Nesto RW, Zarich S: Acute myocardial infarction in diabetes mellitus: lessons learned from ACE inhibition. Circulation. 1998, 97 (1): 12-15. 10.1161/01.CIR.97.1.12.
Article
CAS
PubMed
Google Scholar
Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME: Heart Disease and Stroke Statistics–2013 Update: A Report From the American Heart Association. Circulation. 2013, 127 (1): e6-e245. 10.1161/CIR.0b013e31828124ad.
Article
PubMed
Google Scholar
Pasquale EB: Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008, 133 (1): 38-52. 10.1016/j.cell.2008.03.011.
Article
CAS
PubMed
Google Scholar
Kullander K, Klein R: Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002, 3 (7): 475-486. 10.1038/nrm856.
Article
CAS
PubMed
Google Scholar
Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, Lin C, Chen J: Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene. 2002, 21 (46): 7011-7026. 10.1038/sj.onc.1205679.
Article
CAS
PubMed
Google Scholar
National Institute of Diabetes and Digestive and Kidney Diseases: National Diabetes Statistics, 2007 fact sheet. 2008. 08/28.
Brantley-Sieders D, Schmidt S, Parker M, Chen J: Eph receptor tyrosine kinases in tumor and tumor microenvironment. Curr Pharm Des. 2004, 10 (27): 3431-3442. 10.2174/1381612043383160.
Article
CAS
PubMed
Google Scholar
Surawska H, Ma PC, Salgia R: The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004, 15 (6): 419-433. 10.1016/j.cytogfr.2004.09.002.
Article
CAS
PubMed
Google Scholar
Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM: Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science. 1995, 268 (5210): 567-569. 10.1126/science.7536959.
Article
CAS
PubMed
Google Scholar
Cheng N, Brantley DM, Chen J: The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev. 2002, 13 (1): 75-85. 10.1016/S1359-6101(01)00031-4.
Article
CAS
PubMed
Google Scholar
Ivanov AI, Romanovsky AA: Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life. 2006, 58 (7): 389-394. 10.1080/15216540600756004.
Article
CAS
PubMed
Google Scholar
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW: Eph/Ephrin signaling in injury and inflammation. Am J Pathol. 2012, 181 (5): 1493-1503. 10.1016/j.ajpath.2012.06.043.
Article
CAS
PubMed
Google Scholar
Dries JL, Kent SD, Virag JA: Intramyocardial administration of chimeric ephrinA1-Fc promotes tissue salvage following myocardial infarction in mice. J Physiol. 2011, 589 (Pt 7): 1725-1740. 10.1113/jphysiol.2010.202366.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goichberg P, Bai Y, D'Amario D, Ferreira-Martins J, Fiorini C, Zheng H, Signore S, Del Monte F, Ottolenghi S, D'Alessandro DA, Michler RE, Hosoda T, Anversa P, Kajstura J, Rota M, Leri A: The Ephrin A1-EphA2 System Promotes Cardiac Stem Cell Migration After Infarction. Circ Res. 2011, 108 (9): 1071-1083. 10.1161/CIRCRESAHA.110.239459.
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Neal WT, Griffin WF, Dries-Devlin JL, Kent SD, Chen J, Willis MS, Virag JA: Ephrin-Eph signaling as a potential therapeutic target for the treatment of myocardial infarction. Med Hypotheses. 2013, 80 (6): 738-744. 10.1016/j.mehy.2013.02.024.
Article
PubMed
Google Scholar
Virag JA, Lust RM: Coronary artery ligation and intramyocardial injection in a murine model of infarction.J Vis Exp 2011, (52):pii: 2581. doi: 10.3791/258.,
Yang XP, Liu YH, Rhaleb NE, Kurihara N, Kim HE, Carretero OA: Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am J Physiol. 1999, 277 (5 Pt 2): H1967-H1974.
CAS
PubMed
Google Scholar
Beckstead JH: A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. J Histochem Cytochem. 1994, 42 (8): 1127-1134. 10.1177/42.8.8027531.
Article
CAS
PubMed
Google Scholar
Ismail JA, Poppa V, Kemper LE, Scatena M, Giachelli CM, Coffin JD, Murry CE: Immunohistologic labeling of murine endothelium. Cardiovasc Pathol. 2003, 12 (2): 82-90. 10.1016/S1054-8807(02)00166-7.
