Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368(9529):29–36.
Article
PubMed
Google Scholar
Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, Bansal N, O’Keeffe LM, Gao P, Wood AM, Burgess S, et al. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015;314(1):52–60.
Article
PubMed
CAS
Google Scholar
Cubbon RM, Wheatcroft SB, Grant PJ, Gale CP, Barth JH, Sapsford RJ, Ajjan R, Kearney MT, Hall AS, et al. Evaluation of M et al. temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur Heart J. 2007;28(5):540–5.
Article
PubMed
Google Scholar
Kahn MB, Cubbon RM, Mercer B, Wheatcroft AC, Gherardi G, Aziz A, Baliga V, Blaxill JM, McLenachan JM, Blackman DJ, et al. Association of diabetes with increased all-cause mortality following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction in the contemporary era. Diabetes Vasc Dis Res. 2012;9(1):3–9.
Article
Google Scholar
van Straten AH, Soliman Hamad MA, van Zundert AA, Martens EJ, Schonberger JP, ter Woorst JF, de Wolf AM. Diabetes and survival after coronary artery bypass grafting: comparison with an age- and sex-matched population. Eur J Cardiothorac Surg. 2010;37(5):1068–74.
Article
PubMed
Google Scholar
James S, Angiolillo DJ, Cornel JH, Erlinge D, Husted S, Kontny F, Maya J, Nicolau JC, Spinar J, Storey RF, et al. Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J. 2010;31(24):3006–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohli P, Wallentin L, Reyes E, Horrow J, Husted S, Angiolillo DJ, Ardissino D, Maurer G, Morais J, Nicolau JC, et al. Reduction in first and recurrent cardiovascular events with ticagrelor compared with clopidogrel in the PLATO Study. Circulation. 2013;127(6):673–80.
Article
CAS
PubMed
Google Scholar
Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, Hammes HP, Huikuri H, et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J. 2013;34(39):3035–87.
Article
PubMed
Google Scholar
Cleland SJ, Fisher BM, Colhoun HM, Sattar N, Petrie JR. Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks? Diabetologia. 2013;56(7):1462–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rollini F, Franchi F, Muniz-Lozano A, Angiolillo DJ. Platelet function profiles in patients with diabetes mellitus. J Cardiovasc Transl Res. 2013;6(3):329–45.
Article
PubMed
Google Scholar
Hess K. The vulnerable blood: coagulation and clot structure in diabetes mellitus. Hamostaseologie. 2015;35(1):25–33.
Article
CAS
PubMed
Google Scholar
Soma P, Swanepoel AC, du Plooy JN, Mqoco T, Pretorius E. Flow cytometric analysis of platelets type 2 diabetes mellitus reveals ‘angry’ platelets. Cardiovasc Diabetol. 2016;15:52.
Article
PubMed
PubMed Central
Google Scholar
Pretorius E, Bester J, Vermeulen N, Alummoottil S, Soma P, Buys AV, Kell DB. Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics. Cardiovasc Diabetol. 2015;14:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pretorius E, Oberholzer HM, van der Spuy WJ, Swanepoel AC, Soma P. Qualitative scanning electron microscopy analysis of fibrin networks and platelet abnormalities in diabetes. Blood Coagul Fibrinolysis. 2011;22(6):463–7.
Article
CAS
PubMed
Google Scholar
Soma P, Pretorius E. Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus. Cardiovasc Diabetol. 2015;14:96.
Article
PubMed
PubMed Central
Google Scholar
Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–58.
Article
CAS
PubMed
Google Scholar
Hethershaw EL, Cilia La Corte AL, Duval C, Ali M, Grant PJ, Ariens RA, Philippou H. The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis. J Thromb Haemost. 2014;12(2):197–205.
Article
CAS
PubMed
Google Scholar
Sakata Y, Aoki N. Cross-linking of alpha 2-plasmin inhibitor to fibrin by fibrin-stabilizing factor. J Clin Invest. 1980;65(2):290–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valnickova Z, Enghild JJ. Human procarboxypeptidase U, or thrombin-activable fibrinolysis inhibitor, is a substrate for transglutaminases. Evidence for transglutaminase-catalyzed cross-linking to fibrin. J Biol Chem. 1998;273(42):27220–4.
Article
CAS
PubMed
Google Scholar
Ritchie H, Lawrie LC, Crombie PW, Mosesson MW, Booth NA. Cross-linking of plasminogen activator inhibitor 2 and alpha 2-antiplasmin to fibrin(ogen). J Biol Chem. 2000;275(32):24915–20.
Article
CAS
PubMed
Google Scholar
Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17–24.
Article
CAS
PubMed
Google Scholar
Weisel J, Litvinov R. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Hematol Agents Med Chem. 2008;6(3):161–80.
Article
CAS
PubMed
Google Scholar
Lawrence DA, Ginsburg D, Day DE, Berkenpas MB, Verhamme IM, Kvassman JO, Shore JD. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem. 1995;270(43):25309–12.
Article
CAS
PubMed
Google Scholar
Sakata Y, Aoki N. Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest. 1982;69(3):536–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraser SR, Booth NA, Mutch NJ. The antifibrinolytic function of factor XIII is exclusively expressed through alpha(2)-antiplasmin cross-linking. Blood. 2011;117(23):6371–4.
Article
PubMed
PubMed Central
Google Scholar
Sakharov DV, Plow EF, Rijken DC. On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. J Biol Chem. 1997;272(22):14477–82.
Article
CAS
PubMed
Google Scholar
Meade TW, Ruddock V, Stirling Y, Chakrabarti R, Miller GJ. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet. 1993;342(8879):1076–9.
