Giugliano D, Maiorino MI, Bellastella G, Chiodini P, Esposito K. Glycemic control, preexisting cardiovascular disease, and risk of major cardiovascular events in patients with type 2 diabetes mellitus: systematic review with meta-analysis of cardiovascular outcome trials and intensive glucose control trials. J Am Heart Assoc. 2019;8: e012356. https://doi.org/10.1161/JAHA.119.012356.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yakubovich N, Gerstein HC. Serious cardiovascular outcomes in diabetes: the role of hypoglycemia. Circulation. 2011;123:342–8. https://doi.org/10.1161/CIRCULATIONAHA.110.948489.
Article
PubMed
Google Scholar
Aberer F, Pferschy PN, Tripolt NJ, Sourij C, Obermayer AM, Prüller F, et al. Hypoglycaemia leads to a delayed increase in platelet and coagulation activation markers in people with type 2 diabetes treated with metformin only: results from a stepwise hypoglycaemic clamp study. Diabetes Obes Metab. 2020;22:212–21. https://doi.org/10.1111/dom.13889.
Article
CAS
PubMed
Google Scholar
Kahal H, Halama A, Aburima A, Bhagwat AM, Butler AE, Graumann J, et al. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci Rep. 2020;10:4750. https://doi.org/10.1038/s41598-020-61531-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hussein K, Theophile K, Dralle W, Wiese B, Kreipe H, Bock O. MicroRNA expression profiling of megakaryocytes in primary myelofibrosis and essential thrombocythemia. Platelets. 2009;20:391–400. https://doi.org/10.1080/09537100903114537.
Article
CAS
PubMed
Google Scholar
King R, Ajjan R. Hypoglycaemia, thrombosis and vascular events in diabetes. Expert Rev Cardiovasc Ther. 2016;14:1099–101. https://doi.org/10.1080/14779072.2016.1215916.
Article
CAS
PubMed
Google Scholar
Hartley PS, Savill JS, Brown SB. Hypoglycaemia predisposes platelets to death by affecting calcium homeostasis and mitochondrial integrity. Platelets. 2007;18:103–12. https://doi.org/10.1080/09537100600760822.
Article
CAS
PubMed
Google Scholar
Gajos G, Konieczynska M, Zalewski J, Undas A. Low fasting glucose is associated with enhanced thrombin generation and unfavorable fibrin clot properties in type 2 diabetic patients with high cardiovascular risk. Cardiovasc Diabetol. 2015;14:44. https://doi.org/10.1186/s12933-015-0207-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, et al. MicroRNA as potential biomarkers of platelet function on antiplatelet therapy: a review. Front Physiol. 2021;12: 652579. https://doi.org/10.3389/fphys.2021.652579.
Article
PubMed
PubMed Central
Google Scholar
Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, et al. The role of miRNAs in regulation of platelet activity and related diseases—a bioinformatic analysis. Platelets. 2022. https://doi.org/10.1080/09537104.2022.2042233.
Article
PubMed
Google Scholar
De Rosa S, Indolfi C. Circulating microRNAs as biomarkers in cardiovascular diseases. Exp Suppl. 2015;106:139–49. https://doi.org/10.1007/978-3-0348-0955-9_6.
Article
CAS
PubMed
Google Scholar
Sabatino J, Wicik Z, De Rosa S, Eyileten C, Jakubik D, Spaccarotella C, et al. MicroRNAs fingerprint of bicuspid aortic valve. J Mol Cell Cardiol. 2019;134:98–106. https://doi.org/10.1016/j.yjmcc.2019.07.001.
Article
CAS
PubMed
Google Scholar
Carino A, De Rosa S, Sorrentino S, Polimeni A, Sabatino J, Caiazzo G, et al. Modulation of circulating microRNAs levels during the switch from clopidogrel to ticagrelor. Biomed Res Int. 2016;2016:3968206. https://doi.org/10.1155/2016/3968206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaudewitz D, Skroblin P, Bender LH, Barwari T, Willeit P, Pechlaner R, et al. Association of microRNAs and YRNAs with platelet function. Circ Res. 2016. https://doi.org/10.1161/circresaha.114.305663.
Article
PubMed
Google Scholar
Shi R, Ge L, Zhou X, Ji W-J, Lu R-Y, Zhang Y-Y, et al. Decreased platelet miR-223 expression is associated with high on-clopidogrel platelet reactivity. Thromb Res. 2013;131:508–13. https://doi.org/10.1016/j.thromres.2013.02.015.
Article
CAS
PubMed
Google Scholar
Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, et al. The potential role of platelet-related microRNAs in the development of cardiovascular events in high-risk populations, including diabetic patients: a review. Front Endocrinol. 2018;9:74. https://doi.org/10.3389/fendo.2018.00074.
Article
Google Scholar
Pordzik J, Jakubik D, Jarosz-Popek J, Wicik Z, Eyileten C, De Rosa S, et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovasc Diabetol. 2019;18:1–19. https://doi.org/10.1186/s12933-019-0918-x.
