article
CAS
Google Scholar
Li Z, Jiang H, Ding Y, Zhang D, Zhang X, Xue J, et al. Platelet Endothelial aggregation receptor 1 polymorphism is associated with functional outcome in small-artery occlusion stroke patients treated with aspirin. Front Cardiovasc Med. 2021;8:664012. https://doi.org/10.3389/fcvm.2021.664012.
Article
Google Scholar
Coenen DM, Heinzmann ACA, Karel MFA, Cosemans J, Koenen RR. The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis. 2021;319:132–41. https://doi.org/10.1016/j.atherosclerosis.2020.12.017.
Article
CAS
Google Scholar
Banks WA, Rhea EM. The blood-brain barrier, oxidative stress, and insulin resistance. Antioxidants. 2021. https://doi.org/10.3390/antiox10111695.
Article
Google Scholar
Chen YC, Inagaki T, Fujii Y, Schwenke DO, Tsuchimochi H, Edgley AJ, et al. Chronic intermittent hypoxia accelerates coronary microcirculatory dysfunction in insulin-resistant Goto-Kakizaki rats. Am J Physiol Regul Integr Comp Physiol. 2016;311:R426–39. https://doi.org/10.1152/ajpregu.00112.2016.
Article
Google Scholar
Sacramento JF, Ribeiro MJ, Rodrigues T, Guarino MP, Diogo LN, Seica R, et al. Insulin resistance is associated with tissue-specific regulation of HIF-1alpha and HIF-2alpha during mild chronic intermittent hypoxia. Respir Physiol Neurobiol. 2016;228:30–8. https://doi.org/10.1016/j.resp.2016.03.007.
Article
CAS
Google Scholar
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, et al. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab. 2022;42:454–70. https://doi.org/10.1177/0271678x211033732.
Article
Google Scholar
Bas DF, Ozdemir AO, Colak E, Kebapci N. Higher Insulin resistance level is associated with worse clinical response in acute ischemic stroke patients treated with intravenous thrombolysis. Transl Stroke Res. 2016;7:167–71. https://doi.org/10.1007/s12975-016-0453-y.
Article
CAS
Google Scholar
Rundek T, Gardener H, Xu Q, Goldberg RB, Wright CB, Boden-Albala B, et al. Insulin resistance and risk of ischemic stroke among nondiabetic individuals from the northern Manhattan study. Arch Neurol. 2010;67:1195–200. https://doi.org/10.1001/archneurol.2010.235.
Article
Google Scholar
Howard G, Wagenknecht LE, Kernan WN, Cushman M, Thacker EL, Judd SE, et al. Racial differences in the association of insulin resistance with stroke risk: the REasons for geographic and racial differences in stroke (REGARDS) study. Stroke. 2014;45:2257–62. https://doi.org/10.1161/strokeaha.114.005306.
Article
CAS
Google Scholar
Pan Y, Jing J, Chen W, Zheng H, Jia Q, Mi D, et al. Post-glucose load measures of insulin resistance and prognosis of nondiabetic patients with ischemic stroke. J Am Heart Assoc. 2017. https://doi.org/10.1161/jaha.116.004990.
Article
Google Scholar
Jing J, Pan Y, Zhao X, Zheng H, Jia Q, Mi D, et al. Insulin resistance and prognosis of nondiabetic patients with ischemic stroke: The ACROSS-China study (Abnormal glucose regulation in patients with acute stroke across China). Stroke. 2017;48:887–93. https://doi.org/10.1161/strokeaha.116.015613.
Article
CAS
Google Scholar
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2016;47:e98–169. https://doi.org/10.1161/STR.0000000000000098.
Article
Google Scholar
Stinear CM, Smith MC, Byblow WD. Prediction tools for stroke rehabilitation. Stroke. 2019;50:3314–22. https://doi.org/10.1161/strokeaha.119.025696.
Article
Google Scholar
Gittler M, Davis AM. Guidelines for adult stroke rehabilitation and recovery. JAMA. 2018;319:820–1. https://doi.org/10.1001/jama.2017.22036.
Article
Google Scholar
Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med. 2013;369:11–9. https://doi.org/10.1056/NEJMoa1215340.
Article
CAS
Google Scholar
Johnston SC, Easton JD, Farrant M, Barsan W, Conwit RA, Elm JJ, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med. 2018;379:215–25. https://doi.org/10.1056/NEJMoa1800410.
Article
CAS
Google Scholar
Johnston SC, Amarenco P, Denison H, Evans SR, Himmelmann A, James S, et al. Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N Engl J Med. 2020;383:207–17. https://doi.org/10.1056/NEJMoa1916870.
Article
CAS
Google Scholar
Wang Y, Meng X, Wang A, Xie X, Pan Y, Johnston SC, et al. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. N Engl J Med. 2021;385:2520–30. https://doi.org/10.1056/NEJMoa2111749.
Article
CAS
Google Scholar
Toyoda K, Uchiyama S, Yamaguchi T, Easton JD, Kimura K, Hoshino H, et al. Dual antiplatelet therapy using cilostazol for secondary prevention in patients with high-risk ischaemic stroke in Japan: a multicentre, open-label, randomised controlled trial. Lancet Neurol. 2019;18:539–48. https://doi.org/10.1016/s1474-4422(19)30148-6.
Article
CAS
Google Scholar
González A, Moniche F, Cayuela A, García-Lozano JR, Torrecillas F, Escudero-Martínez I, et al. Effect of CYP2C19 polymorphisms on the platelet response to clopidogrel and influence on the effect of high versus standard dose clopidogrel in carotid artery stenting. Eur J Vasc Endovasc Surg. 2016;51:175–86. https://doi.org/10.1016/j.ejvs.2015.09.020.
Article
Google Scholar
Diener H-C, Bogousslavsky J, Brass LM, Cimminiello C, Csiba L, Kaste M, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. The Lancet. 2004;364:331–7. https://doi.org/10.1016/s0140-6736(04)16721-4.
Article
CAS
Google Scholar