Article
CAS
PubMed
Google Scholar
Lisman T, de Groot PG, Meijers JC, Rosendaal FR. Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis. Blood. 2005;105(3):1102–5.
Article
CAS
PubMed
Google Scholar
Meltzer ME, Doggen CJ, de Groot PG, Rosendaal FR, Lisman T. Reduced plasma fibrinolytic capacity as a potential risk factor for a first myocardial infarction in young men. Br J Haematol. 2009;145(1):121–7.
Article
PubMed
Google Scholar
Guimaraes AH, de Bruijne EL, Lisman T, Dippel DW, Deckers JW, Poldermans D, Rijken DC, Leebeek FW. Hypofibrinolysis is a risk factor for arterial thrombosis at young age. Br J Haematol. 2009;145(1):115–20.
Article
PubMed
Google Scholar
Katz P, Leiter LA, Mellbin L, Ryden L. The clinical burden of type 2 diabetes in patients with acute coronary syndromes: prognosis and implications for short- and long-term management. Diabetes Vasc Dis Res. 2014;11(6):395–409.
Article
Google Scholar
Clemmensen P, Dridi NP, Holmvang L. Dual antiplatelet therapy with prasugrel or ticagrelor versus clopidogrel in interventional cardiology. Cardiovasc Drugs Ther. 2013;27(3):239–45.
Article
CAS
PubMed
Google Scholar
Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, De Servi S, Murphy SA, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357(20):2001–15.
Article
CAS
PubMed
Google Scholar
Wiviott SD, Braunwald E, Angiolillo DJ, Meisel S, Dalby AJ, Verheugt FW, Goodman SG, Corbalan R, Purdy DA, Murphy SA, et al. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38. Circulation. 2008;118(16):1626–36.
Article
CAS
PubMed
Google Scholar
Ajjan RA, Standeven KF, Khanbhai M, Phoenix F, Gersh KC, Weisel JW, Kearney MT, Ariens RA, Grant PJ. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system. Arterioscler Thromb Vasc Biol. 2009;29(5):712–7.
Article
CAS
PubMed
Google Scholar
Bailey MA, Aggarwal R, Bridge KI, Griffin KJ, Iqbal F, Phoenix F, Purdell-Lewis J, Thomas T, Johnson AB, Ariens RA, et al. Aspirin therapy is associated with less compact fibrin networks and enhanced fibrinolysis in patients with abdominal aortic aneurysm. J Thromb Haemost. 2015;13(5):795–801.
Article
CAS
PubMed
Google Scholar
Tehrani S, Antovic A, Mobarrez F, Mageed K, Lins PE, Adamson U, Wallen HN, Jorneskog G. High-dose aspirin is required to influence plasma fibrin network structure in patients with type 1 diabetes. Diabetes Care. 2012;35(2):404–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res. 2010;7(4):260–73.
Article
CAS
PubMed
Google Scholar
Kunutsor SK, Seidu S, Khunti K. Aspirin for primary prevention of cardiovascular and all-cause mortality events in diabetes: updated meta-analysis of randomized controlled trials. Diabet Med. 2016;23:579–93.
Google Scholar
Fox CS, Golden SH, Anderson C, Bray GA, Burke LE, de Boer IH, Deedwania P, Eckel RH, Ershow AG, Fradkin J, et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2015;38(9):1777–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361(11):1045–57.
Article
CAS
PubMed
Google Scholar
Ferreiro JL, Angiolillo DJ. Diabetes and antiplatelet therapy in acute coronary syndrome. Circulation. 2011;123(7):798–813.
Article
PubMed
Google Scholar
Capodanno D, Patel A, Dharmashankar K, Ferreiro JL, Ueno M, Kodali M, Tomasello SD, Capranzano P, Seecheran N, Darlington A, et al. Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease. Circ Cardiovasc Interv. 2011;4(2):180–7.
Article
CAS
PubMed
Google Scholar
Dillinger JG, Drissa A, Sideris G, dit Sollier CB, Voicu S, Silberman SM, Logeart D, Drouet L, Henry P. Biological efficacy of twice daily aspirin in type 2 diabetic patients with coronary artery disease. Am Heart J. 2012;164(4):600.
Article
CAS
PubMed
Google Scholar
Rocca B, Santilli F, Pitocco D, Mucci L, Petrucci G, Vitacolonna E, Lattanzio S, Mattoscio D, Zaccardi F, Liani R, et al. The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes. J Thromb Haemost. 2012;10(7):1220–30.
Article
CAS
PubMed
Google Scholar
Schulman S, Spencer FA. Antithrombotic drugs in coronary artery disease: risk benefit ratio and bleeding. J Thromb Haemost. 2010;8(4):641–50.
Article
CAS
PubMed
Google Scholar
Mega JL, Braunwald E, Wiviott SD, Bassand JP, Bhatt DL, Bode C, Burton P, Cohen M, Cook-Bruns N, Fox KA, et al. Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med. 2012;366(1):9–19.
Article
CAS
PubMed
Google Scholar
Baeriswyl V, Calzavarini S, Chen S, Zorzi A, Bologna L, Angelillo-Scherrer A, Heinis C. A synthetic factor XIIa inhibitor blocks selectively intrinsic coagulation initiation. ACS Chem Biol. 2015;10(8):1861–70.
Article
CAS
PubMed
Google Scholar
Tehrani S, Jorneskog G, Agren A, Lins PE, Wallen H, Antovic A. Fibrin clot properties and haemostatic function in men and women with type 1 diabetes. Thromb Haemost. 2015;113(2):312–8.
