Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.
Article
CAS
Google Scholar
Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Prac. 2014;103(2):137–49.
Article
CAS
Google Scholar
Manuel DG, Schultz SE. Health-related quality of life and health-adjusted life expectancy of people with diabetes in Ontario, Canada, 1996–1997. Diabetes Care. 2004;27(2):407–14.
Article
Google Scholar
Gu K, Cowie C, Harris M. Mortality in adults with and without diabetes in a national cohort study of the US population, 1971–1993. Diabetes Care. 1998;21(7):1138–45.
Article
CAS
Google Scholar
Kannel WB, McGlee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the framingham study. Diabetes Care. 1979;2:1201–2126.
Article
Google Scholar
Lee W, Cape D, Cheung A, Zinman B. Impact of diabetes mellitus on coronary artery disease in woman and men. A meta-analysis of prospective studies. Diabetes Care. 2000;23:962–8.
Article
CAS
Google Scholar
Hammoud T, Tanguay JF, Bourassa MG. Management of coronary artery disease: therapeutic options in patients with diabetes. J Am Coll Cardiol. 2000;36(2):355–65.
Article
CAS
Google Scholar
Schramm TK, Gislason GH, Kober L, et al. Diabetes patients requiring glucose-lowering therapy and nondiabetics with prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation. 2008;117:1945–54.
Article
CAS
Google Scholar
Haffner S, Letho S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes mellitus and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.
Article
CAS
Google Scholar
Aronson D, Rayfield E. Diabetes and obesity. Atherosclerosis and coronary artery disease. Philadelphia: Lippincott-Raven Publishers; 1996. p. 327–59.
Google Scholar
Stone GW, Kedhi E, Kereiakes DJ, et al. Differential clinical responses to everolimus-eluting and paclitaxel-eluting coronary stents in patients with and without diabetes mellitus. Circulation. 2011;124(8):893–900.
Article
CAS
Google Scholar
Investigators TB. Influence of diabetes on 5-year mortality and morbidity in a randomized trial comparing CABG and PTCA in patients with multivessel disease. The Bypass Angioplasty Revascularisation Investigation (BARI). Circulation. 1997;96(6):1761–9.
Article
Google Scholar
Investigators TB. The final 10-year follow-up results from the BARI randomized trial. J Am Coll Cardiol. 2007;47(15):1600–6.
Google Scholar
Farhouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularisation in patients with diabetes. N Engl J Med. 2012;367(25):2375–84.
Article
Google Scholar
Diletti R, Onuma Y, Farooq V, et al. 6-month clinical outcomes following implantation of the bioresorbable everolimus-eluting vascular scaffold in vessels smaller or larger than 25 mm. J Am Coll Cardiol. 2011;58(3):258–64.
Article
Google Scholar
Dudek D, Onuma Y, Ormiston JA, et al. Four year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention. 2012;7(9):1060–1.
Article
Google Scholar
Onuma Y, Serruys PW, Ormiston JA, et al. Three-year results of clinical follow-up after a bioresorbable everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention. 2010;6(4):447–53.
Article
Google Scholar
Serruys PW, Onuma Y, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol. 2011;58(15):1578–88.
Article
CAS
Google Scholar
Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373(9667):897–910.
Article
CAS
Google Scholar
Onuma Y, Dudek D, Thuesen L, et al. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv. 2013;6(10):999–1009.
Article
Google Scholar
Windecker S. The Absorb Cohort B Trial: insights from Longitudinal Imaging Follow up from Six Months to Three Years. J Am Coll Cardiol. 2013;61(10):E1643.
Article
Google Scholar
Whitbourn RJ. TCT-31 ABSORB EXTEND: an interim report on the 24-month clinical outcomes from the first 250 patients enrolled. J Am Coll Cardiol. 2013;62:B11.
Article
Google Scholar
Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60(16):1581–98.
Article
Google Scholar
Hicks KA, Tcheng JE, Bozkurt B, et al. 2014 ACC/AHA Key Data Elements and Definitions for Cardiovascular Endpoint Events in Clinical Trials: a report of the american college of cardiology/american heart association task force on clinical data standards (writing committee to develop cardiovascular endpoints data standards). J Nucl Cardiol. 2015;22(5):1041–144.
Article
Google Scholar
Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115(17):2344–51.
Article
Google Scholar
Tenekecioglu E, Farooq V, Bourantes CV, et al. Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord. 2016;16:38.
Article
Google Scholar
Cayla G, Koning R, Fajadet J, et al. Percutaneous coronary interventions with the Absorb Bioresorbable vascular scaffold in real life: 1-year results from the FRANCE ABSORB registry. Arch Cardiovasc Dis. 2019;112:113.
Article
Google Scholar
Cuculo A, Ruggiero A, Centola A, et al. Bioresorbable coronary stent for treatment of complex lesions: data from an all-corner registry. Int J Cardiol. 2017;230:136–41.
Article
Google Scholar
Tang XF, Ma YL, Song Y, et al. Biodegradable polymer drug-eluting stents versus second-generation drug-eluting stents in patients with and without diabetes mellitus: a single-center study. Cardiovasc Diabetol. 2018;17(1):114.
Article
Google Scholar
Caixeta A, Campos CM, Felix C, et al. Predictors of long-term adverse events absorb bioresorbable vascular scaffold implantation: a 1,933-patient pooled analysis from international registries. EuroIntervention. 2018. https://doi.org/10.4244/EIJ-D-16-00796.
