Yang JJ, Yu D, Wen W, Saito E, Rahman S, Shu XO, Chen Y, Gupta PC, Gu D, Tsugane S, et al. Association of diabetes with all-cause and cause-specific mortality in asia: a pooled analysis of more than 1 million participants. JAMA Netw Open. 2019;2(4):e192696.
Article
Google Scholar
Artime E, Romera I, Diaz-Cerezo S, Delgado E. Epidemiology and economic burden of cardiovascular disease in patients with type 2 diabetes mellitus in Spain: a systematic review. Diabetes Ther. 2021;12(6):1631–59.
Article
Google Scholar
Dokken BB. The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectrum. 2008;21(3):160–5.
Article
Google Scholar
Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL, Gerszten RE, Illig T, Rhee EP, Srinivas PR, Wang TJ, et al: Potential Impact and study considerations of metabolomics in cardiovascular health and disease: a scientific statement from the American Heart Association. Circ Cardiovasc Genet 2017; 10:2.
Tzoulaki I, Ebbels TM, Valdes A, Elliott P, Ioannidis JP. Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies. Am J Epidemiol. 2014;180(2):129–39.
Article
Google Scholar
Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martinez-Gonzalez MA, Hu FB. Comprehensive metabolomic profiling and incident cardiovascular disease: a systematic review. J Am Heart Assoc 2017; 6:10.
McGranaghan P, Saxena A, Rubens M, Radenkovic J, Bach D, Schleussner L, Pieske B, Edelmann F, Trippel TD. Predictive value of metabolomic biomarkers for cardiovascular disease risk: a systematic review and meta-analysis. Biomarkers. 2020;25(2):101–11.
Article
Google Scholar
Stratmann B, Richter K, Wang R, Yu Z, Xu T, Prehn C, Adamski J, Illig T, Tschoepe D, Wang-Sattler R. Metabolomic signature of coronary artery disease in type 2 diabetes mellitus. Int J Endocrinol. 2017;2017:7938216.
Article
Google Scholar
Garcia-Fontana B, Morales-Santana S, Diaz Navarro C, Rozas-Moreno P, Genilloud O, Vicente Perez F, del PerezPalacio J, Munoz-Torres M. Metabolomic profile related to cardiovascular disease in patients with type 2 diabetes mellitus: a pilot study. Talanta. 2016;148:135–43.
Article
CAS
Google Scholar
Gazzaruso C, Garzaniti A, Giordanetti S, Falcone C, Fratino P. Silent coronary artery disease in type 2 diabetes mellitus: the role of Lipoprotein(a), homocysteine and apo(a) polymorphism. Cardiovasc Diabetol. 2002;1:5.
Article
Google Scholar
Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, Fowkes FG, Hiatt WR, Jonsson B, Lacroix P, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–909.
Article
Google Scholar
Katakami N, Omori K, Taya N, Arakawa S, Takahara M, Matsuoka TA, Tsugawa H, Furuno M, Bamba T, Fukusaki E, et al. Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):75.
Article
CAS
Google Scholar
Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, Lee JH. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol (Oxf). 2012;76(5):674–82.
Article
CAS
Google Scholar
Su J, Zhao Q, Zhao A, Jia W, Zhu W, Lu J, Ma X. Serum metabolic signatures of subclinical atherosclerosis in patients with type 2 diabetes mellitus: a preliminary study. Acta Diabetol. 2021;58(9):1217–24.
Article
CAS
Google Scholar
Price JF, Reynolds RM, Mitchell RJ, Williamson RM, Fowkes FG, Deary IJ, Lee AJ, Frier BM, Hayes PC, Strachan MW. The Edinburgh type 2 diabetes study: study protocol. BMC Endocr Disord. 2008;8:18.
Article
Google Scholar
Sluiman AJ, McLachlan S, Forster RB, Strachan MWJ, Deary IJ, Price JF. Higher baseline inflammatory marker levels predict greater cognitive decline in older people with type 2 diabetes: year 10 follow-up of the Edinburgh Type 2 Diabetes Study. Diabetologia. 2022;65(3):467–76.
Article
CAS
Google Scholar
Soininen P, Kangas AJ, Wurtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet. 2015;8(1):192–206.
Article
CAS
Google Scholar
Wurtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am J Epidemiol. 2017;186(9):1084–96.
Article
Google Scholar
Price AH, Weir CJ, Welsh P, McLachlan S, Strachan MWJ, Sattar N, Price JF. Comparison of non-traditional biomarkers, and combinations of biomarkers, for vascular risk prediction in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Atherosclerosis. 2017;264:67–73.
Article
CAS
Google Scholar
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc. 1996;58(1):267–88.
Google Scholar
Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100(4):460–73.
Article
CAS
Google Scholar
Robinson BH. Lactic acidemia and mitochondrial disease. Mol Genet Metab. 2006;89(1–2):3–13.
Article
CAS
Google Scholar
Sola-Penna M. Metabolic regulation by lactate. IUBMB Life. 2008;60(9):605–8.
Article
CAS
Google Scholar
Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371(24):2309–19.
Article
Google Scholar
Scale T, Harvey JN. Diabetes, metformin and lactic acidosis. Clin Endocrinol (Oxf). 2011;74(2):191–6.