Article
PubMed
Google Scholar
Sherif EM, Elbarbary NS, Abd Al Aziz MM, Mohamed SF. Plasma thrombin-activatable fibrinolysis inhibitor levels in children and adolescents with type 1 diabetes mellitus: possible relation to diabetic microvascular complications. Blood Coagul Fibrinolysis. 2014;25(5):451–7.
Article
CAS
PubMed
Google Scholar
Zheng N, Shi X, Chen X, Lv W. Associations between inflammatory markers, hemostatic markers, and microvascular complications in 182 Chinese patients with type 2 diabetes mellitus. Lab Med. 2015;46(3):214–20.
Article
PubMed
Google Scholar
Collet JP, Allali Y, Lesty C, Tanguy ML, Silvain J, Ankri A, Blanchet B, Dumaine R, Gianetti J, Payot L, et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol. 2006;26(11):2567–73.
Article
CAS
PubMed
Google Scholar
Undas A, Plicner D, Stepien E, Drwila R, Sadowski J. Altered fibrin clot structure in patients with advanced coronary artery disease: a role of C-reactive protein, lipoprotein(a) and homocysteine. J Thromb Haemost. 2007;5(9):1988–90.
Article
CAS
PubMed
Google Scholar
Fatah K, Silveira A, Tornvall P, Karpe F, Blomback M, Hamsten A. Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb Haemost. 1996;76(4):535–40.
CAS
PubMed
Google Scholar
Leander K, Blomback M, Wallen H, He S. Impaired fibrinolytic capacity and increased fibrin formation associate with myocardial infarction. Thromb Haemost. 2012;107(6):1092–9.
Article
CAS
PubMed
Google Scholar
Undas A, Kolarz M, Kopec G, Tracz W. Altered fibrin clot properties in patients on long-term haemodialysis: relation to cardiovascular mortality. Nephrol Dial Transplant. 2008;23(6):2010–5.
Article
PubMed
Google Scholar
Mills JD, Ariens RA, Mansfield MW, Grant PJ. Altered fibrin clot structure in the healthy relatives of patients with premature coronary artery disease. Circulation. 2002;106(15):1938–42.
Article
CAS
PubMed
Google Scholar
Lord ST. Molecular mechanisms affecting fibrin structure and stability. Arterioscler Thromb Vasc Biol. 2011;31(3):494–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collet JP, Park D, Lesty C, Soria J, Soria C, Montalescot G, Weisel JW. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol. 2000;20(5):1354–61.
Article
CAS
PubMed
Google Scholar
Gabriel DA, Muga K, Boothroyd EM. The effect of fibrin structure on fibrinolysis. J Biol Chem. 1992;267(34):24259–63.
CAS
PubMed
Google Scholar
Carr ME Jr, Alving BM. Effect of fibrin structure on plasmin-mediated dissolution of plasma clots. Blood Coagul Fibrinolysis. 1995;6(6):567–73.
Article
CAS
PubMed
Google Scholar
Ajjan R, Lim BC, Standeven KF, Harrand R, Dolling S, Phoenix F, Greaves R, Abou-Saleh RH, Connell S, Smith DA, et al. Common variation in the C-terminal region of the fibrinogen beta-chain: effects on fibrin structure, fibrinolysis and clot rigidity. Blood. 2008;111(2):643–50.
Article
CAS
PubMed
Google Scholar
Dunn EJ, Ariens RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia. 2005;48(6):1198–206.
Article
CAS
PubMed
Google Scholar
Jorneskog G, Egberg N, Fagrell B, Fatah K, Hessel B, Johnsson H, Brismar K, Blomback M. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia. 1996;39(12):1519–23.
Article
CAS
PubMed
Google Scholar
Dunn EJ, Philippou H, Ariens RA, Grant PJ. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia. 2006;49(5):1071–80.
Article
CAS
PubMed
Google Scholar
Nair CH, Azhar A, Wilson JD, Dhall DP. Studies on fibrin network structure in human plasma. Part II-clinical application: diabetes and antidiabetic drugs. Thromb Res. 1991;64(4):477–85.
Article
CAS
PubMed
Google Scholar
Alzahrani SH, Hess K, Price JF, Strachan M, Baxter PD, Cubbon R, Phoenix F, Gamlen T, Ariens RA, Grant PJ, et al. Gender-specific alterations in fibrin structure function in type 2 diabetes: associations with cardiometabolic and vascular markers. J Clin Endocrinol Metab. 2012;97(12):E2282–7.
Article
CAS
PubMed
Google Scholar
Konieczynska M, Fil K, Bazanek M, Undas A. Prolonged duration of type 2 diabetes is associated with increased thrombin generation, prothrombotic fibrin clot phenotype and impaired fibrinolysis. Thromb Haemost. 2014;111(4):685–93.
Article
CAS
PubMed
Google Scholar
Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB, Wilson AC, Folsom AR, Wu K, Benderly M, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294(14):1799–809.
CAS
PubMed
Google Scholar
Kannel WB, Wolf PA, Castelli WP, D’Agostino RB. Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA. 1987;258(9):1183–6.
Article
CAS
PubMed
Google Scholar
van Holten TC, Waanders LF, de Groot PG, Vissers J, Hoefer IE, Pasterkamp G, Prins MW, Roest M. Circulating biomarkers for predicting cardiovascular disease risk; a systematic review and comprehensive overview of meta-analyses. PLoS ONE. 2013;8(4):e62080.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med. 1993;118(12):956–63.
