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Abstract 

Background The insulin-like growth factors (IGF) play a crucial role in regulating cellular proliferation, apoptosis, 
and key metabolic pathways. The ratio of IGF-1 to IGF binding protein-3 (IGFBP-3) is an important factor in deter-
mining IGF-1 bioactivity. We sought to investigate the association of IGF-1 and IGFBP-3 with cardio-renal outcomes 
among persons with type 2 diabetes.

Methods Samples were available from 2627 individuals with type 2 diabetes and chronic kidney disease that were 
randomized to receive canagliflozin or placebo and were followed up for incident cardio-renal events. Primary out-
come was defined as a composite of end-stage kidney disease, doubling of the serum creatinine level, or renal/car-
diovascular death. IGF-1 and IGFBP-3 were measured at baseline, Year-1 and Year-3. Elevated IGF-1 level was defined 
according to age-specific cutoffs. Cox proportional hazard regression was used to investigate the association 
between IGF-1 level, IGFBP-3, and the ratio of IGF-1/IGFBP-3 with clinical outcomes.

Results Elevated IGF-1 was associated with lower glomerular filtration rate at baseline. Treatment with canagliflozin 
did not significantly change IGF-1 and IGFBP-3 concentrations by 3 years (p-value > 0.05). In multivariable models, 
elevated IGF-1 (above vs below age-specific cutoffs) was associated with the primary composite outcome (incidence 
rate:17.8% vs. 12.7% with a hazard ratio [HR]: 1.52; 95% confidence interval CI 1.09–2.13;P: 0.01), renal composite 
outcome (HR: 1.65; 95% CI 1.14–2.41; P: 0.01), and all-cause mortality (HR: 1.52; 95% CI 1.00–2.32; P; 0.05). Elevations 
in log IGFBP-3 did not associate with any clinical outcomes. Increase in log IGF-1/IGFBP-3 ratio was also associated 
with a higher risk of the primary composite outcome (HR per unit increase: 1.57; 95% CI 1.09–2.26; P; 0.01).

Conclusions These results further suggest potential importance of IGF biology in the risk for cardio-renal outcomes 
in type 2 diabetes. SGLT2 inhibition has no impact on the biology of IGF despite its significant influence on outcomes.

Trial registration: CREDENCE; ClinicalTrials.gov Identifier: NCT02065791.
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Background
Individuals with type 2 diabetes mellitus are at increased 
risk of cardio-renal complications. Within the altered 
hormonal milieu among those with type 2 diabetes are 
changes in the insulin growth factor axis; recent studies 
have examined the role of insulin growth factor-1 (IGF-
1) in the risk for complications from type 2 diabetes [1]. 
IGF-1 is a 70-amino acid peptide, structurally homolo-
gous to pro-insulin, synthesized mainly in the liver upon 
growth hormone (GH) stimulation [2]. Molecular stud-
ies have revealed that IGF-1 promotes cellular growth, 
inhibits cell apoptosis, stimulates glucose uptake by mus-
cle and heart cells, and enhances glycogen, lipid, and pro-
tein synthesis [3, 4]. These metabolic effects are regulated 
by a complex interaction between GH, insulin, IGF-1, 
and 6 soluble high-affinity IGF-binding proteins [5].

Abnormal concentrations of IGF-1 are linked with obe-
sity [6], metabolic syndrome [7], type 2 diabetes [8], ath-
erosclerosis [9], heart failure (HF) [10, 11], and diabetic 
kidney disease (DKD) [12]. Furthermore, recent data 
have implicated insulin-like growth factor binding pro-
teins (IGFBP) in cardio-renal risk in those with and with-
out type 2 diabetes [13]. The most abundant peptide in 
the IGFBP family is IGFBP-3 [14]. It has a high affinity 
for IGF-1 and alters the interaction between IGF-1 and 
IGF-1 receptor. The ratio of IGF-1 to IGFBP-3 is consid-
ered as a parameter of IGF-1 bioactivity [15].