Article
PubMed
Google Scholar
Virag JA, Rolle ML, Reece J, Hardouin S, Feigl EO, Murry CE: Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol. 2007, 171 (5): 1431-1440. 10.2353/ajpath.2007.070003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Virag JI, Murry CE: Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 2003, 163 (6): 2433-2440. 10.1016/S0002-9440(10)63598-5.
Article
PubMed Central
PubMed
Google Scholar
Virag JA, Dries JL, Easton PR, Friesland AM, DeAntonio JH, Chintalgattu V, Cozzi E, Lehmann BD, Ding JM, Lust RM: Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2. AmJ Physiol Heart Circ Physiol. 2010, 298 (3): H1088-H1095. 10.1152/ajpheart.01280.2008.
Article
CAS
Google Scholar
Miura T, Miki T: Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol. 2008, 103 (6): 501-513. 10.1007/s00395-008-0743-y.
Article
PubMed
Google Scholar
Cleutjens JP, Blankesteijn WM, Daemen MJ, Smits JF: The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res. 1999, 44 (2): 232-241. 10.1016/S0008-6363(99)00212-6.
Article
CAS
PubMed
Google Scholar
Gustafsson AB, Gottlieb RA: Mechanisms of apoptosis in the heart. J Clin Immunol. 2003, 23 (6): 447-459. 10.1023/B:JOCI.0000010421.56035.60.
Article
CAS
PubMed
Google Scholar
Folkman J: Angiogenesis research: from laboratory to clinic. Forum (Genova). 1999, 9 (3 Suppl 3): 59-62.
CAS
Google Scholar
Kutschka I, Kofidis T, Chen IY, von Degenfeld G, Zwierzchoniewska M, Hoyt G, Arai T, Lebl DR, Hendry SL, Sheikh AY, Cooke DT, Connolly A, Blau HM, Gambhir SS, Robbins RC: Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation. 2006, 114 (1 Suppl): I174-I180.
PubMed
Google Scholar
Yau TM, Li G, Weisel RD, Reheman A, Jia ZQ, Mickle DA, Li RK: Vascular endothelial growth factor transgene expression in cell-transplanted hearts. J Thorac Cardiovasc Surg. 2004, 127 (4): 1180-1187. 10.1016/j.jtcvs.2003.09.052.
Article
PubMed
Google Scholar
Hwang H, Kloner RA: Improving regenerating potential of the heart after myocardial infarction: factor-based approach. Life Sci. 2010, 86 (13–14): 461-472. 10.1016/j.lfs.2010.01.004.
Article
CAS
PubMed
Google Scholar
Dorn GW, Diwan A: The rationale for cardiomyocyte resuscitation in myocardial salvage. J Mol Med (Berl). 2008, 86 (10): 1085-1095. 10.1007/s00109-008-0362-y.
Article
Google Scholar
Urbich C, Rossig L, Dimmeler S: Restoration of cardiac function with progenitor cells. Novartis Found Symp. 2006, 274: 214-223. 10.1002/0470029331.ch13. discussion 223–217, 272–216
Article
CAS
PubMed
Google Scholar
Laflamme MA, Zbinden S, Epstein SE, Murry CE: Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol. 2007, 2: 307-339. 10.1146/annurev.pathol.2.010506.092038.
Article
CAS
PubMed
Google Scholar
Bartunek J, Vanderheyden M, Hill J, Terzic A: Cells as biologics for cardiac repair in ischaemic heart failure. Heart. 2010, 96 (10): 792-800. 10.1136/hrt.2007.139394.
Article
PubMed
Google Scholar
Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005, 54 (6): 1615-1625. 10.2337/diabetes.54.6.1615.
Article
CAS
PubMed
Google Scholar
Bugger H, Abel ED: Mitochondria in the diabetic heart. Cardiovasc Res. 2010, 88 (2): 229-240. 10.1093/cvr/cvq239.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yan SF, Ramasamy R, Schmidt AM: The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med. 2009, 11: e9-10.1017/S146239940900101X.
Article
PubMed Central
PubMed
Google Scholar
Li Z, Zhang T, Dai H, Liu G, Wang H, Sun Y, Zhang Y, Ge Z: Involvement of endoplasmic reticulum stress in myocardial apoptosis of streptozocin-induced diabetic rats. J Clin Biochem Nutr. 2007, 41 (1): 58-67. 10.3164/jcbn.2007008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuethe F, Sigusch HH, Bornstein SR, Hilbig K, Kamvissi V, Figulla HR: Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy?. Horm Metab Res. 2007, 39 (9): 672-676. 10.1055/s-2007-985823.