Article
CAS
PubMed
Google Scholar
Weisel JW. Structure of fibrin: impact on clot stability. J Thromb Haemost. 2007;5(Suppl 1):116–24.
Article
CAS
PubMed
Google Scholar
Machlus KR, Cardenas JC, Church FC, Wolberg AS. Causal relationship between hyperfibrinogenemia, thrombosis, and resistance to thrombolysis in mice. Blood. 2011;117(18):4953–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Missov RM, Stolk RP, van der Bom JG, Hofman A, Bots ML, Pols HA, Grobbee DE. Plasma fibrinogen in NIDDM: the Rotterdam study. Diabetes Care. 1996;19(2):157–9.
Article
CAS
PubMed
Google Scholar
Pieters M, van Zyl DG, Rheeder P, Jerling JC, du Loots T, van der Westhuizen FH, Gottsche LT, Weisel JW. Glycation of fibrinogen in uncontrolled diabetic patients and the effects of glycaemic control on fibrinogen glycation. Thromb Res. 2007;120(3):439–46.
Article
CAS
PubMed
Google Scholar
Lutjens A, te Velde AA, vd Veen EA, vd Meer J. Glycosylation of human fibrinogen in vivo. Diabetologia. 1985;28(2):87–9.
Article
CAS
PubMed
Google Scholar
Hammer MR, John PN, Flynn MD, Bellingham AJ, Leslie RD. Glycated fibrinogen: a new index of short-term diabetic control. Ann Clin Biochem. 1989;26(Pt 1):58–62.
Article
PubMed
Google Scholar
Svensson J, Bergman AC, Adamson U, Blomback M, Wallen H, Jorneskog G. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: a mass spectrometric and isotope labeling study. Biochem Biophys Res Commun. 2012;421(2):335–42.
Article
CAS
PubMed
Google Scholar
Pieters M, Covic N, van der Westhuizen FH, Nagaswami C, Baras Y, Toit Loots D, Jerling JC, Elgar D, Edmondson KS, van Zyl DG, et al. Glycaemic control improves fibrin network characteristics in type 2 diabetes—a purified fibrinogen model. Thromb Haemost. 2008;99(4):691–700.
CAS
PubMed
PubMed Central
Google Scholar
Henschen-Edman AH. Fibrinogen non-inherited heterogeneity and its relationship to function in health and disease. Ann N Y Acad Sci. 2001;936:580–93.
Article
CAS
PubMed
Google Scholar
Ardawi MS, Nasrat HN, Mira SA, Fatani HH. Comparison of glycosylated fibrinogen, albumin, and haemoglobin as indices of blood glucose control in diabetic patients. Diabet Med. 1990;7(9):819–24.
Article
CAS
PubMed
Google Scholar
Pieters M, Covic N, du Loots T, van der Westhuizen FH, van Zyl DG, Rheeder P, Jerling JC, Weisel JW. The effect of glycaemic control on fibrin network structure of type 2 diabetic subjects. Thromb Haemost. 2006;96(5):623–9.
CAS
PubMed
Google Scholar
Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complic. 2001;15(4):203–10.
Article
CAS
Google Scholar
Shacter E, Williams JA, Levine RL. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radic Biol Med. 1995;18(4):815–21.
Article
CAS
PubMed
Google Scholar
Lados-Krupa A, Konieczynska M, Chmiel A, Undas A. Increased oxidation as an additional mechanism underlying reduced clot permeability and impaired fibrinolysis in type 2 diabetes. J Diabetes Res. 2015;2015:456189.
Article
PubMed
PubMed Central
Google Scholar
Blomback B, Carlsson K, Hessel B, Liljeborg A, Procyk R, Aslund N. Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochim Biophys Acta. 1989;997(1–2):96–110.
Article
CAS
PubMed
Google Scholar
Wolberg AS, Monroe DM, Roberts HR, Hoffman M. Elevated prothrombin results in clots with an altered fiber structure: a possible mechanism of the increased thrombotic risk. Blood. 2003;101(8):3008–13.
Article
CAS
PubMed
Google Scholar
Wolberg AS. Thrombin generation and fibrin clot structure. Blood Rev. 2007;21(3):131–42.
Article
CAS
PubMed
Google Scholar
Brummel KE, Paradis SG, Butenas S, Mann KG. Thrombin functions during tissue factor-induced blood coagulation. Blood. 2002;100(1):148–52.
Article
CAS
PubMed
Google Scholar
Kim HK, Kim JE, Park SH, Kim YI, Nam-Goong IS, Kim ES. High coagulation factor levels and low protein C levels contribute to enhanced thrombin generation in patients with diabetes who do not have macrovascular complications. J Diabetes Complic. 2014;28(3):365–9.
Article
Google Scholar
Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab. 2007;92(11):4352–8.
Article
CAS
PubMed
Google Scholar
Tripodi A, Branchi A, Chantarangkul V, Clerici M, Merati G, Artoni A, Mannucci PM. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis. 2011;31(2):165–72.
Article
CAS
PubMed
Google Scholar
Undas A, Wiek I, Stepien E, Zmudka K, Tracz W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care. 2008;31(8):1590–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ceriello A, Esposito K, Ihnat M, Zhang J, Giugliano D. Simultaneous control of hyperglycemia and oxidative stress normalizes enhanced thrombin generation in type 1 diabetes. J Thromb Haemost. 2009;7(7):1228–30.
