Skip to main content

Long term clinical impact of successful recanalization of chronic total occlusion in patients with and without type 2 diabetes mellitus



Diabetes mellitus is one of the risk factors for coronary artery disease and frequently associated with multivessels disease and poor clinical outcomes. Long term outcome of successful revascularization of chronic total occlusions (CTO) in diabetes patients remains controversial.

Methods and results

From January 2005 to December 2015, 739 patients who underwent revascularization for CTO in Taipei Veterans General Hospital were included in this study, of which 313 (42%) patients were diabetes patients. Overall successful rate of revascularization was 619 (84%) patients whereas that in diabetics and non-diabetics were 265 (84%) and 354 (83%) respectively. Median follow up was 1095 days (median: 5 years, interquartile range: 1–10 years). During 3 years follow-up period, 59 (10%) in successful group and 18 (15%) patients in failure group died. Although successful revascularization of CTO was non-significantly associated with better outcome in total cohort (hazard ratio (HR): 0.593, 95% confidence interval (CI) 0.349–0.008, P: 0.054), it might be associated with lower risk of all-cause mortality (HR: 0.307, 95% CI 0.156–0.604, P: 0.001) and CV mortality (HR: 0.266, 95% CI 0.095–0.748, P: 0.012) in diabetics (P: 0.512). In contrast, successful CTO revascularization didn’t improve outcomes in non-diabetics (all P > 0.05). In multivariate cox regression analysis, successful CTO revascularization remained an independent predictor for 3-years survival in diabetic subgroup (HR: 0.289, 95% CI 0.125–0.667, P: 0.004). The multivariate analysis result was similar after propensity score matching (all-cause mortality, HR: 0.348, 95% CI 0.142–0.851, P: 0.021).


Successful CTO revascularization in diabetes may be related to better long term survival benefit but not in non-diabetic population.


Approximately 15% to 30% of patients who received coronary angiography had one or multiple chronic total occlusion (CTO) of coronary arteries [1, 2]. Percutaneous coronary intervention (PCI) for CTO is technical challenging and always need ample experiences, dedicated techniques and advanced interventional devices. Moreover, PCI for CTO lesion is related to higher radiation exposure to the patient and operator, more contrast volumes and increased risk for peri-procedural complications. Successful PCI of CTO lesion has been reported to be associated with improved left ventricular function and better clinical outcomes; while other studies showed negative results [3, 4]. On the other hand, Diabetes mellitus, a well-established risk factor of atherosclerosis, is always associated with more complex atherosclerotic coronary artery disease, including multi-vessel disease, diffuse and small vessel disease, and heavily calcified lesions. In addition, diabetes has been reported to be associated with longer length of CTO lesions [5, 6], and the treatment for CTO lesions in diabetes are more complex with lower success rate [7]. Even after successful revascularization, there were higher in-hospital major adverse cardiovascular and cerebrovascular events (MACCE) in diabetic patients comparing to non-diabetic patients [8]. Besides, diabetes is related to higher incidence of mortality and revascularization after CTO PCI up to 5 years compared to non-diabetics [9]. However, long term impact of successful revascularization for CTO lesions in diabetes population remains unknown and controversial. Therefore, in this study we aimed to investigate the long-term clinical outcomes in diabetic patients undergoing CTO PCI.


Study population

We enrolled patients who underwent CTO PCI at Taipei Veterans General Hospital. From January 2005 to December 2015, a total of 739 patients underwent intervention for CTO lesions. CTO lesions were defined as complete blockage of a coronary artery for longer than 3 months with thrombolysis in myocardial infarction (TIMI) 0. All patients had at least 1 CTO lesion and met the indication of recanalization of CTO lesion. Indications for CTO revascularization were as follows: (1) angina resistant to pharmacological therapy, (2) exercise-induced symptoms or (3) exercise induced evidence of myocardial ischemia. Patients with acute coronary syndrome and end stage renal disease on renal replacement therapy were excluded. Diabetes mellitus (DM) was defined as a fasting plasma glucose of at least 126 mg/dl, or 2 h postprandial plasma glucose of 200 mg/dl or glycated hemoglobin of at least 6.5% or random plasma glucose of at least 200 mg/dl in presence of classic symptoms of hyperglycemia [10]. Left ventricular ejection fraction was measured from transthoracic echocardiography or left ventriculography. Renal function was classified according to estimated glomerular filtration rate (eGFR) calculated by the modified diet in renal disease equation for Chinese (MDRDc) [11]. Patient’s demographics, coronary angiography, PCI records, in-hospital treatments, and in-hospital laboratory tests were extracted from web based electronic medical system of our hospital.