Article
CAS
PubMed
Google Scholar
Tian XF, Cui MX, Yang SW, Zhou YJ, Hu DY: Cell death, dysglycemia and myocardial infarction. Biomedical Reports. 2013, 1 (3): 341-346.
PubMed Central
CAS
PubMed
Google Scholar
Yang SW, Zhou YJ, Tian XF, Pan GZ, Liu YY, Zhang J, Guo ZF, Chen SY, Gao ST, Du J, Jia DA, Fang Z, Hu B, Han HY, Gao F, Hu DY, Xu YY, Beijing H: Association of dysglycemia and all-cause mortality across the spectrum of coronary artery disease. Mayo Clin Proc. 2013, 88 (9): 930-941. 10.1016/j.mayocp.2013.05.022.
Article
CAS
PubMed
Google Scholar
Lonborg J, Vejlstrup N, Kelbaek H, Nepper-Christensen L, Jorgensen E, Helqvist S, Holmvang L, Saunamaki K, Botker HE, Kim WY, Clemmensen P, Treiman M, Engstrom T: Impact of Acute Hyperglycemia on Myocardial Infarct Size, Area at Risk, and Salvage in Patients With STEMI and the Association With Exenatide Treatment: Results From a Randomized Study. Diabetes. 2014, 63 (7): 2474-2485. 10.2337/db13-1849.
Article
PubMed
Google Scholar
Marfella R, Siniscalchi M, Esposito K, Sellitto A, De Fanis U, Romano C, Portoghese M, Siciliano S, Nappo F, Sasso FC, Mininni N, Cacciapuoti F, Lucivero G, Giunta R, Verza M, Giugliano D: Effects of stress hyperglycemia on acute myocardial infarction: role of inflammatory immune process in functional cardiac outcome. Diabetes Care. 2003, 26 (11): 3129-3135. 10.2337/diacare.26.11.3129.
Article
PubMed
Google Scholar
Eguchi M, Kim YH, Kang KW, Shim CY, Jang Y, Dorval T, Kim KJ, Sweeney G: Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice. PLoS One. 2012, 7 (2): e30450-10.1371/journal.pone.0030450.
Article
PubMed Central
CAS
PubMed
Google Scholar
Connor RJ, Menzel P, Pasquale EB: Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev Biol. 1998, 193 (1): 21-35. 10.1006/dbio.1997.8786.
Article
CAS
PubMed
Google Scholar
Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB: The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene. 2000, 19 (52): 6043-6052. 10.1038/sj.onc.1204004.
Article
CAS
PubMed
Google Scholar
Bovenkamp DE, Greer PA: Degenerate PCR-based cloning method for Eph receptors and analysis of their expression in the developing murine central nervous system and vasculature. DNA Cell Biol. 2001, 20 (4): 203-213. 10.1089/104454901750219080.
Article
CAS
PubMed
Google Scholar
Nakamoto M, Bergemann AD: Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech. 2002, 59 (1): 58-67. 10.1002/jemt.10177.
Article
CAS
PubMed
Google Scholar
Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE: EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene. 2004, 23 (7): 1448-1456. 10.1038/sj.onc.1207247.
Article
CAS
PubMed
Google Scholar
Lin YG, Han LY, Kamat AA, Merritt WM, Landen CN, Deavers MT, Fletcher MS, Urbauer DL, Kinch MS, Sood AK: EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer. 2007, 109 (2): 332-340. 10.1002/cncr.22415.
Article
CAS
PubMed
Google Scholar
Wykosky J, Debinski W: The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res. 2008, 6 (12): 1795-1806. 10.1158/1541-7786.MCR-08-0244.
Article
PubMed Central
CAS
PubMed
Google Scholar
Okazaki T, Ni A, Baluk P, Ayeni OA, Kearley J, Coyle AJ, Humbles A, McDonald DM: Capillary defects and exaggerated inflammatory response in the airways of EphA2-deficient mice. Am J Pathol. 2009, 174 (6): 2388-2399. 10.2353/ajpath.2009.080949.
Article
PubMed Central
CAS
PubMed
Google Scholar
Funk SD, Yurdagul A, Albert P, Traylor JG, Jin L, Chen J, Orr AW: EphA2 Activation Promotes the Endothelial Cell Inflammatory Response: A Potential Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2012, 32 (3): 686-695. 10.1161/ATVBAHA.111.242792.