Article
CAS
PubMed
Google Scholar
Gajos G, Konieczynska M, Zalewski J, Undas A. Low fasting glucose is associated with enhanced thrombin generation and unfavorable fibrin clot properties in type 2 diabetic patients with high cardiovascular risk. Cardiovasc Diabetol. 2015;14:44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beijers HJ, Ferreira I, Spronk HM, Bravenboer B, Dekker JM, Nijpels G, ten Cate H, Stehouwer CD. Impaired glucose metabolism and type 2 diabetes are associated with hypercoagulability: potential role of central adiposity and low-grade inflammation–The Hoorn Study. Thromb Res. 2012;129(5):557–62.
Article
CAS
PubMed
Google Scholar
Marini MG, Sonnino C, Previtero M, Biasucci LM. Targeting inflammation: impact on atherothrombosis. J Cardiovasc Transl Res. 2014;7(1):9–18.
Article
PubMed
Google Scholar
Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278(5):483–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Badimon L, Suades R, Fuentes E, Palomo I, Padro T. Role of platelet-derived microvesicles as crosstalk mediators in atherothrombosis and future pharmacology targets: a link between inflammation, atherosclerosis, and thrombosis. Front Pharmacol. 2016;7:293.
Article
PubMed
PubMed Central
Google Scholar
Bester J, Pretorius E. Effects of IL-1beta, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 2016;6:32188.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res. 2016;118(9):1392–408.
Article
CAS
PubMed
Google Scholar
Distelmaier K, Adlbrecht C, Jakowitsch J, Winkler S, Dunkler D, Gerner C, Wagner O, Lang IM, Kubicek M. Local complement activation triggers neutrophil recruitment to the site of thrombus formation in acute myocardial infarction. Thromb Haemost. 2009;102(3):564–72.
CAS
PubMed
Google Scholar
Howes JM, Richardson VR, Smith KA, Schroeder V, Somani R, Shore A, Hess K, Ajjan R, Pease RJ, Keen JN, et al. Complement C3 is a novel plasma clot component with anti-fibrinolytic properties. Diab Vasc Dis Res. 2012;9(3):216–25.
Article
PubMed
Google Scholar
Nikolajsen CL, Scavenius C, Enghild JJ. Human complement C3 is a substrate for transglutaminases. A functional link between non-protease-based members of the coagulation and complement cascades. Biochemistry. 2012;51(23):4735–42.
Article
CAS
PubMed
Google Scholar
Richardson VR, Schroeder V, Grant PJ, Standeven KF, Carter AM. Complement C3 is a substrate for activated factor XIII that is cross-linked to fibrin during clot formation. Br J Haematol. 2013;160(1):116–9.
Article
CAS
PubMed
Google Scholar
Hess K, Alzahrani SH, Mathai M, Schroeder V, Carter AM, Howell G, Koko T, Strachan MW, Price JF, Smith KA, et al. A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia. 2012;55(4):1103–13.
Article
CAS
PubMed
Google Scholar
Hess K, Alzahrani SH, Price JF, Strachan MW, Oxley N, King R, Gamlen T, Schroeder V, Baxter PD, Ajjan RA. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia. 2014;57(8):1737–41.
Article
CAS
PubMed
Google Scholar
Neergaard-Petersen S, Hvas AM, Kristensen SD, Grove EL, Larsen SB, Phoenix F, Kurdee Z, Grant PJ, Ajjan RA. The influence of type 2 diabetes on fibrin clot properties in patients with coronary artery disease. Thromb Haemost. 2014;112(6):1142–50.
Article
CAS
PubMed
Google Scholar
Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, Bruckner UB, Nilsson B, Gebhard F, Lambris JD, et al. Molecular intercommunication between the complement and coagulation systems. J Immunol. 2010;185(9):5628–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Favier R, Aoki N, de Moerloose P. Congenital alpha(2)-plasmin inhibitor deficiencies: a review. Br J Haematol. 2001;114(1):4–10.
Article
CAS
PubMed
Google Scholar
Carpenter SL, Mathew P. Alpha2-antiplasmin and its deficiency: fibrinolysis out of balance. Haemophilia. 2008;14(6):1250–4.
Article
CAS
PubMed
Google Scholar
Meltzer ME, Doggen CJ, de Groot PG, Rosendaal FR, Lisman T. Plasma levels of fibrinolytic proteins and the risk of myocardial infarction in men. Blood. 2010;116(4):529–36.
Article
CAS
PubMed
Google Scholar
Al-Horani RA. Serpin regulation of fibrinolytic system: implications for therapeutic applications in cardiovascular diseases. Cardiovasc Hematol Agents Med Chem. 2014;12(2):91–125.
Article
CAS
PubMed
Google Scholar
Agren A, Jorneskog G, Elgue G, Henriksson P, Wallen H, Wiman B. Increased incorporation of antiplasmin into the fibrin network in patients with type 1 diabetes. Diabetes Care. 2014;37(7):2007–14.
Article
PubMed
CAS
Google Scholar
Meltzer ME, Lisman T, de Groot PG, Meijers JC, le Cessie S, Doggen CJ, Rosendaal FR. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood. 2010;116(1):113–21.
Article
CAS
PubMed
Google Scholar
Brouwers GJ, Leebeek FW, Tanck MW, Wouter Jukema J, Kluft C, de Maat MP. Association between thrombin-activatable fibrinolysis inhibitor (TAFI) and clinical outcome in patients with unstable angina pectoris. Thromb Haemost. 2003;90(1):92–100.
CAS
PubMed
Google Scholar
Montaner J, Ribo M, Monasterio J, Molina CA, Alvarez-Sabin J. Thrombin-activable fibrinolysis inhibitor levels in the acute phase of ischemic stroke. Stroke. 2003;34(4):1038–40.
