Leon BM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6:1246. https://doi.org/10.4239/wjd.v6.i13.1246.
Article
PubMed
PubMed Central
Google Scholar
Tancredi M, Rosengren A, Svensson A-M, et al. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373:1720–32. https://doi.org/10.1056/NEJMoa1504347.
Article
CAS
PubMed
Google Scholar
Shah AD, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 2015;3:105–13. https://doi.org/10.1016/S2213-8587(14)70219-0.
Article
PubMed
PubMed Central
Google Scholar
The Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22. https://doi.org/10.1016/S0140-6736(10)60484-9.
Article
CAS
PubMed Central
Google Scholar
Cavender MA, Steg PG, Smith SC, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death. Circulation. 2015;132:923–31. https://doi.org/10.1161/CIRCULATIONAHA.114.014796.
Article
PubMed
Google Scholar
Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26. https://doi.org/10.1056/NEJMoa1307684.
Article
CAS
PubMed
Google Scholar
Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59. https://doi.org/10.1056/NEJMoa0802743.
Article
Google Scholar
ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72. https://doi.org/10.1056/NEJMoa0802987.
Article
Google Scholar
Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–9. https://doi.org/10.1016/S0140-6736(18)32590-X.
Article
CAS
PubMed
Google Scholar
Wu JHY, Foote C, Blomster J, et al. Effects of sodium–glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016;4:411–9. https://doi.org/10.1016/S2213-8587(16)00052-8.
Article
CAS
PubMed
Google Scholar
Sonesson C, Johansson PA, Johnsson E, et al. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol. 2016;15:37. https://doi.org/10.1186/s12933-016-0356-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monami M, Dicembrini I, Mannucci E. Effects of SGLT-2 inhibitors on mortality and cardiovascular events: a comprehensive meta-analysis of randomized controlled trials. Acta Diabetol. 2017;54:19–36. https://doi.org/10.1007/s00592-016-0892-7.
Article
CAS
PubMed
Google Scholar
Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7:606–17. https://doi.org/10.1016/S2213-8587(19)30180-9.
Article
CAS
PubMed
Google Scholar
Kadowaki T, Nangaku M, Hantel S, et al. Empagliflozin and kidney outcomes in Asian patients with type 2 diabetes and established cardiovascular disease: results from the EMPA-REG OUTCOME ® trial. J Diabetes Investig. 2019;10:760–70. https://doi.org/10.1111/jdi.12971.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toyama T, Neuen BL, Jun M, et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and meta-analysis. Diabetes Obes Metab. 2019;21:1237–50. https://doi.org/10.1111/dom.1364816.
Article
CAS
PubMed
Google Scholar
Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.
Article
CAS
PubMed
Google Scholar
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306. https://doi.org/10.1056/NEJMoa1811744.
Article
CAS
PubMed
Google Scholar
Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium–glucose cotransporter-2 inhibitors versus other glucose-lowering drugs. Circulation. 2017;136:249–59. https://doi.org/10.1161/CIRCULATIONAHA.117.029190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs. J Am Coll Cardiol. 2018;71:2628–39. https://doi.org/10.1016/j.jacc.2018.03.009.
Article
CAS
PubMed
Google Scholar
Birkeland KI, Jørgensen ME, Carstensen B, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium–glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. 2017;5:709–17. https://doi.org/10.1016/S2213-8587(17)30258-9.
Article
CAS
PubMed
Google Scholar
Persson F, Nyström T, Jørgensen ME, et al. Dapagliflozin is associated with lower risk of cardiovascular events and all-cause mortality in people with type 2 diabetes (CVD-REAL Nordic) when compared with dipeptidyl peptidase-4 inhibitor therapy: a multinational observational study. Diabetes Obes Metab. 2018;20:344–51. https://doi.org/10.1111/dom.13077.
Article
CAS
PubMed
Google Scholar
Heerspink HJL, Karasik A, Thuresson M, et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol. 2020;8:27–35. https://doi.org/10.1016/S2213-8587(19)30384-5.
Article
CAS
PubMed
Google Scholar
Udell JA, Yuan Z, Rush T, et al. Cardiovascular outcomes and risks after initiation of a sodium glucose cotransporter 2 inhibitor. Circulation. 2018;137:1450–9. https://doi.org/10.1161/CIRCULATIONAHA.117.031227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Udell JA, Yuan Z, Ryan P, et al. Cardiovascular outcomes and mortality after initiation of canagliflozin: analyses from the EASEL study. Endocrinol Diabetes Metab. 2020;3:e00096. https://doi.org/10.1002/edm2.96.