Article
CAS
Google Scholar
American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S13–27. https://doi.org/10.2337/dc18-S002.
Article
Google Scholar
De Rosa S, Eposito F, Carella C, Strangio A, Ammirati G, Sabatino J, et al. Transcoronary concentration gradients of circulating microRNAs in heart failure. Eur J Heart Fail. 2018;20:1000–10. https://doi.org/10.1002/ejhf.1119.
Article
CAS
PubMed
Google Scholar
De Rosa R, De Rosa S, Leistner D, Boeckel J-N, Keller T, Fichtlscherer S, et al. Transcoronary concentration gradient of microRNA-133a and outcome in patients with coronary artery disease. Am J Cardiol. 2017;120:15–24. https://doi.org/10.1016/j.amjcard.2017.03.264.
Article
CAS
PubMed
Google Scholar
Pordzik J, Eyileten-Postuła C, Jakubik D, Czajka P, Nowak A, De Rosa S, et al. MiR-126 is an independent predictor of long-term all-cause mortality in patients with type 2 diabetes mellitus. J Clin Med Res. 2021. https://doi.org/10.3390/jcm10112371.
Article
Google Scholar
Eyileten C, Wicik Z, Fitas A, Marszalek M, Simon JE, De Rosa S, et al. Altered circulating microRNA profiles after endurance training: a cohort study of ultramarathon runners. Front Physiol. 2021;12: 792931. https://doi.org/10.3389/fphys.2021.792931.
Article
PubMed
Google Scholar
Palasca O, Santos A, Stolte C, Gorodkin J, Jensen LJ. TISSUES 2.0: an integrative web resource on mammalian tissue expression. Database. 2018. https://doi.org/10.1093/database/bay028.
Article
PubMed
PubMed Central
Google Scholar
Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, et al. The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res. 2014. https://doi.org/10.1093/nar/gku631.
Article
PubMed
PubMed Central
Google Scholar
Yu G, He Q-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol BioSyst. 2016. https://doi.org/10.1039/c5mb00663e.
Article
PubMed
Google Scholar
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res. 2019;18:623–32. https://doi.org/10.1021/acs.jproteome.8b00702.
Article
CAS
PubMed
Google Scholar
de Freitas RCC, Bortolin RH, Lopes MB, Tamborlin L, Meneguello L, Silbiger VN, et al. Modulation of miR-26a-5p and miR-15b-5p exosomal expression associated with clopidogrel-induced hepatotoxicity in HepG2 cells. Front Pharmacol. 2017. https://doi.org/10.3389/fphar.2017.00906.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Yao Y, Zhang J, Tang X, Meng X, Wang M, et al. Platelet microRNA-15b protects against high platelet reactivity in patients undergoing percutaneous coronary intervention through Bcl-2-mediated platelet apoptosis. Ann Transl Med. 2020;8:364. https://doi.org/10.21037/atm.2020.02.88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker KC, Kwee LC, Neely ML, Grass E, Jakubowski JA, Fox KAA, et al. Circulating microRNA profiling in non-ST elevated coronary artery syndrome highlights genomic associations with serial platelet reactivity measurements. Sci Rep. 2020;10:6169. https://doi.org/10.1038/s41598-020-63263-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Freitas RC, Bortolin RH, Lopes MB, Hirata MH, Hirata RD, Silbiger VN, Luchessi AD. Integrated analysis of miRNA and mRNA gene expression microarrays: influence on platelet reactivity, clopidogrel response and drug-induced toxicity. Gene. 2016;593:172–8. https://doi.org/10.1016/j.gene.2016.08.028.
Article
CAS
PubMed
Google Scholar
Kim EY, Zhang Y, Beketaev I, Segura AM, Yu W, Xi Y, et al. SENP5, a SUMO isopeptidase, induces apoptosis and cardiomyopathy. J Mol Cell Cardiol. 2015;78:154–64. https://doi.org/10.1016/j.yjmcc.2014.08.003.
Article
CAS
PubMed
Google Scholar
Wang X, Sundquist K, Svensson PJ, Rastkhani H, Palmér K, Memon AA, et al. Association of recurrent venous thromboembolism and circulating microRNAs. Clin Epigenet. 2019;11:1–12. https://doi.org/10.1186/s13148-019-0627-z.
Article
CAS
Google Scholar
de Boer HC, van Solingen C, Prins J, Duijs JMGJ, Huisman MV, Rabelink TJ, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J. 2013;34:3451–7. https://doi.org/10.1093/eurheartj/eht007.
Article
CAS
PubMed
Google Scholar
Zapilko V, Fish RJ, Garcia A, Reny J-L, Dunoyer-Geindre S, Lecompte T, et al. MicroRNA-126 is a regulator of platelet-supported thrombin generation. Platelets. 2020;31:746–55. https://doi.org/10.1080/09537104.2020.1775804.