Article
CAS
PubMed
Google Scholar
van Tilburg NH, Rosendaal FR, Bertina RM. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood. 2000;95(9):2855–9.
PubMed
Google Scholar
Leenaerts D, Bosmans JM, van der Veken P, Sim Y, Lambeir AM, Hendriks D. Plasma levels of carboxypeptidase U (CPU, CPB2 or TAFIa) are elevated in patients with acute myocardial infarction. J Thromb Haemost. 2015;13(12):2227–32.
Article
CAS
PubMed
Google Scholar
Hori Y, Gabazza EC, Yano Y, Katsuki A, Suzuki K, Adachi Y, Sumida Y. Insulin resistance is associated with increased circulating level of thrombin-activatable fibrinolysis inhibitor in type 2 diabetic patients. J Clin Endocrinol Metab. 2002;87(2):660–5.
Article
CAS
PubMed
Google Scholar
Yano Y, Kitagawa N, Gabazza EC, Morioka K, Urakawa H, Tanaka T, Katsuki A, Araki-Sasaki R, Hori Y, Nakatani K, et al. Increased plasma thrombin-activatable fibrinolysis inhibitor levels in normotensive type 2 diabetic patients with microalbuminuria. J Clin Endocrinol Metab. 2003;88(2):736–41.
Article
CAS
PubMed
Google Scholar
Chudy P, Kotulicova D, Stasko J, Kubisz P. The relationship among TAFI, t-PA, PAI-1 and F1+ 2 in type 2 diabetic patients with normoalbuminuria and microalbuminuria. Blood Coagul Fibrinolysis. 2011;22(6):493–8.
Article
CAS
PubMed
Google Scholar
Yener S, Comlekci A, Akinci B, Demir T, Yuksel F, Ozcan MA, Bayraktar F, Yesil S. Soluble CD40 ligand, plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor-1-antigen in normotensive type 2 diabetic subjects without diabetic complications. Effects of metformin and rosiglitazone. Med Princ Pract. 2009;18(4):266–71.
Article
PubMed
Google Scholar
Rigla M, Wagner AM, Borrell M, Mateo J, Foncuberta J, de Leiva A, Ordonez-Llanos J, Perez A. Postprandial thrombin activatable fibrinolysis inhibitor and markers of endothelial dysfunction in type 2 diabetic patients. Metabolism. 2006;55(11):1437–42.
Article
CAS
PubMed
Google Scholar
Leander K, Wiman B, Hallqvist J, Sten-Linder M, de Faire U. PAI-1 level and the PAI-1 4G/5G polymorphism in relation to risk of non-fatal myocardial infarction: results from the Stockholm Heart Epidemiology Program (SHEEP). Thromb Haemost. 2003;89(6):1064–71.
CAS
PubMed
Google Scholar
Hamsten A, Wiman B, de Faire U, Blomback M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med. 1985;313(25):1557–63.
Article
CAS
PubMed
Google Scholar
Hamsten A, de Faire U, Walldius G, Dahlen G, Szamosi A, Landou C, Blomback M, Wiman B. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet. 1987;2(8549):3–9.
Article
CAS
PubMed
Google Scholar
Juhan-Vague I, Roul C, Alessi MC, Ardissone JP, Heim M, Vague P. Increased plasminogen activator inhibitor activity in non insulin dependent diabetic patients-relationship with plasma insulin. Thromb Haemost. 1989;61(3):370–3.
CAS
PubMed
Google Scholar
Schneider DJ, Sobel BE. PAI-1 and diabetes: a journey from the bench to the bedside. Diabetes Care. 2012;35(10):1961–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med. 1996;2(7):800–3.
Article
CAS
PubMed
Google Scholar
Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes. 1997;46(5):860–7.
Article
CAS
PubMed
Google Scholar
Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fujii S. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation. 1996;93(1):106–10.
Article
CAS
PubMed
Google Scholar
Stegenga ME, van der Crabben SN, Levi M, de Vos AF, Tanck MW, Sauerwein HP, van der Poll T. Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes. 2006;55(6):1807–12.
Article
CAS
PubMed
Google Scholar
Belalcazar LM, Ballantyne CM, Lang W, Haffner SM, Rushing J, Schwenke DC, Pi-Sunyer FX, Tracy RP. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in type 2 diabetes: findings from the look AHEAD study. Arterioscler Thromb Vasc Biol. 2011;31(7):1689–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ajjan RA, Gamlen T, Standeven KF, Mughal S, Hess K, Smith KA, Dunn EJ, Anwar MM, Rabbani N, Thornalley PJ, et al. Diabetes is associated with posttranslational modifications in plasminogen resulting in reduced plasmin generation and enzyme-specific activity. Blood. 2013;122(1):134–42.
Article
CAS
PubMed
Google Scholar
Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.
Article
CAS
PubMed
Google Scholar
Gogitidze Joy N, Hedrington MS, Briscoe VJ, Tate DB, Ertl AC, Davis SN. Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care. 2010;33(7):1529–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chow E, Iqbal A, Bernjak A, Ajjan R, Heller SR. Effect of hypoglycaemia on thrombosis and inflammation in patients with type 2 diabetes. Lancet. 2014;383:S35.
Article
Google Scholar
Hill D, Fisher M. The effect of intensive glycaemic control on cardiovascular outcomes. Diabetes Obes Metab. 2010;12(8):641–7.
Article
CAS
PubMed
Google Scholar
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.
Article
CAS
PubMed
Google Scholar
Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.
Article
CAS
PubMed
Google Scholar
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.
