Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.
Article
CAS
Google Scholar
O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:e362–425.
Article
Google Scholar
Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol. 2002;40:418–23.
Article
Google Scholar
Adler DS, Goldman L, O’Neil A, Cook EF, Mudge GH Jr, Shemin RJ, et al. Long-term survival of more than 2,000 patients after coronary artery bypass grafting. Am J Cardiol. 1986;58:195–202.
Article
CAS
Google Scholar
Barsness GW, Peterson ED, Ohman EM, Nelson CL, DeLong ER, Reves JG, et al. Relationship between diabetes mellitus and long-term survival after coronary bypass and angioplasty. Circulation. 1997;96:2551–6.
Article
CAS
Google Scholar
Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376:1407–18.
Article
Google Scholar
American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2015;38(Suppl):S8–16.
Article
Google Scholar
Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman RM, Sadhu AR, Society of Thoracic Surgeons Blood Glucose Guideline Task Force, et al. The Society of Thoracic Surgeons practice guideline series: blood glucose management during adult cardiac surgery. Ann Thorac Surg. 2009;87:663–9.
Article
Google Scholar
Monteiro P, Gonçalves L, Providência LA. Diabetes and cardiovascular disease: the road to cardioprotection. Heart. 2005;91:1621–5.
Article
Google Scholar
Zucker I, Shohat T, Dankner R, Chodick G. New onset diabetes in adulthood is associated with a substantial risk for mortality at all ages: a population based historical cohort study with a decade-long follow-up. Cardiovasc Diabetol. 2017;16:105.
Article
Google Scholar
Kennedy MW, Kaplan E, Hermanides RS, Fabris E, Hemradj V, Koopmans PC, et al. Clinical outcomes of deferred revascularisation using fractional flow reserve in patients with and without diabetes mellitus. Cardiovasc Diabetol. 2016;15:100.
Article
Google Scholar
Abizaid A, Costa MA, Centemero M, Abizaid AS, Legrand VM, Limet RV, Arterial Revascularization Therapy Study Group, et al. Clinical and economic impact of diabetes mellitus on percutaneous and surgical treatment of multivessel coronary disease patients: insights from the Arterial Revascularization Therapy Study (ARTS) trial. Circulation. 2001;104:533–8.
Article
CAS
Google Scholar
Marui A, Kimura T, Nishiwaki N, Mitsudo K, Komiya T, Hanyu M, CREDO-Kyoto PCI/CABG Registry Cohort-2 Investigators, et al. Five-year outcomes of percutaneous versus surgical coronary revascularization in patients with diabetes mellitus (from the CREDO-Kyoto PCI/CABG Registry Cohort-2). Am J Cardiol. 2015;115:1063–72.
Article
Google Scholar
Li Z, Amsterdam EA, Young JN, Hoegh H, Armstrong EJ. Contemporary outcomes of coronary artery bypass grafting among patients with insulin-treated and non-insulin-treated diabetes. Ann Thorac Surg. 2015;100:2262–9.
Article
Google Scholar
Zalewska-Adamiec M, Bachorzewska-Gajewska H, Malyszko J, Tomaszuk-Kazberuk A, Nowak K, Hirnle T, et al. Impact of diabetes on mortality and complications after coronary artery by-pass graft operation in patients with left main coronary artery disease. Adv Med Sci. 2014;59:250–5.
Article
Google Scholar
Whang W, Bigger JT Jr, The CABG Patch Trial Investigators and Coordinators. Diabetes and outcomes of coronary artery bypass graft surgery in patients with severe left ventricular dysfunction: results from The CABG Patch Trial database. J Am Coll Cardiol. 2000;36:1166–72.
Article
CAS
Google Scholar
Zadok OIB, Kornowski R, Goldenberg I, Klempfner R, Toledano Y, Biton Y, et al. Admission blood glucose and 10-year mortality among patients with or without pre-existing diabetes mellitus hospitalized with heart failure. Cardiovasc Diabetol. 2017;16:102.
Article
Google Scholar
Mohammadi S, Dagenais F, Mathieu P, Kingma JG, Doyle D, Lopez S, et al. Long-term impact of diabetes and its comorbidities in patients undergoing isolated primary coronary artery bypass graft surgery. Circulation. 2007;116:I220–5.