Coronary angiography and percutaneous coronary intervention (PCI) procedure

Diagnostic coronary angiography was evaluated carefully by experience cardiologists for the morphology of CTO lesion and collaterals. J-CTO score was calculated as previously reported [12]. Radial or femoral artery approaches/uni- or bi-directional approaches were used for diagnostic angiography and percutaneous coronary intervention according to standardized protocol of cardiac catheterization laboratory. After unfractionated heparin (10,000 IU bolus) was administered before the procedure to achieve an activated clotting time > 300 s, we routinely tried antegrade approach first. Antegrade approach includes single wire technique with wire escalation and parallel wire technique. If antegrade approach did not work, we would try retrograde approach if there are suitable collaterals available. After wire crossing collateral retrogradely, we always tried retrograde wiring technique, kissing wire technique, and reverse controlled antegrade and retrograde subintimal tracking (CART) technique. However, if both approaches failed and the CTO lesion morphology is suitable, intravascular ultrasound (IVUS) guided wiring re-entry technique would be tried. The PCI procedure was considered angiographically successful if residual stenosis < 30% and coronary Thrombolysis in Myocardial Infarction grade 3 flow were obtained at the end of the procedure.

Dual antiplatelets therapy was started on the day before PCI procedure or immediately after the procedure, and all patients received aspirin (100 mg/day) indefinitely and clopidogrel (300 to 600 mg loading dose, and 75 mg maintenance per day) for at least 3 month (bare metal stent (BMS)) or 12 months (drug-eluting stent, DES). After 1 year, aspirin or clopidogrel was maintained life-long. Medications for treatment of angina pectoris (calcium channel blockers, beta-blockers and nitrates) were continued.

Clinical outcomes

Clinical endpoints were 3 years all-cause mortality, cardiovascular (CV) mortality, nonfatal myocardial infarct (MI) and composite endpoints (MACE). MACE was the composite endpoint of all-cause mortality, CV mortality and nonfatal MI. Myocardial infarction was defined as the presence of significant new Q waves in at least 2 electrocardiographic leads or of symptoms compatible with MI associated with increase in creatine kinase-MB fraction ≥ 3 times the upper limit of the reference range. Periprocedural cardiac enzymes elevation was excluded from this definition of MI. Cardiovascular death was diagnosed as any death with definite cardiovascular cause or any death that was not clearly attributed to a non-cardiovascular cause. Hospital re-admission and outpatient clinic records from our hospital web-based system were obtained for clinical outcomes. In addition, patients were contacted by research coordinator by telephone interview at the end of study period if loss of follow up in our hospital. The study protocol was approved by the Institutional Review Board at Taipei-Veterans General Hospital, and all participants provided written informed consent.

Statistical analysis

Continuous variables were compared with Student’s t-test and were expressed as mean ± standard deviation (SD). Categorical data were tested using Chi-square test and presented as frequencies and percentages. Propensity score matching was performed using logistic regression model. We adjusted variables that were known as confounding factors (age, sex, renal function). Success and failure to revascularize groups were matched by a 4:1 matching protocol according to propensity scores with the width equal to 0.05 of the standard deviation. Kaplan–Meier estimates were used for survival curves which were compared with log-rank test. Multivariate analyses were performed with a cox proportional hazards model and confounders were selected according to statistically significance (P < 0.05) in univariate analysis which were age, renal function, prior stroke, peripheral arterial disease, renal function and left ventricular ejection fraction (LVEF). P-value of less than 0.05 was considered as statistically significance. All statistically analyses were performed with the use of SPSS 17.0 software (SPSS Inc, Chicago, IL, USA).