Further research is needed to determine the signifi-
cance of IGF-1, IGFBP-3, and the ratio between the two 
in assessing cardio-renal risk, as previous studies have 
yielded conflicting results regarding their association 
with adverse clinical outcomes [16]. Furthermore, an 
understanding of how therapies with benefits on cardio-
renal risk in diabetes intersect with concentrations of 
these peptides is unknown. Accordingly, in the present 
analysis, using data from CREDENCE trial (Canagliflozin 
and Renal Events in Diabetes with Established Nephrop-
athy Clinical Evaluation; ClinicalTrials.gov Identifier: 
NCT02065791), we sought to investigate the association 
of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 ratio with inci-
dent cardio-renal outcomes and evaluated effect of cana-
gliflozin on their concentrations.

Methods
Study design and patient population
The trial design, baseline patient characteristics, and 
the main study results from the CREDENCE trial have 
been published previously [17, 18]. Briefly, CREDENCE 
was a placebo-controlled trial of canagliflozin 100  mg 
versus placebo in 4401 persons with type 2 diabetes 
and DKD. Study participants had a minimum glycated 
hemoglobin between 6.5% and 12.0% and were required 
to have an estimated glomerular filtration rate (eGFR) 

between 30 and 90  mL/min/1.73   m2 and urine albumin 
creatinine ratio (UACR) > 300 to 5000 mg/g. All subjects 
had to be treated with angiotensin converting enzyme 
inhibitor(ACEi) or angiotensin receptor blocker (ARB) at 
randomization.

In this analysis, only those study participants with 
available plasma for analysis of IGF-1 and IGFBP-3 at 
baseline were included (N = 2627). Plasma samples were 
collected at baseline, 1  year, and 3  years, and stored at 
–  80 ℃ degrees centigrade. IGF-1 was measured using 
an automated electrochemiluminescence immunoassay 
(Roche Diagnostics, Mannheim, Germany). This method 
is standardized against the WHO International Standard 
02/254. Detection limit was 7  ng/mL and coefficient of 
variation for repeatability was ≤ 3.5%

There were 4 main goals of this analysis. First, we 
determined the distribution of biomarkers at baseline. 
Second, we evaluated canagliflozin’s effect on biomarker 
concentrations from baseline to 1  year and baseline to 
3 years. Third, we evaluated the association between bio-
marker concentrations at baseline (or their change from 
baseline to Year 1) and cardiovascular (CV) and kidney 
outcomes. Clinical endpoints examined included the pri-
mary composite endpoint of CREDENCE (a composite of 
end-stage kidney disease, doubling of the serum creati-
nine level, or renal/CV death), the renal composite end-
point (a composite of end-stage kidney disease, doubling 
of the serum creatinine level, or renal death), as well as 
the composite of heart failure (HF) hospitalization or CV 
death, HF hospitalization, all-cause death, and CV death. 
Fourth, we evaluated the effect of canagliflozin on risk as 
a function of concentrations of IGF-1, IGFBP-3, or their 
ratio.

Statistical analysis
Biomarkers were log transformed because of their 
skewed distribution. Median (interquartile) and count 
(frequency) were used to present continuous and cat-
egorical variables. Kruskal–Wallis, ANOVA, and 
chi-square tests were used to compare the baseline char-
acteristics of study population across IGF-1 quartiles, 
IGFBP-3, and IGF-1/IGFBP-3 ratio as appropriate. To 
evaluate the effect of canagliflozin on biomarker concen-
trations, comparisons of geometric mean (95% CI) con-
centrations were performed in Years 1 and 3. For change 
from baseline to Year 1, a base linear model was con-
structed for each log-transformed biomarker at Year 1 by 
selecting important baseline covariates in patients rand-
omized to placebo in the main study based on Bayesian 
Information Criterion. The candidate covariates at base-
line included continuous variables: age, eGFR, body mass 
index, systolic blood pressure, hemoglobin A1c, duration 
of diabetes mellitus, UACR, log transformed NTproBNP 
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and categorical variables: history of HF, and history of 
diuretic treatment. Cox proportional hazard regression 
was implemented to assess the association between bio-
marker concentrations with clinical outcomes, including 
treatment and treatment-by-biomarker interaction in 
the models with selected covariates. To do so, log-trans-
formed concentrations of IGF-1 and IGFBP-3 or their 
ratio were evaluated with hazard ratio (HR) and 95% CI 
expressed per 1-unit change in each measure. Addition-
ally, dichotomous cutoffs for IGF-1 based on age were 
also applied 19.