Article
PubMed Central
CAS
PubMed
Google Scholar
Funk SD, Orr AW: Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol Res. 2013, 67 (1): 42-52. 10.1016/j.phrs.2012.10.008.
Article
CAS
PubMed
Google Scholar
Carpenter TC, Schroeder W, Stenmark KR, Schmidt EP: Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. Am J Respir Cell Mol Biol. 2012, 46 (1): 40-47. 10.1165/rcmb.2011-0044OC.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou N, Zhao WD, Liu DX, Liang Y, Fang WG, Li B, Chen YH: Inactivation of EphA2 promotes tight junction formation and impairs angiogenesis in brain endothelial cells. Microvasc Res. 2011, 82 (2): 113-121. 10.1016/j.mvr.2011.06.005.
Article
CAS
PubMed
Google Scholar
Thundyil J, Manzanero S, Pavlovski D, Cully TR, Lok KZ, Widiapradja A, Chunduri P, Jo DG, Naruse C, Asano M, Launikonis BS, Sobey CG, Coulthard MG, Arumugam TV: Evidence that the EphA2 receptor exacerbates ischemic brain injury. PLoS One. 2013, 8 (1): e53528-10.1371/journal.pone.0053528.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baldwin C, Chen ZW, Bedirian A, Yokota N, Nasr SH, Rabb H, Lemay S: Upregulation of EphA2 during in vivo and in vitro renal ischemia-reperfusion injury: role of Src kinases. Am J Physiol Renal Physiol. 2006, 291 (5): F960-F971. 10.1152/ajprenal.00020.2006.
Article
CAS
PubMed
Google Scholar
Jellinghaus S, Poitz DM, Ende G, Augstein A, Weinert S, Stutz B, Braun-Dullaeus RC, Pasquale EB, Strasser RH: Ephrin-A1/EphA4-mediated adhesion of monocytes to endothelial cells. Biochim Biophys Acta. 2013, 1833 (10): 2201-2211. 10.1016/j.bbamcr.2013.05.017.
Article
CAS
PubMed
Google Scholar
Chan B, Sukhatme VP: Receptor tyrosine kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in endothelial cells in vitro. Thromb Res. 2009, 123 (5): 745-752. 10.1016/j.thromres.2008.07.010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O'Rourke K, Ward PA, Prochownik EV, Marks RM: Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem. 1990, 265 (5): 2973-2978.
CAS
PubMed
Google Scholar
Holzman LB, Marks RM, Dixit VM: A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol. 1990, 10 (11): 5830-5838.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ivanov AI, Steiner AA, Scheck AC, Romanovsky AA: Expression of Eph receptors and their ligands, ephrins, during lipopolysaccharide fever in rats. Physiol Genomics. 2005, 21 (2): 152-160. 10.1152/physiolgenomics.00043.2004.
Article
CAS
PubMed
Google Scholar
Kolattukudy PE, Niu J: Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res. 2012, 110 (1): 174-189. 10.1161/CIRCRESAHA.111.243212.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ren G, Dewald O, Frangogiannis NG: Inflammatory mechanisms in myocardial infarction. Current Drug Targets Inflammation Allergy. 2003, 2 (3): 242-256. 10.2174/1568010033484098.
Article
CAS
PubMed
Google Scholar
Carter AM: Complement activation: an emerging player in the pathogenesis of cardiovascular disease. Scientifica. 2012, 2012: 402783-10.6064/2012/402783.
Article
PubMed Central
PubMed
Google Scholar
Busche MN, Stahl GL: Role of the complement components C5 and C3a in a mouse model of myocardial ischemia and reperfusion injury. German Med Sci. 2010, 8: doc20-
Google Scholar
Goldbergova MP, Parenica J, Jarkovsky J, Kala P, Poloczek M, Manousek J, Kluz K, Kubkova L, Littnerova S, Tesak M, Toman O, Pavek N, Cermakova Z, Tomandl J, Vasku A, Spinar J: The association between levels of tissue inhibitor of metalloproteinase-1 with acute heart failure and left ventricular dysfunction in patients with ST elevation myocardial infarction treated by primary percutaneous coronary intervention. Gen Test Mol Biomark. 2012, 16 (10): 1172-1178. 10.1089/gtmb.2012.0120.