From January 2005 to December 2015, a total of 973 patients were found to have CTO lesion during coronary angiography in which 739 patients received revascularization at Taipei Veterans General Hospital (Fig. 1). The mean age was 68 ± 13 years, and most of the patients were male (675, 91%). Most patients had multi-vessel disease (607, 82%), and right coronary artery was the most common treated CTO vessel (362, 49%). 76 (10%) patients underwent bypass surgery prior to CTO PCI. The mean J-CTO score was 2.5 ± 0.97. Chronic kidney disease was present in 165 patients (22%). Most CTO lesions were crossed by antegrade wire escalation technique/parallel wire technique, while the retrograde approach was tried in only 56 patients (7.6%). Successful revascularization was achieved in 619 (84%) patients of entire cohort. Compared to patients with successful revascularization, the failed PCI group had poorer renal function, higher prevalence of multivessel CTO, and longer CTO length. Drug eluting stent was used in 317 (43%) patients. The baseline clinical and angiographic characteristics are shown in Table 1.

Fig. 1

Flowchart for patients enrollment

Table 1 Baseline demographics and angiographic characteristics of entire population with successful and Failed revascularization

The incidences of clinical outcomes (all-cause mortality, CV mortality, nonfatal MI and MACE) followed up for 3 years (median: 5 years, interquartile range: 1–10 years) were summarized in Table 2 (Fig. 2a). In entire population, there were no significant differences in the incidence of all-cause mortality, CV mortality, nonfatal MI and MACE (hazard ratio (HR): 0.593, 95% confidence interval (CI) 0.349–1.008, P: 0.054; HR: 0.472, 95% CI 0.217–1.024, P: 0.057; HR: 0.867, 95% CI 0.294–2.563, P: 0.797; HR: 0.734, 95% CI 0.449–1.200, P: 0.218 respectively) between successful revascularization group and failed revascularization group. Three years all-cause mortality was statistically significant higher in diabetes population compared to non-diabetes (P: 0.03) (Fig. 2b). Subgroup analysis showed that successful revascularization in diabetic population exhibited better survival benefit compared to that of non-diabetics (HR: 0.306, 95% CI 0.156–0.601 vs HR: 1.330, 95% CI 0.519–3.407, interaction P: 0.013) (Fig. 2c).

Table 2 Various clinical outcomes up to 3 years by Kaplan–Meier curved analysis
Fig. 2

Kaplan Meier survival curves for 3-years all cause mortality of a entire population, b Diabetes vs non diabetes, c subgroup analysis of entire population

Totally 313 (42%) patients are diabetics and 426 (58%) patients are non-diabetics. Among diabetic patients, 68 (21.7%) patients received insulin treatment. Compared to non-diabetic patients, diabetic patients were significantly older, with higher percentage of hypertension, worse renal function, multi-vessels disease, and reduced LVEF. There was no statistically difference in J-CTO score between two groups of diabetics and non-diabetics. Syntax score was statistically significant higher in failed group of diabetics but not different in non-diabetics. However, the revascularization successful rate was similar between diabetic patients (265, 84%), and non-diabetics patients (354, 83%, P = 0.614). The angiographic procedure and characteristics were not significantly different between the two groups (Table 3).

Table 3 Baseline demographics and angiographic characteristics of diabetes and non diabetes population with successful and failed revascularization

Risk of long-term all-cause mortality, CV mortality and MACE in successful recanalization group were significantly lower comparing to those of failed group in diabetics subgroup (HR: 0.307, 95% CI 0.156–0.604, P: 0.001; HR: 0.266, 95% CI 0.095–0.748, P: 0.013; HR: 0.454, 95% CI 0.246–0.837, P: 0.011 respectively), whereas there were no significant differences in these endpoints in non-diabetes population (all-cause mortality: HR: 1.334, 95% CI 0.521–3.417, P: 0.548; CV mortality: HR: 0.885, 95% CI 0.252–3.107, P: 0.849; nonfatal MI: HR: 1.423, 95% CI 0.175–11.565, P: 0.741; and MACE: HR: 1.351, 95% CI 0.573–3.188, P: 0.491) (Table 2). Figure 3 shows the cumulative survival curves free from 3-year all-cause mortality determined using the Kaplan–Meier method between successful and failed revascularization group in entire population and diabetic/non-diabetic patients, with the outcome significantly worse only in those diabetic patients undergoing failed revascularization procedure (P: 0.001). Periprocedural complications were summarized in Table 4. There was no statistically significant difference in complication rate between two groups of diabetes. In non-diabetics, there was higher prevalence of pericardial effusion which required pericardiocentesis in failure group (P: 0.04).