All hypotheses were 2-sided, with a p-value < 0.05 con-
sidered statistically significant. All statistical analyses 
were performed using the R version 4.2.2 (R Foundation 
for Statistical Computing, Vienna, Austria. URL: https:// 
www.R- proje ct. org/).

Results
Additional file 1: Figure S1 details the study flow for the 
present analysis. The baseline study sample consisted of 
2627 individuals with diabetic kidney disease.

Table 1 details the baseline characteristics of the study 
population across IGF-1 quartile groups. Patients with 
the highest quartile were younger, more likely to be male 
and Black, had a lower prevalence of coronary artery 
disease, lower eGFR level, lower systolic blood pressure, 
higher diastolic blood pressure, and lower diabetes mel-
litus duration compared to other quartiles. Baseline char-
acteristics according to IGFBP-3 and IGF-1/IGFBP-3 
ratio quartiles are detailed in Additional file 1: Tables S1, 
S2.

Table  2 shows unadjusted geometric mean (95% CI) 
concentrations of biomarkers at baseline, Year 1, and Year 
3. IGF-1, IGFBP-3 levels, and the IGF-1/IGFBP-3 ratio 
remained relatively constant during 3 years of follow-up 
among both canagliflozin and placebo groups. To explore 
treatment-related effect on biomarker concentrations, 
geometric mean ratio of Year 1/baseline was examined 
in adjusted analyses. In these adjusted models, treatment 
with canagliflozin did not significantly change concentra-
tions of IGF-1 and IGFBP-3 over time (Additional file 1: 
Table S3).

IGF-1 and IGFBP-3 were examined as continuous and 
dichotomous variables. To do so, elevated IGF-1 level is 
defined based on age-specific cutoffs, as the level tends 
to decrease significantly with age [19] (Additional file 1: 
Table  S4). Patients with elevated IGF-1 were younger, 
were more likely to be male and Black, had lower eGFR 
at baseline, and had a longer duration of type 2 diabetes 
compared to patients with lower concentrations of the 
biomarker (Additional file 1: Table S5). Concentrations of 
IGF-1 and IGFBP-3 across chronic kidney disease (CKD) 

stages are detailed in Additional file 1: Table S6. Patients 
with stage 4 CKD had higher concentration of IGF-1 
compared to other stages. IGFBP-3 concentrations were 
similar across CKD stages.

Additional file  1: Figure S2 depicts the association of 
continuous log IGF-1, IGFBP-3, and IGF-1/IGFBP-3 ratio 
with primary composite outcome using restricted cubic 
spline modeling. Higher IGF-1 levels and IGF-1/IGFBP-3 
ratio were associated with a higher risk of primary com-
posite outcome. 

Figure  1 demonstrates the association of continuous 
and dichotomous IGF-1, IGFBP-3, and IGF-1/IGFBP-3 
with clinical outcomes. In the multivariable-adjusted 
model, 1-unit increase in log IGF-1 and IGFBP-3 was 
not associated with clinical outcomes (p-value > 0.1). 
However, elevated IGF-1 according to the age-specific 
cutoff was associated with the primary composite out-
come (HR: 1.52, 95% CI 1.09–2.13, P: 0.01), renal com-
posite outcome (HR: 1.65, 95% CI 1.14–2.41, P: 0.01) 
and all-cause mortality (HR: 1.52, 95%CI 1.00–2.32, P; 
0.05). Also, an increase in the IGF-1/IGFBP-3 ratio was 
associated with primary, renal, CV death, and all-cause 
mortality outcomes (p values < 0.05). No treatment-by-
biomarker interaction was present; thus, the effect of 
canagliflozin across quartiles of IGF-1, IGFBP-3, or their 
ratio was largely consistent relative to study outcomes 
(Fig. 2).