Article
CAS
PubMed
Google Scholar
Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84. https://doi.org/10.1161/CIRCRESAHA.109.215566.
Article
CAS
PubMed
Google Scholar
Witkowski M, Weithauser A, Tabaraie T, Steffens D, Kränkel N, Witkowski M, et al. Micro-RNA-126 reduces the blood thrombogenicity in diabetes mellitus via targeting of tissue factor. Arterioscler Thromb Vasc Biol. 2016;36:1263–71. https://doi.org/10.1161/ATVBAHA.115.306094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gogitidze Joy N, Hedrington MS, Briscoe VJ, Tate DB, Ertl AC, Davis SN. Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care. 2010;33:1529–35.
Article
Google Scholar
Fu X, Niu T, Li X. MicroRNA-126-3p attenuates intracerebral hemorrhage-induced blood-brain barrier disruption by regulating VCAM-1 expression. Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.00866.
Article
PubMed
PubMed Central
Google Scholar
Pan X, Hou R, Ma A, Wang T, Wu M, Zhu X, et al. Atorvastatin upregulates the expression of miR-126 in apolipoprotein E-knockout mice with carotid atherosclerotic plaque. Cell Mol Neurobiol. 2017;37:29–36.
Article
CAS
Google Scholar
Suárez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184:21–5.
Article
Google Scholar
Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008;105:1516–21. https://doi.org/10.1073/pnas.0707493105.
Article
PubMed
PubMed Central
Google Scholar
Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128:2026–38. https://doi.org/10.1161/CIRCULATIONAHA.113.001720.
Article
CAS
PubMed
Google Scholar
Ye E-A, Steinle JJ. miR-15b/16 protects primary human retinal microvascular endothelial cells against hyperglycemia-induced increases in tumor necrosis factor alpha and suppressor of cytokine signaling 3. J Neuroinflamm. 2015;12:44. https://doi.org/10.1186/s12974-015-0265-0.
Article
CAS
Google Scholar
Yamada K, Takizawa S, Ohgaku Y, Asami T, Furuya K, Yamamoto K, et al. MicroRNA 16-5p is upregulated in calorie-restricted mice and modulates inflammatory cytokines of macrophages. Gene. 2020;725: 144191. https://doi.org/10.1016/j.gene.2019.144191.
Article
CAS
PubMed
Google Scholar
Ratter JM, Rooijackers HMM, Tack CJ, Hijmans AGM, Netea MG, de Galan BE, et al. Proinflammatory effects of hypoglycemia in humans with or without diabetes. Diabetes. 2017;66:1052–61. https://doi.org/10.2337/db16-1091.
Article
CAS
PubMed
Google Scholar
Liang X, Xu Z, Yuan M, Zhang Y, Zhao B, Wang J, et al. MicroRNA-16 suppresses the activation of inflammatory macrophages in atherosclerosis by targeting PDCD4. Int J Mol Med. 2016;37:967–75. https://doi.org/10.3892/ijmm.2016.2497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Yang F, Yu X, Wang B, Yang Y, Zhou X, et al. miR-16 inhibits NLRP3 inflammasome activation by directly targeting TLR4 in acute lung injury. Biomed Pharmacother. 2019;112: 108664. https://doi.org/10.1016/j.biopha.2019.108664.
Article
CAS
PubMed
Google Scholar
Sorrentino S, Iaconetti C, De Rosa S, Polimeni A, Sabatino J, Gareri C, et al. Hindlimb ischemia impairs endothelial recovery and increases neointimal proliferation in the carotid artery. Sci Rep. 2018;8:761. https://doi.org/10.1038/s41598-017-19136-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Badacz R, Kleczyński P, Legutko J, Żmudka K, Gacoń J, Przewłocki T, et al. Expression of miR-1-3p, miR-16-5p and miR-122-5p as possible risk factors of secondary cardiovascular events. Biomedicines. 2021. https://doi.org/10.3390/biomedicines9081055.
Article
PubMed
PubMed Central
Google Scholar
Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, et al. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res. 2013;112:335–46. https://doi.org/10.1161/CIRCRESAHA.111.300418.
Article
CAS
PubMed
Google Scholar
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9. https://doi.org/10.1073/pnas.0506654102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harnish MJ, Lange T, Dimitrov S, Born J, Fehm HL. Differential regulation of human blood glucose level by interleukin-2 and -6. Exp Clin Endocrinol Diabetes. 2005;113:43–8.
Article
CAS
Google Scholar
Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207:1871.
Article
CAS
Google Scholar
MacFarlane MP, Yang JC, Guleria AS, White RL, Seipp CA, Einhorn JH, et al. The hematologic toxicity of interleukin-2 in patients with metastatic melanoma and renal cell carcinoma. Cancer. 1995;75:1030–7.
Article
CAS
Google Scholar
Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26:6133–40. https://doi.org/10.1038/sj.onc.1210436.
Article
CAS
PubMed
PubMed Central
Google Scholar