Article
Google Scholar
Onuma Y, Wykrzykowska JJ, Garg S, Vranckx P, Serruys PW, ARTS I and II Investigators. 5-Year follow-up of coronary revascularization in diabetic patients with multivessel coronary artery disease: insights from ARTS (arterial revascularization therapy study)-II and ARTS-I trials. J Am Coll Cardiol Cardiovasc Interv. 2011;4:317–23.
Article
Google Scholar
Kappetein AP, Head SJ, Morice MC, Banning AP, Serruys PW, Mohr FW, et al. Treatment of complex coronary artery disease in patients with diabetes: 5-year results comparing outcomes of bypass surgery and percutaneous coronary intervention in the SYNTAX trial. Eur J Cardiothorac Surg. 2013;43:1006–13.
Article
Google Scholar
Koshizaka M, Lopes RD, Reyes EM, Gibson CM, Schulte PJ, Hafley GE, et al. Long-term clinical and angiographic outcomes in patients with diabetes undergoing coronary artery bypass graft surgery: results from the Project of Ex-vivo Vein Graft Engineering via Transfection IV trial. Am Heart J. 2015;169:175–84.
Article
Google Scholar
Wit MA, de Mulder M, Jansen EK, Umans VA. Diabetes mellitus and its impact on long-term outcomes after coronary artery bypass graft surgery. Acta Diabetol. 2013;50:123–8.
Article
CAS
Google Scholar
Bundhun PK, Bhurtu A, Yuan J. Impact of type 2 diabetes mellitus on the long-term mortality in patients who were treated by coronary artery bypass surgery: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96:e7022.
Article
Google Scholar
Bundhun PK, Wu ZJ, Chen MH. Coronary artery bypass surgery compared with percutaneous coronary interventions in patients with insulin-treated type 2 diabetes mellitus: a systematic review and meta-analysis of 6 randomized controlled trials. Cardiovasc Diabetol. 2016;15:2.
Article
Google Scholar
Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Gudbjörnsdottir S, et al. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373:1720–32.
Article
CAS
Google Scholar
Lathief S, Inzucchi SE. Approach to diabetes management in patients with CVD. Trends Cardiovasc Med. 2016;26:165–79.
Article
Google Scholar
Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.
Article
CAS
Google Scholar
Contini GA, Nicolini F, Fortuna D, Pacini D, Gabbieri D, Vignali L, et al. Five-year outcomes of surgical or percutaneous myocardial revascularization in diabetic patients. Int J Cardiol. 2013;168:1028–33.
Article
Google Scholar
Maas AH, Appelman YE. Gender differences in coronary heart disease. Neth Heart J. 2010;18:598–602.
Article
CAS
Google Scholar
Blumenfeld O, Na’amnih W, Shapira-Daniels A, Lotan C, Shohat T, Shapira OM. Trends in coronary revascularization and ischemic heart disease-related mortality in Israel. J Am Heart Assoc. 2017;6:e004734.
Article
Google Scholar
Fink N, Nikolsky E, Assali A, Shapira O, Kassif Y, Barac YD, et al. Revascularization strategies and survival in patients with multi-vessel coronary artery disease. Ann Thorac Surg. 2018. https://doi.org/10.1016/j.athoracsur.2018.07.070.
Article
PubMed
Google Scholar
Ram E, Goldenberg I, Kassif Y, Segev A, Lavee J, Shlomo N, et al. Comparison of patients with multivessel disease treated at centers with and without on-site cardiac surgery. J Thorac Cardiovasc Surg. 2018;155(865–873):e3.
Google Scholar
Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA. Heart failure with preserved ejection fraction in diabetes: mechanisms and management. Can J Cardiol. 2018;34:632–43.
Article
Google Scholar
Kragelund C, Snorgaard O, Køber L, Bengtsson B, Ottesen M, Højberg S, et al. Hyperinsulinaemia is associated with increased long-term mortality following acute myocardial infarction in non-diabetic patients. Eur Heart J. 2004;25:1891–7.
Article
CAS
Google Scholar