Article
CAS
Google Scholar
Tzoulaki I, Castagne R, Boulange CL, Karaman I, Chekmeneva E, Evangelou E, Ebbels TMD, Kaluarachchi MR, Chadeau-Hyam M, Mosen D, et al. Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur Heart J. 2019;40(34):2883–96.
Article
CAS
Google Scholar
Vojinovic D, van der Lee SJ, van Duijn CM, Vernooij MW, Kavousi M, Amin N, Demirkan A, Ikram MA, van der Lugt A, Bos D. Metabolic profiling of intra- and extracranial carotid artery atherosclerosis. Atherosclerosis. 2018;272:60–5.
Article
CAS
Google Scholar
Juonala M, Ellul S, Lawlor DA, Santos Ferreira DL, Carlin JB, Cheung M, Dwyer T, Wake M, Saffery R, Burgner DP. A cross-cohort study examining the associations of metabolomic profile and subclinical atherosclerosis in children and their parents: the child health checkpoint study and avon longitudinal study of parents and children. J Am Heart Assoc. 2019;8(14):e011852.
Article
CAS
Google Scholar
Ritchie SC, Wurtz P, Nath AP, Abraham G, Havulinna AS, Fearnley LG, Sarin AP, Kangas AJ, Soininen P, Aalto K, et al. The biomarker GlycA is associated with chronic inflammation and predicts long-term risk of severe infection. Cell Syst. 2015;1(4):293–301.
Article
CAS
Google Scholar
Tibuakuu M, Fashanu OE, Zhao D, Otvos JD, Brown TT, Haberlen SA, Guallar E, Budoff MJ, Palella FJ Jr., Martinson JJ, et al. GlycA, a novel inflammatory marker, is associated with subclinical coronary disease. AIDS (London, England). 2019;33(3):547–57.
Article
CAS
Google Scholar
Fashanu OE, Oyenuga AO, Zhao D, Tibuakuu M, Mora S, Otvos JD, Stein JH, Michos ED. GlycA, a novel inflammatory marker and its association with peripheral arterial disease and carotid plaque: the multi-ethnic study of atherosclerosis. Angiology. 2019;70(8):737–46.
Article
CAS
Google Scholar
Holmes MV, Millwood IY, Kartsonaki C, Hill MR, Bennett DA, Boxall R, Guo Y, Xu X, Bian Z, Hu R, et al. Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J Am Coll Cardiol. 2018;71(6):620–32.
Article
CAS
Google Scholar
Zierfuss B, Hobaus C, Herz CT, Pesau G, Mrak D, Koppensteiner R, Schernthaner GH. GlycA for long-term outcome in T2DM secondary prevention. Diabetes research and clinical practice. 2021;171:108583.
Article
CAS
Google Scholar
Jankowski J, Floege J, Fliser D, Bohm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143(11):1157–72.
Article
CAS
Google Scholar
Li M-F, Tu Y-F, Li L-X, Lu J-X, Dong X-H, Yu L-B, Zhang R, Bao Y-Q, Jia W-P, Hu R-M. Low-grade albuminuria is associated with early but not late carotid atherosclerotic lesions in community-based patients with type 2 diabetes. Cardiovasc Diabetol. 2013;12:110.
Article
CAS
Google Scholar
Wurtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, Ghorbani A, Artati A, Wang Q. Tiainen M et al: Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015;131(9):774–85.
Article
Google Scholar
Joshi R, Wannamethee SG, Engmann J, Gaunt T, Lawlor DA, Price J, Papacosta O, Shah T, Tillin T, Chaturvedi N, et al. Triglyceride-containing lipoprotein sub-fractions and risk of coronary heart disease and stroke: a prospective analysis in 11,560 adults. Eur J Prev Cardiol. 2020;27(15):1617–26.
Article
Google Scholar
Omori K, Katakami N, Arakawa S, Yamamoto Y, Ninomiya H, Takahara M, Matsuoka TA, Tsugawa H, Furuno M, Bamba T et al: Identification of Plasma Inositol and Indoxyl Sulfate as Novel Biomarker Candidates for Atherosclerosis in Patients with Type 2 Diabetes. -Findings from Metabolome Analysis Using GC/MS. J Atheroscler Thromb 2020.
Chevli PA, Freedman BI, Hsu FC, Xu J, Rudock ME, Ma L, Parks JS, Palmer ND, Shapiro MD. Plasma metabolomic profiling in subclinical atherosclerosis: the Diabetes Heart Study. Cardiovasc Diabetol. 2021;20(1):231.
Article
CAS
Google Scholar
Polonis K, Wawrzyniak R, Daghir-Wojtkowiak E, Szyndler A, Chrostowska M, Melander O, Hoffmann M, Kordalewska M, Raczak-Gutknecht J, Bartosinska E, et al. Metabolomic signature of early vascular aging (EVA) in hypertension. Front Mol Biosci. 2020;7:12.
Article
CAS
Google Scholar
Gao X, Ke C, Liu H, Liu W, Li K, Yu B, Sun M. Large-scale metabolomic analysis reveals potential biomarkers for early stage coronary atherosclerosis. Sci Rep. 2017;7(1):11817.
Article
Google Scholar