Article
PubMed
Google Scholar
Patorno E, Pawar A, Franklin JM, et al. Empagliflozin and the risk of heart failure hospitalization in routine clinical care. Circulation. 2019;139:2822–30. https://doi.org/10.1161/CIRCULATIONAHA.118.039177.
Article
CAS
PubMed
Google Scholar
Pasternak B, Wintzell V, Melbye M, et al. Use of sodium–glucose co-transporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study. BMJ. 2020;369: m1186. https://doi.org/10.1136/bmj.m1186.
Article
PubMed
PubMed Central
Google Scholar
Gallwitz B. The cardiovascular benefits associated with the use of sodium–glucose cotransporter 2 inhibitors—real-world data. Eur Endocrinol. 2018;14:17. https://doi.org/10.17925/EE.2018.14.1.17.
Article
PubMed
PubMed Central
Google Scholar
Kluger AY. Class effects of SGLT2 inhibitors on cardiorenal outcomes. In: Textbook of cardiorenal medicine. Cham: Springer International Publishing; 2021. p. 279–94. https://doi.org/10.1007/978-3-030-57460-4_22.
Chapter
Google Scholar
American diabetes association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2020. Diabetes Care. 2020;43:S98–110. https://doi.org/10.2337/dc20-S009.
Article
Google Scholar
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61:2461–98. https://doi.org/10.1007/s00125-018-4729-5.
Article
PubMed
Google Scholar
Fadini GP, Tentolouris N, Caballero Mateos I, et al. A multinational real-world study on the clinical characteristics of patients with type 2 diabetes initiating dapagliflozin in southern Europe. Diabetes Ther. 2020;11:423–36. https://doi.org/10.1007/s13300-019-00744-6.
Article
CAS
PubMed
Google Scholar
Tamayo T, Rosenbauer J, Wild SH, Spijkerman AMW, Baan C, Forouhi NG, et al. Diabetes in Europe: an update. Diabetes Res Clin Pract. 2014;103:206–17.
Article
CAS
PubMed
Google Scholar
Einarson TR, Acs A, Ludwig C, et al. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17:83. https://doi.org/10.1186/s12933-018-0728-6.
Article
PubMed
PubMed Central
Google Scholar
Bolíbar B, Fina Avilés F, Morros R, Del Mar G-G, Hermosilla E, Ramos R, et al. Base de datos SIDIAP: La historia clínica informatizada de Atención Primaria como fuente de información para la investigación epidemiológica. Med Clin. 2012;138(14):617–21.
Article
Google Scholar
WHO Collaborating Centre for Drug Statistics Methodology. Purpose of the ATC/DDD system. Norwegian Institute for Public Health; 2018
Suissa S, Moodie EE, Dell’Aniello S. Prevalent new-user cohort designs for comparative drug effect studies by time-conditional propensity scores. Pharmacoepidemiol Drug Saf. 2017;26:459–68.
Article
CAS
PubMed
Google Scholar
Felícitas Domínguez-Berjón M, Borrell C, Cano-Serral G, et al. Construcción de un índice de privación a partir de datos censales en grandes ciudades españolas (Proyecto MEDEA). Gac Sanit. 2008;22:179–87. https://doi.org/10.1157/13123961.
Article
PubMed
Google Scholar
Ho D, Imai K, King G, Stuart E. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 2007;15(3):199–236.
Article
Google Scholar
Toulis KA, Willis BH, Marshall T, et al. All-cause mortality in patients with diabetes under treatment with dapagliflozin: a population-based, open-cohort study in the health improvement network database. J Clin Endocrinol Metab. 2017;102:1719–25.
Article
PubMed
Google Scholar
Nyström T, Bodegard J, Nathanson D, et al. Novel oral glucose-lowering drugs are associated with lower risk of all-cause mortality, cardiovascular events and severe hypoglycaemia compared with insulin in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19:831–41. https://doi.org/10.1111/dom.12889.
Article
CAS
PubMed
PubMed Central
Google Scholar
Norhammar A, Bodegård J, Nyström T, et al. Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLARE-TIMI 58 trial: a nationwide observational study. Diabetes Obes Metab. 2019;21:1136–45. https://doi.org/10.1111/dom.13627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chioncel O, Lainscak M, Seferovic PM, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2017;19:1574–85. https://doi.org/10.1002/ejhf.813.