Fig. 3

Kaplan Meier survival curves for 3-years all cause mortality of a diabetes patients, b non diabetes patients, c diabetes patients after propensity score matching

Table 4 Periprocedural complications

Propensity score-adjusted clinical outcomes

To reduce the effect of treatment selection bias and compensate for potential confounding factors in this observational study, we calculated the propensity score by using multiple logistic regression analysis incorporating patient’s age, gender, renal function variables. After propensity score matching, there were no significant differences in the baseline characteristics between the successful PCI and failed PCI group of diabetes population (Table 5). In propensity score matched population, successful CTO revascularization was associated with reduced 3-years all-cause mortality and CV mortality only in diabetes population (all-cause mortality; HR 0.386, 95% CI 0.188–0.789, P: 0.009, CV mortality; 0.280, 95% CI 0.094–0.834, P: 0.018, Fig. 3c). In contrast, the risks of non-fatal MI and MACE were not reduced after successful CTO recanalization in diabetic patients (HR: 0.584, 95% CI 0.154–2.210, P: 0.429; HR: 1.511, 95% CI 0.338–6.753, P: 0.589, Table 2). In addition, there were no significant differences in clinical outcomes after successful or failed CTO recanalization in propensity score matched non-diabetic group.

Table 5 Baseline demographics and angiographic characteristics of diabetes population with successful and failed PCI after propensity score matching

In multivariate Cox-regression analysis, successful CTO revascularization remained an independent predictor of 3 years all-cause mortality in diabetic patients (HR: 0.289, 95% CI 0.125–0.667, P: 0.004) after adjusting age, renal function, prior stroke, prior peripheral arterial disease, left ventricular ejection fraction (Table 6). The results of univariate analysis and multivariate analysis were similar after propensity score matching (Table 7).

Table 6 Univariate and multivariate analysis of successful revascularization on 3-years all cause mortality before matching
Table 7 Univariate and multivariate analysis of successful revascularization on 3-years all cause mortality after matching


Our study showed that though diabetic patients were associated with more co-morbidities and more complex coronary lesions, the CTO revascularization successful rate was similar comparing to that of non-diabetic population. Moreover, successful CTO recanalization was independently associated with reduced risks of all-cause mortality rate and adverse cardiovascular events only in diabetic patients, but not in non-diabetic population. These results remained similar in propensity score matching analysis.

Most studies showed that successful recanalization of CTO reduced long term mortality compared to failed procedure or medical therapy and had comparable clinical results to those receiving bypass surgery [13,14,15]. But, some studies showed conflicting results [4, 16]. Decision CTO trial reported that there was no difference in long term outcome of successful CTO PCI and optimal medical therapy [4]. However, in this trial, there was high rate of crossover of medical therapy to CTO PCI. Moreover, mean age of patient population was relatively younger (62 years) and proportion of patients with diabetes mellitus (32%) was lower compared to that of previously reported observational studies [14].

Sanguineti et al. found that diabetes mellitus was a significant predictor of cardiac mortality in patients with CTO lesion. CTO recanalisation reduced major adverse cardiovascular event and suggested a greater reduction in cardiac death among diabetic patients [17]. Failure to recanalize CTO lesion in diabetes was found to have higher residual platelet reactivity (HRPR) which may in turn increase cardiac mortality [18]. In the present study, we found similar result that diabetes mellitus was related to poor prognosis in patients with CTO lesions compared to that of non-diabetics. Successful revascularization of CTO lesions in diabetes patients reduced all-cause mortality. But survival benefit was not found in non-diabetics.

Type 2 diabetes mellitus alters glucose and lipid metabolism, leading to premature development of atherosclerosis and adverse outcomes. Prompt recruitment for collateral circulation is crucial to reduce myocardial damage after coronary artery occlusion. Sen et al. found out that diabetes was related to higher incidence of inadequate collateral development in acute coronary syndrome [19]. Potential mechanisms for collateral developments were arteriogenesis, (i.e., arterialization of capillary bed) and angiogenesis [20]. However, chronic hyperglycemia induced microvascular rarefaction in myocardium. It also increases and accumulates advanced glycation endproducts which in turn have negative impact on endothelial function and angiogenesis [21, 22]. Dyslipidemia which is frequently associated with diabetes mellitus confers further greater risk for coronary collateralization [23]. Moreover, diabetes mellitus was associated with diffuse atherosclerosis of donor coronary arteries and further impaired collateral circulation over time [24]. These may be possible reasons behind the benefit after successful revascularization in diabetics.