Article
PubMed
Google Scholar
Costa JR, Abizaid A, Whitbourn R, et al. Three-year clinical outcomes of patients treated with everolimus-eluting bioresorbable vascular scaffolds: final results of the ABSORB EXTEND trial. Catheter Cardovasc Interv. 2019;93(1):E1–7.
Article
Google Scholar
Kereiakes DJ, Ellis SG, Kimura T, et al. Efficacy and safety of the absorb everolimus-eluting bioresorbable scaffold for treatment of patients with diabetes mellitus: results of the absorb diabetic substudy. JACC Cardiovasc Interv. 2017;10(1):42–9.
Article
Google Scholar
Goldman S, Zadina K, Moritz T, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44(11):2149–56.
Article
Google Scholar
Kereiakes DJ, Sudhir K, Hermiller JB, et al. Comparison of everolimus-eluting and paclitaxel-eluting coronary stents in patients undergoing multilesion and multivessel intervention: the SPIRIT III (A Clinical Evaluation of the Investigational Device XIENCE V Everolimus Eluting Coronary Stent System [EECSS] in the Treatment of Subjects With De Novo Native Coronary Artery Lesions) and SPIRIT IV (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System in the Treatment of Subjects With De Novo Native Coronary Artery Lesions) randomized trials. JACC Cardiovasc Interv. 2010;3(12):1229–39.
Article
Google Scholar
Kirtane AJ, Gupta A, Iyengar S, et al. Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation. 2009;119(25):3198–206.
Article
CAS
Google Scholar
Abbott JD, Voss MR, Nakamura M, et al. Unrestricted use of drug-eluting stents compared with bare-metal stents in routine clinical practice: findings from the national heart, lung, and blood institute dynamic registry. J Am Coll Cardiol. 2007;50(21):2029–36.
Article
CAS
Google Scholar
Grube E, Chevalier B, Guagliumi G, et al. The SPIRIT V diabetic study: a randomized clinical evaluation of the XIENCE V everolimus-eluting stent vs the TAXUS Liberté paclitaxel-eluting stent in diabetic patients with de novo coronary artery lesions. Am Heart J. 2012;163(5):867–75.
Article
CAS
Google Scholar
Kedhi E, Généreux P, Palmerini T, et al. Impact of coronary lesion complexity on drug-eluting stent outcomes in patients with and without diabetes mellitus: analysis from 18 pooled randomized trials. J Am Coll Cardiol. 2014;63(20):2111–8.
Article
Google Scholar
Mohr FW, Morice MC, Kappetein AP, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381(9867):629–38.
Article
Google Scholar
Tijssen RYG, Kraak RP, Hofma SH, et al. Complete two-year follow-up with formal non-inferiority testing on primary outcomes of the AIDA trial comparing the Absorb bioresorbable scaffold with the XIENCE drug-eluting metallic stent in routine PCI. EuroIntervention. 2018;14(4):e426–33.
Article
Google Scholar
Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–91.
Article
CAS
Google Scholar
Kereiakes DJ, Ellis SG, Metzger C, et al. 3-year clinical outcomes With everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial. J Am Coll Cardiol. 2017;70(23):2852–62.
Article
CAS
Google Scholar
Ali ZA, Gao R, Kimura T, et al. Three-year outcomes with the absorb bioresorbable scaffold: individual-patient-data meta-analysis from the ABSORB randomized trials. Circulation. 2018;137(5):464–79.
Article
Google Scholar
Karanasos A, Van Mieghem N, van Ditzhuijzen N, et al. Angiographic and optical coherence tomography insights into bioresorbable scaffold thrombosis: single-center experience. Circ Cardiovasc Interv. 2015;8:5.
Google Scholar
Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol. 2016;67(8):921–31.
Article
Google Scholar
Stone GW, Abizaid A, Onuma Y, et al. Effect of technique on outcomes following bioresorbable vascular scaffold implantation: analysis from the ABSORB trials. J Am Coll Cardiol. 2017;70(23):2863–74.
Article
Google Scholar
Onuma Y, Sotomi Y, Shiomi H, et al. Two-year clinical, angiographic, and serial optical coherence tomographic follow-up after implantation of an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent: insights from the randomised ABSORB Japan trial. EuroIntervention. 2016;12:1090–101.
Article
Google Scholar
Ortega-Paz L, Capodanno D, Gori T, et al. Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffold implantation for prediction of cardiac adverse events: development and internal validation of the PSP score. EuroIntervention. 2017;12(17):2110–7.
Article
Google Scholar
Anadol R, Schnitzler K, Lorenz L, et al. Three-years outcomes of diabetic patients treated with coronary bioresorbable scaffolds. BMC Cardiovasc Disord. 2018;18(1):92.
Article
Google Scholar
Collet C, Asano T, Miyazaki Y, et al. Late thrombotic events after bioresorbable scaffold implantation: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J. 2017;38(33):2559–66.
Article
Google Scholar
Bhatt DL, Bonaca MP, Bansilal S, et al. Reduction in ischemic events with ticagrelor in diabetic patients with prior myocardial infarction in PEGASUS-TIMI 54. J Am Coll Cardiol. 2016;67(23):2732–40.
Article
CAS
Google Scholar
Meredith IT, Tanguay JF, Kereiakes DJ, et al. Diabetes mellitus and prevention of late myocardial infarction after coronary stenting in the randomized dual antiplatelet therapy study. Circulation. 2016;133(18):1772–82.
Article
CAS
Google Scholar