Article
CAS
PubMed
Google Scholar
Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phung OJ, Schwartzman E, Allen RW, Engel SS, Rajpathak SN. Sulphonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med. 2013;30(10):1160–71.
Article
CAS
PubMed
Google Scholar
Longstaff C, Kolev K. Basic mechanisms and regulation of fibrinolysis. J Thromb Haemost. 2015;13(Suppl 1):S98–105.
Article
CAS
PubMed
Google Scholar
Vercauteren E, Gils A, Declerck PJ. Thrombin activatable fibrinolysis inhibitor: a putative target to enhance fibrinolysis. Semin Thromb Hemost. 2013;39(4):365–72.
Article
CAS
PubMed
Google Scholar
Wyseure T, Declerck PJ. Novel or expanding current targets in fibrinolysis. Drug Discov Today. 2014;19(9):1476–82.
Article
CAS
PubMed
Google Scholar
Plug T, Marquart JA, Marx PF, Meijers JC. Selective modulation of thrombin-activatable fibrinolysis inhibitor (TAFI) activation by thrombin or the thrombin-thrombomodulin complex using TAFI-derived peptides. J Thromb Haemost. 2015;13(11):2093–101.
Article
CAS
PubMed
Google Scholar
Buelens K, Hassanzadeh-Ghassabeh G, Muyldermans S, Gils A, Declerck PJ. Generation and characterization of inhibitory nanobodies towards thrombin activatable fibrinolysis inhibitor. J Thromb Haemost. 2010;8(6):1302–12.
Article
CAS
PubMed
Google Scholar
Zhou X, Weeks SD, Ameloot P, Callewaert N, Strelkov SV, Declerck PJ. Elucidation of the molecular mechanisms of two nanobodies that inhibit thrombin-activatable fibrinolysis inhibitor activation and activated thrombin-activatable fibrinolysis inhibitor activity. J Thromb Haemost. 2016;14(8):1629–38.
Article
CAS
PubMed
Google Scholar
Sigurdardottir O, Wiman B. Identification of a PAI-1 binding site in vitronectin. Biochim Biophys Acta. 1994;1208(1):104–10.
Article
CAS
PubMed
Google Scholar
Levin EG, Santell L. Conversion of the active to latent plasminogen activator inhibitor from human endothelial cells. Blood. 1987;70(4):1090–8.
CAS
PubMed
Google Scholar
Lawrence DA, Olson ST, Palaniappan S, Ginsburg D. Engineering plasminogen activator inhibitor 1 mutants with increased functional stability. Biochemistry. 1994;33(12):3643–8.
Article
CAS
PubMed
Google Scholar
Sahebkar A, Simental-Mendia LE, Watts GF, Golledge J. Impact of fibrate therapy on plasma plasminogen activator inhibitor-1: a systematic review and meta-analysis of randomized controlled trials. Atherosclerosis. 2015;240(1):284–96.
Article
CAS
PubMed
Google Scholar
Van De Craen B, Declerck PJ, Gils A. The Biochemistry, Physiology and Pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo. Thromb Res. 2012;130(4):576–85.
Article
CAS
Google Scholar
Wyseure T, Rubio M, Denorme F, Martinez de Lizarrondo S, Peeters M, Gils A, De Meyer SF, Vivien D, Declerck PJ. Innovative thrombolytic strategy using a heterodimer diabody against TAFI and PAI-1 in mouse models of thrombosis and stroke. Blood. 2015;125(8):1325–32.
Article
CAS
PubMed
Google Scholar
Denorme F, Wyseure T, Peeters M, Vandeputte N, Gils A, Deckmyn H, Vanhoorelbeke K, Declerck PJ, De Meyer SF. Inhibition of thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 reduces ischemic brain damage in mice. Stroke. 2016;47(9):2419–22.
Article
CAS
PubMed
Google Scholar
Zhou X, Hendrickx ML, Hassanzadeh-Ghassabeh G, Muyldermans S, Declerck PJ. Generation and in vitro characterisation of inhibitory nanobodies towards plasminogen activator inhibitor 1. Thromb Haemost. 2016;116(6):1032–40.
Article
PubMed
Google Scholar
Rouch A, Vanucci-Bacque C, Bedos-Belval F, Baltas M. Small molecules inhibitors of plasminogen activator inhibitor-1—an overview. Eur J Med Chem. 2015;92:619–36.
Article
CAS
PubMed
Google Scholar
Elokdah H, Abou-Gharbia M, Hennan JK, McFarlane G, Mugford CP, Krishnamurthy G, Crandall DL. Tiplaxtinin, a novel, orally efficacious inhibitor of plasminogen activator inhibitor-1: design, synthesis, and preclinical characterization. J Med Chem. 2004;47(14):3491–4.
Article
CAS
PubMed
Google Scholar
Gorlatova NV, Cale JM, Elokdah H, Li D, Fan K, Warnock M, Crandall DL, Lawrence DA. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor. J Biol Chem. 2007;282(12):9288–96.
Article
CAS
PubMed
Google Scholar
Liang A, Wu F, Tran K, Jones SW, Deng G, Ye B, Zhao Z, Snider RM, Dole WP, Morser J, et al. Characterization of a small molecule PAI-1 inhibitor, ZK4044. Thromb Res. 2005;115(4):341–50.
Article
CAS
PubMed
Google Scholar
Crandall DL, Elokdah H, Di L, Hennan JK, Gorlatova NV, Lawrence DA. Characterization and comparative evaluation of a structurally unique PAI-1 inhibitor exhibiting oral in vivo efficacy. J Thromb Haemost. 2004;2(8):1422–8.