In our study, diabetes patients were older (mean age was 70 years old) and there was high prevalence of chronic kidney disease and heart failure with reduced ejection fraction. Samy et al. found that left ventricular ejection fraction improvement after successful PCI was significantly more in patient with lower ejection fraction group [25]. Galassi et al. also reported that successful revascularization in patients with left ventricular ejection fraction ≤ 35% improved left ventricular ejection fraction and 2 years all-cause mortality [26]. Moreover, successful PCI was associated with better cardiac survival in elderly especially when complete revascularization is achieved [27]. Recently, Yunfeng et al. also reported that successful revascularization of CTO of stable right coronary artery either by PCI or bypass graft showed significant reduction of all-cause mortality (HR: 0.429, 95% CI 0.269–0.682) [28]. These evidences highlighted the importance of complete revascularization. Benefit of recanalization of CTO may be more pronounced in patients with elderly and poor left ventricular ejection fraction. Chronic kidney disease was one of poor prognostic factors for patients with CTO [29]. Diabetes mellitus is one of well-known underlying diseases that lead to chronic kidney disease. However, successful CTO PCI was associated with better survival irrespective of renal function status of patient [30].

Coronary revascularization of CTO lesion is always complex and demands delicate techniques, ample experiences and familiarity to special devices. Moreover, it is associated with higher perioperative complications such as coronary artery perforation, contrast induced nephropathy, radiation hazard, and mortality. Diabetes mellitus is associated with multi-, small vessel, diffuse atherosclerotic disease and higher rate of periprocedural MI, contrast induced nephropathy which may impact on procedure success rate and complications that consequently affect long term outcomes. However, in Bypass Angioplasty Revascularization Investigation 2 Diabetes trial, CTO didn’t increase periprocedural mortality in diabetes patients treated either by PCI or bypass surgery but it was associated with poor prognosis if left untreated [31, 32]. In our study, technical success rate of revascularization of CTO in diabetics was not different as compare to that of non-diabetics with similar peri-procedural complications. OPEN CTO trial was a prospective multi center registry evaluating about procedural success rate and complications [33]. This trial had also shown successful revascularization rate of 86% and reported no difference in technical outcomes between diabetics and non-diabetics. Taken together, these evidences suggest that CTO in diabetes patients should not preclude the CTO PCI attempt.


Our study had some limitations. First, all patients in our study received coronary revascularization for CTO. There was no control group that received optimal medical therapy or coronary artery bypass graft to compare outcome. Second, it is a retrospective, nonrandomized and observational study. Although we performed propensity score matching to reduce potential bias, the result cannot be comparable to that of randomized trial. Third, our study was conducted in a tertiary medical center that performed high volume of percutaneous CTO revascularization. Our result may not be applicable in low volume and less experienced center. Fourth, due to high proportion (91%) of male gender in our study, it’s application on female gender may be limited. Fifth, as some of our patients were referred to local hospital after intervention, some of follow up information may not be available when our research coordinator couldn’t reach them. Sixth, bare metallic stents were implanted in some patients due to personal economic issue or contraindication to prolonged dual antiplatelet therapy. Next generation drug eluting stent and recent trial about short term dual antiplatelet therapy may solve this problem in future. Seventh, patients with non-diabetics were younger and lesser co-morbidities compared to that of diabetics so that longer follow up period may be necessary to find potential benefit from successful CTO PCI to avoid potential type 2 error. Moreover, data about contrast volume and fluoroscopy time is missing.


The CTO revascularization successful rate was similar between diabetic and non-diabetic population. Successful CTO recanalization was found to be associated with improved clinical outcomes in diabetic patients. However, the benefit of CTO PCI didn’t outweigh the risk of failed procedure in non-diabetics. Further randomized controlled trial and longer term follow up are necessary to confirm our results.

Availability of data and materials

The dataset used and analyzed during the current study are available from corresponding author on request.