Article
CAS
Google Scholar
Abohashem-Aly AA, Meng X, Li J, Sadaria MR, Ao L, Wennergren J, Fullerton DA, Raeburn CD: DITPA, a thyroid hormone analog, reduces infarct size and attenuates the inflammatory response following myocardial ischemia. J Surg Res. 2011, 171 (2): 379-385. 10.1016/j.jss.2011.04.009.
Article
CAS
PubMed
Google Scholar
Pixley FJ, Stanley ER: CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004, 14 (11): 628-638. 10.1016/j.tcb.2004.09.016.
Article
CAS
PubMed
Google Scholar
Frangogiannis NG, Mendoza LH, Ren G, Akrivakis S, Jackson PL, Michael LH, Smith CW, Entman ML: MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol. 2003, 285 (2): H483-H492.
Article
CAS
PubMed
Google Scholar
Iyigun T, Teskin O, Enc Y, Cakmak M, Iyigun M, Keser S, Camur G, Komurcu G, Sargin M, Ozay B, Dagsali S: Does the level of soluble intercellular adhesion molecule 1 predict myocardial injury before cardiac markers increase?. Heart Surg Forum. 2008, 11 (6): E352-E356. 10.1532/HSF98.20081092.
Article
PubMed
Google Scholar
Shai I, Pischon T, Hu FB, Ascherio A, Rifai N, Rimm EB: Soluble intercellular adhesion molecules, soluble vascular cell adhesion molecules, and risk of coronary heart disease. Obesity. 2006, 14 (11): 2099-2106. 10.1038/oby.2006.245.
Article
PubMed
Google Scholar
Jehle J, Staudacher I, Wiedmann F, Schweizer P, Becker R, Katus H, Thomas D: Regulation of apoptosis in HL-1 cardiomyocytes by phosphorylation of the receptor tyrosine kinase EphA2 and protection by lithocholic acid. Br J Pharmacol. 2012, 167 (7): 1563-1572. 10.1111/j.1476-5381.2012.02117.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shaut CA, Saneyoshi C, Morgan EA, Knosp WM, Sexton DR, Stadler HS: HOXA13 directly regulates EphA6 and EphA7 expression in the genital tubercle vascular endothelia. Dev Dyn. 2007, 236 (4): 951-960. 10.1002/dvdy.21077.
Article
CAS
PubMed
Google Scholar
Shaut CA, Keene DR, Sorensen LK, Li DY, Stadler HS: HOXA13 Is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet. 2008, 4 (5): e1000073-10.1371/journal.pgen.1000073.
Article
PubMed Central
PubMed
Google Scholar
O'Neal WT: Deletion of the EphA2 receptor exacerbates myocardial injury and the progression of ischemic cardiomyopathy. Front Physiol. 2014, 5: article 132-10.3389/fphys.2014.00132.
Article
PubMed
Google Scholar
Sakamoto A, Sugamoto Y, Tokunaga Y, Yoshimuta T, Hayashi K, Konno T, Kawashiri MA, Takeda Y, Yamagishi M: Expression profiling of the ephrin (EFN) and Eph receptor (EPH) family of genes in atherosclerosis-related human cells. J Int Med Res. 2011, 39 (2): 522-527. 10.1177/147323001103900220.
Article
CAS
PubMed
Google Scholar
Yamagishi M, Higashikata T, Ishibashi-Ueda H, Sasaki H, Ogino H, Iihara K, Miyamoto S, Nagaya N, Tomoike H, Sakamoto A: Sustained upregulation of inflammatory chemokine and its receptor in aneurysmal and occlusive atherosclerotic disease: results form tissue analysis with cDNA macroarray and real-time reverse transcriptional polymerase chain reaction methods. Circ J. 2005, 69 (12): 1490-1495. 10.1253/circj.69.1490.
Article
CAS
PubMed
Google Scholar
O'Donnell R, Breen D, Wilson S, Djukanovic R: Inflammatory cells in the airways in COPD. Thorax. 2006, 61 (5): 448-454. 10.1136/thx.2004.024463.
Article
PubMed Central
PubMed
Google Scholar
Bouloumie A, Curat CA, Sengenes C, Lolmede K, Miranville A, Busse R: Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care. 2005, 8 (4): 347-354. 10.1097/01.mco.0000172571.41149.52.
Article
CAS
PubMed
Google Scholar