Article
CAS
PubMed
Google Scholar
Tuppin P, Cuerq A, de Peretti C, et al. Two-year outcome of patients after a first hospitalization for heart failure: a national observational study. Arch Cardiovasc Dis. 2014;107:158–68. https://doi.org/10.1016/j.acvd.2014.01.012.
Article
PubMed
Google Scholar
Zheng C, Lin M, Chen Y, Xu H, Yan L, Dai H. Effects of sodium–glucose cotransporter type 2 inhibitors on cardiovascular, renal, and safety outcomes in patients with cardiovascular disease: a meta-analysis of randomized controlled trials. Cardiovasc Diabetol. 2021;20:83. https://doi.org/10.1186/s12933-021-01272-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Täger T, Atar D, Agewall S, Katus HA, Grundtvig M, Cleland JG, Clark AL, Fröhlich H, Frankenstein L. Comparative efficacy of sodium–glucose cotransporter-2 inhibitors (SGLT2i) for cardiovascular outcomes in type 2 diabetes: a systematic review and network meta-analysis of randomised controlled trials. Heart Fail Rev. 2020. https://doi.org/10.1007/s10741-020-09954-8.
Article
PubMed
PubMed Central
Google Scholar
Hinnen D. Glucuretic effects and renal safety of dapagliflozin in patients with type 2 diabetes. Ther Adv Endocrinol Metab. 2015;6:92–102. https://doi.org/10.1177/2042018815575273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin Pharmacokinet. 2015;54:691–708. https://doi.org/10.1007/s40262-015-0264-4.
Article
CAS
PubMed
Google Scholar
Fadini GP, Solini A, Manca ML, et al. Effectiveness of dapagliflozin versus comparators on renal endpoints in the real world: a multicentre retrospective study. Diabetes Obes Metab. 2019;21:252–60. https://doi.org/10.1111/dom.13508.
Article
CAS
PubMed
Google Scholar
Kosiborod M, Birkeland KI, Cavender MA, et al. Rates of myocardial infarction and stroke in patients initiating treatment with SGLT2-inhibitors versus other glucose-lowering agents in real-world clinical practice: results from the CVD-REAL study. Diabetes Obes Metab. 2018;20:1983–7. https://doi.org/10.1111/dom.13299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giugliano D, Maiorino MI, Longo M, et al. Type 2 diabetes and risk of heart failure: a systematic review and meta-analysis from cardiovascular outcome trials. Endocrine. 2019;65:15–24. https://doi.org/10.1007/s12020-019-01931-y.
Article
CAS
PubMed
Google Scholar
Sinha B, Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract. 2019;150:8–16. https://doi.org/10.1016/j.diabres.2019.02.014.
Article
CAS
PubMed
Google Scholar
Zheng SL, Roddick AJ, Aghar-Jaffar R, et al. Association between use of sodium–glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. JAMA. 2018;319:1580. https://doi.org/10.1001/jama.2018.3024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mata-Cases M, Franch-Nadal J, Mauricio D, et al. Investigar en diabetes desde una base de datos de atención primaria: la experiencia del Sistema de Información para el Desarrollo de la Investigación en Atención Primaria (SIDIAP). Av en Diabetol. 2013;29:169–74. https://doi.org/10.1016/j.avdiab.2013.09.002.
Article
Google Scholar
Mata-Cases M, Mauricio D, Real J, et al. Is diabetes mellitus correctly registered and classified in primary care? A population-based study in Catalonia, Spain. Endocrinol Nutr. 2016;63:440–8. https://doi.org/10.1016/j.endonu.2016.07.0048.
Article
PubMed
Google Scholar
Kohsaka S, Lam CSP, Kim DJ, Cavender MA, Norhammar A, Jørgensen ME, et al. Risk of cardiovascular events and death associated with initiation of SGLT2 inhibitors compared with DPP-4 inhibitors: an analysis from the CVD-REAL 2 multinational cohort study. Lancet Diabetes Endocrinol. 2020;8:606–15.
Article
CAS
PubMed
Google Scholar
Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124:779–98. https://doi.org/10.1161/CIRCRESAHA.118.313348.
Article
CAS
PubMed
Google Scholar
Grosso G, Marventano S, Yang J, et al. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit Rev Food Sci Nutr. 2017;57:3218–32. https://doi.org/10.1080/10408398.2015.1107021.
Article
PubMed
Google Scholar
Razquin C, Martinez-Gonzalez MA. A traditional mediterranean diet effectively reduces inflammation and improves cardiovascular health. Nutrients. 2019;11:1842. https://doi.org/10.3390/nu11081842.
Article
CAS
PubMed Central
Google Scholar