Chronic total occlusion


Percutaneous coronary intervention


Major adverse cardiovascular events


Thrombolysis in myocardial infarction


Diabetes mellitus


Estimated glomerular filtration rate


Modified diet in renal disease equation for Chinese


Controlled antegrade and retrograde subintimal tracking




Standard deviation


Left ventricular ejection fraction


  1. 1.

    Christofferson RD, Lehmann KG, Martin GV, Every N, Caldwell JH, Kapadia SR. Effect of chronic total coronary occlusion on treatment strategy. Am J Cardiol. 2005;95(9):1088–91.

    Article  Google Scholar 

  2. 2.

    Fefer P, Knudtson ML, Cheema AN, Galbraith PD, Osherov AB, Yalonetsky S, Gannot S, Samuel M, Weisbrod M, Bierstone D, et al. Current perspectives on coronary chronic total occlusions: the Canadian Multicenter Chronic Total Occlusions Registry. J Am Coll Cardiol. 2012;59(11):991–7.

    Article  Google Scholar 

  3. 3.

    Ma Y, Li D, Li J, Li Y, Bai F, Qin F, Zhou S, Liu Q. Percutaneous coronary intervention versus optimal medical therapy for patients with chronic total occlusion: a meta-analysis and systematic review. J Thorac Dis. 2018;10(5):2960–7.

    Article  Google Scholar 

  4. 4.

    Lee SW, Lee PH, Ahn JM, Park DW, Yun SC, Han S, Kang H, Kang SJ, Kim YH, Lee CW, et al. Randomized trial evaluating percutaneous coronary intervention for the treatment of chronic total occlusion. Circulation. 2019;139(14):1674–83.

    Article  Google Scholar 

  5. 5.

    Roffi M, Angiolillo DJ, Kappetein AP. Current concepts on coronary revascularization in diabetic patients. Eur Heart J. 2011;32(22):2748–57.

    Article  Google Scholar 

  6. 6.

    Roffi M, Iglesias JF. CTO PCI in patients with diabetes mellitus: sweet perspectives. JACC Cardiovasc Interv. 2017;10(21):2182–4.

    Article  Google Scholar 

  7. 7.

    Salisbury AC, Sapontis J, Grantham JA, Qintar M, Gosch KL, Lombardi W, Karmpaliotis D, Moses J, Cohen DJ, Spertus JA, et al. Outcomes of chronic total occlusion percutaneous coronary intervention in patients with diabetes: insights from the OPEN CTO Registry. JACC Cardiovasc Interv. 2017;10(21):2174–81.

    Article  Google Scholar 

  8. 8.

    Sohrabi B, Ghaffari S, Habibzadeh A, Chaichi P. Outcome of diabetic and non-diabetic patients undergoing successful percutaneous coronary intervention of chronic total occlusion. J Cardiovasc Thorac Res. 2011;3(2):45–8.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Mashaly A, Rha SW, Choi BG, Baek MJ, Ryu YG, Choi SY, Byun JK, Li H, Shim MS, Jang WY, et al. Impact of diabetes mellitus on 5-year clinical outcomes in patients with chronic total occlusion lesions. Coron Artery Dis. 2018;29(2):119–26.

    Article  Google Scholar 

  10. 10.

    Erratum. Classification and diagnosis of diabetes. Sec. 2. In standards of medical care in diabetes-2016. Diabetes Care. 2016;39(Suppl. 1):S13–S22. Diabetes Care. 2016;39(9):1653.

  11. 11.

    Kuo CF, Yu KH, Shen YM, See LC. The Chinese version of the modification of diet in renal disease (MDRD) equation is a superior screening tool for chronic kidney disease among middle-aged Taiwanese than the original MDRD and Cockcroft-Gault equations. Biomed J. 2014;37(6):398–405.

    Article  Google Scholar 

  12. 12.

    Christopoulos G, Wyman RM, Alaswad K, Karmpaliotis D, Lombardi W, Grantham JA, Yeh RW, Jaffer FA, Cipher DJ, Rangan BV, et al. Clinical utility of the Japan-chronic total occlusion score in coronary chronic total occlusion interventions: results from a multicenter registry. Circ Cardiovasc Interv. 2015;8(7):e002171.

    Article  Google Scholar 

  13. 13.