Discussion
In this trial of patients with type 2 diabetes and CKD who 
were randomized to receive canagliflozin or placebo, we 
showed that baseline IGF-1 levels and IGF-1/IGFBP-3 
ratio (but not IGFBP-3 concentrations) were associated 
with cardio-renal outcomes. Higher IGF-1 levels (for a 
given age) were associated with a greater risk of develop-
ing renal and all-cause mortality events. 3 years of ther-
apy with canagliflozin did not significantly change IGF-1 
and IGFBP-3 concentrations. Lastly, the benefits of cana-
gliflozin to reduce cardio-renal events in this high-risk 
population were consistent across IGF-1 and IGFBP-3 
strata. These findings provide evidence regarding the role 
of the IGF axis in risk for cardio-renal disease.

IGF-1 is an anabolic hormone that regulates cellular 
proliferation, apoptosis, and several metabolic pathways 
in the human body. Nearly all 98% of IGF-1 is bound to 
1 of 6 IGFBPs in circulation. Owing to its longer half-
life, IGFBP-3 is the most abundant member of the IGFBP 
family and accounts for 80% of all IGFBPs [20]; it binds 
to IGF-1 with high affinity and blocks IGF-1 access to 
the IGF-1 receptor. IGF-1 plays an intermediate role in 
glucose metabolism. Unlike GH, IGF-1 has a hypoglyce-
mic effect by suppressing hepatic gluconeogenesis and 

https://www.R-project.org/
https://www.R-project.org/
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stimulating peripheral glucose uptake [3]. IGF-1 levels 
increase as insulin resistance develops; with worsening of 
insulin resistance, the IGF-1 concentration reaches a pla-
teau level, and subsequently, when glucose levels reach 
concentrations typical of type 2 diabetes, IGF-1 levels 

tend to decline [8, 21, 22]. Although the IGF-1/IGFBP-3 
ratio is proposed as an index of IGF-1 bioavailability 
[23], it is essential to recognize other IGFBPs as they also 
modestly affect IGF actions [24].

Table 1 Baseline characteristics of study population stratified by IGF-1 quartile

IGF-1 insulin-like growth factor-1, egfr estimated glomerular filtration rate, SBP systolic blood pressure, DBP diastolic blood pressure, LDL-C low-density lipoprotein 
cholesterol, HDL-C high-density lipoprotein cholesterol, GLP-1 glucagon-like peptide 1, IQR interquartile range, NT-proBNP N terminal pro B type natriuretic peptides, 
IGFBP insulin-like growth factor binding protein

Q1 (N = 643) Q2 (N = 642) Q3 (N = 642) Q4 (N = 642) P

IGF-1, ng/mL 62 (51, 70) 92 (84, 98) 119 (112, 128) 165 (149, 190)  < 0.001

Canagliflozin, n (%) 306 (47.6) 320 (49.8) 307 (47.8) 340 (53.0) 0.19

Age, years, mean (SD) 66.32 (8.29) 64.51 (8.66) 62.70 (8.97) 59.56 (8.90)  < 0.001

Male, n (%) 374 (58.3) 424 (66.5) 417 (65.5) 487 (75.9)  < 0.001

Race, n (%) 0.02

 White 492 (76.6) 467 (73.2) 451 (70.8) 424 (66.0)

 Asian 69 (10.7) 84 (13.2) 81 (12.7) 96 (15.0)

 Black 21 (3.3) 32 (5.0) 40 (6.3) 47 (7.3)

Comorbidities, n (%)