Article
CAS
PubMed
Google Scholar
Rupin A, Gaertner R, Mennecier P, Richard I, Benoist A, De Nanteuil G, Verbeuren TJ. S35225 is a direct inhibitor of plasminogen activator inhibitor type-1 activity in the blood. Thromb Res. 2008;122(2):265–70.
Article
CAS
PubMed
Google Scholar
Fortenberry YM. Plasminogen activator inhibitor-1 inhibitors: a patent review (2006-present). Expert Opin Ther Pat. 2013;23(7):801–15.
Article
CAS
PubMed
Google Scholar
Kumada T, Abiko Y. Physiological role of alpha 2-plasmin inhibitor in rats. Thromb Res. 1984;36(2):153–63.
Article
CAS
PubMed
Google Scholar
Sakata Y, Eguchi Y, Mimuro J, Matsuda M, Sumi Y. Clot lysis induced by a monoclonal antibody against alpha 2-plasmin inhibitor. Blood. 1989;74(8):2692–7.
CAS
PubMed
Google Scholar
Reed GL 3rd, Matsueda GR, Haber E. Synergistic fibrinolysis: combined effects of plasminogen activators and an antibody that inhibits alpha 2-antiplasmin. Proc Natl Acad Sci USA. 1990;87(3):1114–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reed GL 3rd, Matsueda GR, Haber E. Inhibition of clot-bound alpha 2-antiplasmin enhances in vivo thrombolysis. Circulation. 1990;82(1):164–8.
Article
CAS
PubMed
Google Scholar
Wiman B, Collen D. On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin. J Biol Chem. 1979;254(18):9291–7.
CAS
PubMed
Google Scholar
Shieh BH, Travis J. The reactive site of human alpha 2-antiplasmin. J Biol Chem. 1987;262(13):6055–9.
CAS
PubMed
Google Scholar
Lee KN, Lee SC, Jackson KW, Tae WC, Schwartzott DG, McKee PA. Effect of phenylglyoxal-modified alpha2-antiplasmin on urokinase-induced fibrinolysis. Thromb Haemost. 1998;80(4):637–44.
CAS
PubMed
Google Scholar
Lee KN, Tae WC, Jackson KW, Kwon SH, McKee PA. Characterization of wild-type and mutant alpha2-antiplasmins: fibrinolysis enhancement by reactive site mutant. Blood. 1999;94(1):164–71.
CAS
PubMed
Google Scholar
Kimura S, Aoki N. Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor. J Biol Chem. 1986;261(33):15591–5.
CAS
PubMed
Google Scholar
Tamaki T, Aoki N. Cross-linking of alpha 2-plasmin inhibitor to fibrin catalyzed by activated fibrin-stabilizing factor. J Biol Chem. 1982;257(24):14767–72.
CAS
PubMed
Google Scholar
Sasaki T, Morita T, Iwanaga S. Identification of the plasminogen-binding site of human alpha 2-plasmin inhibitor. J Biochem. 1986;99(6):1699–705.
Article
CAS
PubMed
Google Scholar
Kimura S, Tamaki T, Aoki N. Acceleration of fibrinolysis by the N-terminal peptide of alpha 2-plasmin inhibitor. Blood. 1985;66(1):157–60.
CAS
PubMed
Google Scholar
Lee KN, Jackson KW, McKee PA. Effect of a synthetic carboxy-terminal peptide of alpha(2)-antiplasmin on urokinase-induced fibrinolysis. Thromb Res. 2002;105(3):263–70.
Article
CAS
PubMed
Google Scholar
Udvardy M, Schwartzott D, Jackson K, McKee PA. Hybrid peptide containing RGDF (Arg-Gly-Asp-Phe) coupled with the carboxy terminal part of alpha 2-antiplasmin capable of inhibiting platelet aggregation and promoting fibrinolysis. Blood Coagul Fibrinolysis. 1995;6(1):11–6.
Article
CAS
PubMed
Google Scholar
Sumi Y, Ichikawa Y, Nakamura Y, Miura O, Aoki N. Expression and characterization of pro alpha 2-plasmin inhibitor. J Biochem. 1989;106(4):703–7.
Article
CAS
PubMed
Google Scholar
Koyama T, Koike Y, Toyota S, Miyagi F, Suzuki N, Aoki N. Different NH2-terminal form with 12 additional residues of alpha 2-plasmin inhibitor from human plasma and culture media of Hep G2 cells. Biochem Biophys Res Commun. 1994;200(1):417–22.
Article
CAS
PubMed
Google Scholar
Bangert K, Johnsen AH, Christensen U, Thorsen S. Different N-terminal forms of alpha 2-plasmin inhibitor in human plasma. Biochem J. 1993;291(pt 2):623–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee KN, Jackson KW, Christiansen VJ, Chung KH, McKee PA. A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood. 2004;103(10):3783–8.
Article
CAS
PubMed
Google Scholar
Lee KN, Jackson KW, Christiansen VJ, Dolence EK, McKee PA. Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor alpha2-antiplasmin. J Thromb Haemost. 2011;9(5):987–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ricklin D, Lambris JD. Complement-targeted therapeutics. Nat Biotechnol. 2007;25(11):1265–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–64.
Article
CAS
PubMed
Google Scholar
King R, Tiede C, Simmons K, Fishwick C, Tomlinson D, Ajjan R. Inhibition of complement C3 and fibrinogen interaction: a potential novel therapeutic target to reduce cardiovascular disease in diabetes. Lancet. 2015;385(Suppl 1):S57.
Article
PubMed
Google Scholar