    Kim BS, Yang JH, Jang WJ, Song YB, Hahn JY, Choi JH, Kim WS, Lee YT, Gwon HC, Lee SH, et al. Clinical outcomes of multiple chronic total occlusions in coronary arteries according to three therapeutic strategies: bypass surgery, percutaneous intervention and medication. Int J Cardiol. 2015;197:2–7.

    Article  Google Scholar 

  14. 14.

    Tsai TT, Stanislawski MA, Shunk KA, Armstrong EJ, Grunwald GK, Schob AH, Valle JA, Alfonso CE, Nallamothu BK, Ho PM, et al. Contemporary incidence, management, and long-term outcomes of percutaneous coronary interventions for chronic coronary artery total occlusions: insights from the VA CART program. JACC Cardiovasc Interv. 2017;10(9):866–75.

    Article  Google Scholar 

  15. 15.

    Roth C, Goliasch G, Aschauer S, Gangl C, Ayoub M, Distelmaier K, Frey B, Lang IM, Berger R, Mashayekhi K, et al. Impact of treatment strategies on long-term outcome of CTO patients. Eur J Intern Med. 2020;77:97–104.

    Article  Google Scholar 

  16. 16.

    Lee PH, Lee SW, Park HS, Kang SH, Bae BJ, Chang M, Roh JH, Yoon SH, Ahn JM, Park DW, et al. Successful recanalization of native coronary chronic total occlusion is not associated with improved long-term survival. JACC Cardiovasc Interv. 2016;9(6):530–8.

    Article  Google Scholar 

  17. 17.

    Sanguineti F, Garot P, O’Connor S, Watanabe Y, Spaziano M, Lefevre T, Hovasse T, Benamer H, Unterseeh T, Chevalier B, et al. Chronic total coronary occlusion treated by percutaneous coronary intervention: long-term outcome in patients with and without diabetes. EuroIntervention. 2017;12(15):e1889–97.

    Article  Google Scholar 

  18. 18.

    Valenti R, Cantini G, Marcucci R, Marrani M, Migliorini A, Carrabba N, Comito V, Vergara R, Cerisano G, Parodi G, et al. Prognostic impact of high residual platelet reactivity after chronic total occlusion percutaneous coronary intervention in patients with diabetes mellitus. Int J Cardiol. 2015;201:561–7.

    Article  Google Scholar 

  19. 19.

    Şen Ö, Allahverdiyev S, Topuz M, Baykan AO, Oz F, Koç M. Clinical significance and determinants of prompt recruitment collaterals during primary percutaneous coronary intervention. Kardiol Pol. 2017;75(8):763–9.

    Article  Google Scholar 

  20. 20.

    Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389–95.

    CAS  Article  Google Scholar 

  21. 21.

    Shen Y, Ding FH, Dai Y, Wang XQ, Zhang RY, Lu L, Shen WF. Reduced coronary collateralization in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol. 2018;17(1):26.

    CAS  Article  Google Scholar 

  22. 22.

    Du R, Zhang RY, Lu L, Shen Y, Pu LJ, Zhu ZB, Zhang Q, Hu J, Yang ZK, Ding FH, et al. Increased glycated albumin and decreased esRAGE levels in serum are related to negative coronary artery remodeling in patients with type 2 diabetes: an Intravascular ultrasound study. Cardiovasc Diabetol. 2018;17(1):149.

    CAS  Article  Google Scholar 

  23. 23.

    Shen Y, Chen S, Dai Y, Wang XQ, Zhang RY, Yang ZK, Hu J, Lu L, Ding FH, Shen WF. Lipoprotein (a) interactions with cholesterol-containing lipids on angiographic coronary collateralization in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol. 2019;18(1):82.

    Article  Google Scholar 

  24. 24.

    Shen Y, Yang ZK, Hu J, Wang XQ, Dai Y, Zhang S, Zhang RY, Lu L, Ding FH, Shen WF. Donor artery stenosis interactions with diastolic blood pressure on coronary collateral flow in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol. 2018;17(1):76.

    CAS  Article  Google Scholar 

  25. 25.