 Heart failure 92 (14.3) 85 (13.2) 90 (14.0) 64 (10.0) 0.08

 Smoking 89 (13.8) 96 (15.0) 89 (13.9) 106 (16.5) 0.49

 Hypertension 623 (96.9) 627 (97.7) 621 (96.7) 611 (95.2) 0.09

 Coronary disease 192 (29.9) 195 (30.4) 192 (29.9) 149 (23.2) 0.01

 Cerebrovascular disease 99 (15.4) 101 (15.7) 97 (15.1) 87 (13.6) 0.70

 Peripheral artery disease 172 (26.7) 143 (22.3) 168 (26.2) 160 (24.9) 0.26

 Chronic kidney disease 595 (94.9) 596 (94.9) 609 (96.4) 601 (95.4) 0.56

 Obesity 384 (59.8) 357 (56.0) 380 (59.3) 353 (55.0) 0.22

 eGFR, mL/min/1.73  m2 mean (SD) 58.81 (18.26) 57.54 (18.16) 56.05 (18.16) 54.46 (18.16)  < 0.001

 Body mass index, kg/m2 mean (SD) 32.32 (6.67) 31.66 (6.01) 31.91 (6.27) 31.51 (6.07) 0.10

 SBP, mmHg mean (SD) 141.92 (16.00) 140.80 (15.75) 138.08 (15.33) 139.92 (15.80)  < 0.001

 DBP, mmHg mean (SD) 76.75 (9.24) 78.10 (9.28) 77.07 (9.69) 79.39 (9.45)  < 0.001

 Hemoglobin A1c, mmol/mol mean (SD) 67 (14.5) 66 (14.1) 67 (14.9) 66 (13.6) 0.39

 LDL-C, mmol/L Median (IQR) 2.25 (1.66, 2.97) 2.30 (1.68, 3.00) 2.20 (1.66, 3.18) 2.35 (1.76, 3.13) 0.20

 HDL-C, mmol/L Median (IQR) 1.11 (0.91, 1.32) 1.11 (0.93, 1.37) 1.09 (0.91, 1.34) 1.09 (0.93, 1.29) 0.39

 Triglycerides, mmol/L Median (IQR) 1.83 (1.32, 2.62) 1.80 (1.31, 2.80) 1.80 (1.28, 2.59) 1.83 (1.34, 2.54) 0.86

Diabetes duration, years, mean (SD) 17.7 (9.3) 16.0 (8.7) 15.8 (8.5) 14.5 (8.0)  < 0.001

 Albumin creatinine ratio, median (IQR)
mg/g, median (IQR)

107 (55, 192) 105 (51, 203) 98 (50, 193) 101 (55, 202) 0.73

Medications, n (%)

 Diuretic use 349 (54.3) 303 (47.2) 311 (48.4) 302 (47.0) 0.03

 Statin use 467 (72.6) 464 (72.3) 470 (73.2) 445 (69.3) 0.41

 Antithrombotic use 433 (67.3) 407 (63.4) 420 (65.4) 349 (54.4)  < 0.001

 Beta blocker 290 (45.1) 276 (43.0) 268 (41.7) 259 (40.3) 0.36

 Metformin 390 (60.7) 387 (60.3) 384 (59.8) 393 (61.2) 0.96

 GLP-1 receptor agonist 36 (5.6) 37 (5.8) 24 (3.7) 30 (4.7) 0.31

 Insulin 456 (70.9) 422 (65.7) 424 (66.0) 407 (63.4) 0.03

 Sulfonylureas 133 (20.7) 179 (27.9) 170 (26.5) 205 (31.9)  < 0.001

Biomarkers, median (IQR)

 NT-proBNP, pg/mL 239 (101, 569) 195 (94, 440) 172 (81, 458) 128 (63, 301)  < 0.001

 Troponin T, ng/mL 18 (12, 26) 18 (12, 27) 19 (12, 29) 21 (14, 34)  < 0.001

 IGFBP-3, ng/mL 2174 (1767, 2648) 2928 (2448, 3521) 3519 (2944, 4150) 4315 (3681, 5015)  < 0.001

 IGF-1/IGFBP-3 × 1000 ratio 26.8 (21.5, 32.3) 31.8 (25.6, 37.7) 34.7 (28.9, 39.9) 41.0 (35.0, 47.3)  < 0.001
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While enhancing insulin sensitivity, growth-promoting 
properties of IGF-1 are proposed to play a role in devel-
oping complications of diabetes [1]. Emerging studies 

have shown the GH/IGF-1 axis alteration among patients 
with DKD [25] with IGF-1 production are thought to 
stimulate proliferation of renal mesenchymal cells and 

Table 2 Unadjusted geometric mean (95% CI) concentrations of biomarkers at baseline, Year 1, and Year 3

CI confidence interval, IGF-1: insulin-like growth factor-1, IGFBP: insulin growth factor binding protein

Biomarker Canagliflozin Placebo P

Baseline

 IGF-1, ng/L 101.20 (98.84, 103.62) 102.73 (100.22, 105.32) 0.20

 IGFBP-3, ng/mL 3120.64 (3059.19, 3183.34) 3152.18 (3087.46, 3218.26) 0.68

 IGF-1/IGFBP-3 × 1000 32.46 (31.92, 32.99) 32.59 (32.03, 33.17) 0.43

Year 1

 IGF-1, ng/L 105.91 (103.34, 108.55) 102.17 (99.52, 104.89) 0.08

 IGFBP-3, ng/mL 3166.60 (3100.81, 3233.78) 3140.60 (3073.15, 3209.54) 0.42

 IGF-1/IGFBP-3 × 1000 33.41 (32.85, 33.98) 32.53 (31.95, 33.12) 0.08

Year 3

 IGF-1, ng/L 101.80 (97.81, 105.95) 100.28 (96.12, 104.62) 0.89

 IGFBP-3, ng/mL 3047.84 (2948.34, 3150.70) 3013.65 (2910.02, 3120.95) 0.62

 IGF-1/IGFBP-3 × 1000 33.38 (32.53, 34.24) 33.33 (32.40, 34.28) 0.7

Fig. 1 Association of IGF-1 and IGFBP-3 with clinical outcomes. In a multivariable-adjusted model, a 1-unit increase in log IGF1/IGFBP-3 ratio 
and elevated IGF-1 levels according to age-adjusted cutoff increased the risk of primary composite outcome, renal composite outcome, all-cause 
death, and CV death. *Per 1-unit increment. HR hazard ratio, CI confidence interval, IGF-1 insulin-like growth factor-1, IGFBP insulin growth factor 
binding protein. HF heart failure, CV cardiovascular
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vascular proliferative changes [26]. Animal model studies 
have shown enhanced expression of renal IGF-1 receptor 
as a factor contributing to renal hypertrophy—a hallmark 
sign of DKD [27]. In addition, studies suggest that IGF-1 
may have anti-natriuretic properties [4]. This is believed 
to occur through two mechanisms: firstly, it may directly 
affect the absorption of sodium by regulating the epithe-
lial sodium channel in the distal nephron [28]. Secondly, 
IGF-1 overexpression may indirectly enhance the renin–
angiotensin–aldosterone system. (RAAS) [29].

Despite the proposed mechanistic role of IGF-1 in 
DKD, results of clinical studies investigating the associa-
tion between IGF-1 levels and kidney disease are incon-
clusive. In the NHANES study (National Health and 
Nutrition Examination Survey), Teppala and colleagues 
[30] showed that elevated IGF-1 levels were positively 
associated with CKD independent of conventional CKD 
risk factors. In line with this finding, Dittman and col-
leagues [31] demonstrated that increased serum IGF-1 
levels were associated with decreased eGFR level. Con-
trary to these results, several studies have shown an 
association between low IGF-1 levels and adverse renal 
outcomes [32, 33]. In this study, we found a negative rela-
tionship between IGF-1 level and kidney function. One 
may assume that reduced renal excretion may play role 
in elevation IGF-1 concentration. However, this is pos-
sibly overly simplistic as elevated IGF activity may be 
linked with more severe kidney disease. Indeed, previous 
studies have established a connection between urinary 
excretion of insulin like growth factors and renal dis-
ease activity [34]; as a result, increased levels of IGF-1 in 
severe CKD patients may not be directly linked to renal 

excretion. Given biological rationale but mixed clinical 
studies, a rationale existed to examine the role of IGF-1 
and IGFBP-3 in CREDENCE study participants.