    Samy M, El Awady WS, Al-Daydamony MM, Abd El Samei MM, Shokry K. Echocardiographic assessment of left ventricular function recovery post percutaneous coronary intervention of chronic total occlusions in patients with low and mid-range left ventricular ejection fractions. Echocardiography. 2020;37:239–46.

    Article  Google Scholar 

  26. 26.

    Galassi AR, Boukhris M, Toma A, Elhadj Z, Laroussi L, Gaemperli O, Behnes M, Akin I, Luscher TF, Neumann FJ, et al. Percutaneous coronary intervention of chronic total occlusions in patients with low left ventricular ejection fraction. JACC Cardiovasc Interv. 2017;10(21):2158–70.

    Article  Google Scholar 

  27. 27.

    Valenti R, Migliorini A, De Gregorio MG, Martone R, Berteotti M, Bernardini A, Carrabba N, Vergara R, Marchionni N, Antoniucci D. Impact of complete percutaneous revascularization in elderly patients with chronic total occlusion. Catheter Cardiovasc Interv. 2020;95(1):145–53.

    Article  Google Scholar 

  28. 28.

    Yan Y, Zhang M, Yuan F, Liu H, Wu D, Fan Y, Guo X, Xu F, Zhang M, Zhao Q, et al. Successful revascularization versus medical therapy in diabetic patients with stable right coronary artery chronic total occlusion: a retrospective cohort study. Cardiovasc Diabetol. 2019;18(1):108.

    Article  Google Scholar 

  29. 29.

    Mehran R, Claessen BE, Godino C, Dangas GD, Obunai K, Kanwal S, Carlino M, Henriques JP, Di Mario C, Kim YH, et al. Long-term outcome of percutaneous coronary intervention for chronic total occlusions. JACC Cardiovasc Interv. 2011;4(9):952–61.

    Article  Google Scholar 

  30. 30.

    Malik AO, Spertus JA, Grantham JA, Peri-Okonny P, Gosch K, Sapontis J, Moses J, Lombardi W, Karmpaliotis D, Nicholson WJ, et al. Outcomes of chronic total occlusion percutaneous coronary intervention in patients with renal dysfunction. Am J Cardiol. 2020;125(7):1046–53.

    Article  Google Scholar 

  31. 31.

    Damluji AA, Pomenti SF, Ramireddy A, Al-Damluji MS, Alfonso CE, Schob AH, Marso SP, Gilchrist IC, Moscucci M, Kandzari DE, et al. Influence of total coronary occlusion on clinical outcomes (from the Bypass Angioplasty Revascularization Investigation 2 DiabetesTrial). Am J Cardiol. 2016;117(7):1031–8.

    Article  Google Scholar 

  32. 32.

    Tajti P, Karmpaliotis D, Alaswad K, Jaffer FA, Yeh RW, Patel M, Mahmud E, Choi JW, Burke MN, Doing AH, et al. In-hospital outcomes of chronic total occlusion percutaneous coronary interventions in patients with prior coronary artery bypass graft surgery. Circ Cardiovasc Interv. 2019;12(3):e007338.

    Article  Google Scholar 

  33. 33.

    Sapontis J, Salisbury AC, Yeh RW, Cohen DJ, Hirai T, Lombardi W, McCabe JM, Karmpaliotis D, Moses J, Nicholson WJ, et al. Early procedural and health status outcomes after chronic total occlusion angioplasty: a report from the OPEN-CTO Registry (Outcomes, Patient Health Status, and Efficiency in Chronic Total Occlusion Hybrid Procedures). JACC Cardiovasc Interv. 2017;10(15):1523–34.

    Article  Google Scholar 

Download references


Not applicable.


Not applicable.

Author information




Dataset was collected by TCT and HWJ. Data was interpreted and analyzed by TCT and HWJ with help from LTM. Manuscript was drafted by TCT and LTM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tse-Min Lu.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Research Ethics Committee of Taipei Veterans General Hospital. Written informed consent was obtained from all patients or their legal representatives.

Consent for publication

No individual participant data were reported that would require consent from the participant to publish.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsai, C., Huang, W., Teng, H. et al. Long term clinical impact of successful recanalization of chronic total occlusion in patients with and without type 2 diabetes mellitus. Cardiovasc Diabetol 19, 119 (2020).

Download citation


  • Chronic total occlusion
  • Percutaneous coronary intervention
  • Diabetes mellitus