Findings of our study corroborate studies indicat-
ing a detrimental association between elevated IGF-1 
(when above age-specific cutoffs) as well as higher 
IGF-1/IGFBP-3 ratio on kidney function. As IGF-1 lev-
els decrease by age, the findings from this study highlight 
the importance of considering IGF-1 age-specific cutoffs 
as well as incorporating the balance of IGF-1 bioactiv-
ity (reflected in the IGF-1/IGFBP-3 ratio) when studying 
IGF biology and cardio-renal risk. On the other hand, 
IGFBP-3 was not correlated with baseline kidney func-
tion and failed to predict any clinical events. IGFBP-3 has 
several IGF-1–dependent and IGF-1–independent func-
tions [35]. The role of IGFBP-3 in type 2 diabetes and its 
complications requires further consideration.

The exact mechanism of the cardio-renal benefit of 
canagliflozin is still undetermined [36]. Beside lowering 
blood glucose, several mechanisms, including improved 
energy metabolism, vascular function, hemodynamic 
alterations, decreased oxidative stress, and reduction 
in inflammation, are proposed to mediate CV benefit of 
SGLT2 inhibitors. In this study, although higher IGF-1 
levels were associated with renal outcomes, canagliflo-
zin failed to lower IGF-1 levels and beneficial effects 
of canagliflozin in lowering adverse outcomes were 
observed across IGF-1 and IGFBP-3 levels. These find-
ings imply that the beneficial effects of canagliflozin is 
likely independent of any changes in the IGF-1 axis. 
Lastly, it is important to highlight that a monoclonal 
antibody against IGF-1 receptor called teprotumumab 

Fig. 2 Efficacy of canagliflozin on lowering risk of primary composite outcome across IGF-1, IGFBP-3, and IGF-1/IGFBP-3 ratio quartiles. Effect 
of canagliflozin across quartiles of IGF-1, IGFBP-3, or their ratio was largely consistent relative to study outcomes. IGF insulin-like growth factor, IGFBP 
insulin growth factor binding protein, HR hazard ratio, CI confidence interval
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has been developed for treatment of proptosis [37]. 
While hyperglycemia is a significant adverse effect, 
the existence of these agents offers the potential for 
their use in addressing DKD that involve excessive IGF 
activity.

This study had several limitations. First, biomarker 
data were unavailable for all participants; however, 
those in this post hoc analysis were similar to the main 
study. Second, more than 70% of study participants 
were White. A diverse research population can increase 
generalizability of our findings. Future studies need to 
implement the National Institutes of Health recom-
mendations to conduct research studies with diverse 
ethnic backgrounds. Lastly, patients were followed up 
for 3 years; a longer duration may be required to inves-
tigate the association between IGF-1 and incident HF.

Conclusion
In conclusion, this study provides evidence that ele-
vated IGF-1 levels or the ratio of IGF-1/IGFBP-3 is 
associated with a higher risk of kidney disease progres-
sion and all-cause mortality. Three years of therapy with 
canagliflozin failed to impact IGF-1 or IGFBP-3 lev-
els. Nonetheless, the benefit of canagliflozin to reduce 
cardio-renal endpoints was preserved across strata of 
both biomarkers. These results affirm a role of IGF-1 
or its activity in the progression of cardio-renal disease 
among individuals with type 2 diabetes and DKD.

Abbreviations
CV  Cardiovascular
CKD  Chronic kidney disease
DKD  Diabetic kidney disease
eGFR  Estimated glomerular filtration rate
GH  Growth hormone
HF  Heart failure
IGF-1  Insulin-like growth factor 1
IGFBP  Insulin-like growth factor binding protein
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