Skip to content

Advertisement

  • Commentary
  • Open Access

The high need for trials assessing functional outcome after stroke rather than stroke prevention with GLP-1 agonists and DPP-4 inhibitors

Contributed equally
Cardiovascular Diabetology201817:32

https://doi.org/10.1186/s12933-018-0674-3

  • Received: 23 January 2018
  • Accepted: 7 February 2018
  • Published:

Keywords

  • Glucagon-like peptide 1 receptor
  • Dipeptidyl peptidase-4 inhibitors
  • Stroke
  • Diabetes

Glucagon-like peptide 1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors (DPP-4i) are approved drugs for the treatment of hyperglycemia in patients with type 2 diabetes (T2D) [1].

In addition to these anti-diabetic properties, in 2009 Li et al. showed that the activation of GLP-1R by exendin-4 could also reduce brain damage in a mouse stroke model [2]. Darsalia et al. in 2013 showed similar results by using the DPP-4i linagliptin [3]. Over the last two decades, more than thirty preclinical studies have confirmed the efficacy of both GLP-1R agonists and DPP4i in different animal models of stroke (with or without T2D) (reviewed by Darsalia et al. [4]). The efficacy in these studies consisted in reduced brain damage and improved functional parameters after acute, chronic or delayed drug administration in experimental stroke.

In the past few years, several large cardiovascular outcome trials employing GLP-1R agonists and DPP-4i in human subjects with T2D at increased cardiovascular risk have been concluded (reviewed by Nauck et al. [5], Avgerinos and Tziomalos [6] and Hemmingsen et al. [7]). For the GLP-1R agonists, some of these studies have shown reduced cardiovascular mortality (LEADER employing liraglutide [8]) and stroke incidence (SUSTAIN-6, employing semaglutide [9]). Others have been neutral; ELIXA employing lixisenatide [5] and the latest addition to these large outcome trials, the EXSCEL study employing the GLP-1 analogue exenatide [10]. For the DPP-4i trials the results so far have been neutral [5, 11]. Recently, a few meta analysis studies using the data from these large clinical studies have been published. The picture remains essentially the same with reduced cardiovascular and all cause mortality but neutral effects on stroke incidence (semaglutide in SUSTAIN-6 being the only GLP-1R agonist with significant effect on stroke incidence) by GLP-1R agonists [12, 13] and neutral results by DPP-4i [12, 14, 15]. The measure of the efficacy in all these trials was stroke incidence and stroke mortality.

In summary, the definition of “efficacy” in preclinical and clinical studies has been fundamentally different, with preclinical studies addressing functional outcome after stroke and clinical studies addressing stroke incidence and death. Despite these essential differences, the overall message to the neuro and diabetic communities has been that: (1) the efficacy of GLP-1R agonists in animal models of stroke has been confirmed in some clinical studies using GLP-1R agonists (2) the efficacy from DPP4i shown in animal studies has been compared with the failure of the large clinical studies to show benefit in stroke prevention. When it comes to DPP-4i, this has led to concerns about the clinical benefit of DPP-4i and questions on why beneficial effects seen in experimental animal models fail to translate into stroke efficacy in the large cardiovascular outcome trials.

This message is not correct. Although the prevention of complications, such as stroke, is a very important target for the management of diabetes, failure to prevent stroke does not indicate the inability to reduce injury and to improve the functional outcome after stroke, which would be essential to reduce the total costs of stroke and patient welfare. Indeed, when comparing clinical outcome studies and preclinical functional outcome studies, it is important to keep in mind that the two trial types are essentially different. The large human long-term treatment trials assessed the prevention of cardiovascular events. In contrast, the experimental trials looked at the modification of the outcome once an event (stroke) has occurred. These are two fundamentally different aspects that cannot be compared and that could explain why DPP-4i have shown positive effects in experimental animal models, but failed to show any benefit to prevent stroke in the large randomized outcome trials so far.

Human small studies addressing whether GLP-1R agonists can modify the outcome of cardiac and neurological conditions do exist. Lønborg et al. demonstrated already in 2012 that the administration of the GLP-1R agonist exenatide to patients with ST-segment elevation myocardial infarction (STEMI) treated with percutaneous coronary intervention improved myocardial salvage index [16]. Importantly, a recent study published on Lancet this year and involving 62 patients with Parkinson’s disease (32 treated with exenatide and 30 controls) showed positive effects of exenatide on functional motor scores parameters, which were sustained beyond the period of exposure [17]. This data is in agreement with several functional outcome trials obtained in rodent animal models of Parkinson’s disease in the past fifteen years (reviewed by Athauda et al. [18]) indicating that when animal and human trials evaluate equivalent parameters, translation is possible. Interestingly, CARMELINA® (NCT01897532) and CAROLINA® (NCT01243424) by using the DPP-4i linagliptin, intend to explore post-stroke functional outcome in patients with T2D by using the modified Rankin scale (at day 7/or at hospital discharge as well as at 3–6 months after stroke), and could provide insights to address this gap.

Stroke is a leading cause of major functional disability. T2D both increases stroke incidence and reduces functional stroke recovery [19, 20]. Therefore, when evaluating treatment options it is essential to keep in mind the fundamental distinction between these two aspects. As a consequence, due to the total lack of clinical data addressing the potential efficacy of GLP-1R agonists and DPP-4i on functional parameters after stroke, functional outcome trials using these drugs are highly needed. Preferably both legacy studies, evaluating the functional outcome after the finished outcome trials, and new interventional randomized trials starting within hours after stroke onset.

Notes

Declarations

Authors’ contributions

VD, ML, TK and CP have participated substantially and equally to conception, drafting and editing of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank Hjärt-Lungfonden, Novo Nordisk Foundation, Boehringer Ingelheim Pharma GmbH & Co and STROKE-Riksförbundet for the support provided to our research group.

Competing interests

Work in our laboratory is supported by Boehringer Ingelheim Pharma GmbH & Co. TK is an employee of Boehringer Ingelheim Pharma GmbH & Co.

Availability of data and materials

Not applicable.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
(2)
Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany

References

  1. Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2016;18(3):203–16.View ArticlePubMedPubMed CentralGoogle Scholar
  2. Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, Powers K, Shen H, Egan JM, Sambamurti K, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci USA. 2009;106(4):1285–90.View ArticlePubMedPubMed CentralGoogle Scholar
  3. Darsalia V, Ortsater H, Olverling A, Darlof E, Wolbert P, Nystrom T, Klein T, Sjoholm A, Patrone C. The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes. 2013;62(4):1289–96.View ArticlePubMedPubMed CentralGoogle Scholar
  4. Darsalia V, Klein T, Nystrom T, Patrone C. Glucagon-like receptor 1 agonists and DPP-4 inhibitors: anti-diabetic drugs with anti-stroke potential. Neuropharmacology. 2017. https://doi.org/10.1016/j.neuropharm.2017.08.022.PubMedGoogle Scholar
  5. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation. 2017;136(9):849–70.View ArticlePubMedGoogle Scholar
  6. Avgerinos K, Tziomalos K. Effects of glucose-lowering agents on ischemic stroke. World J Diabetes. 2017;8(6):270–7.View ArticlePubMedPubMed CentralGoogle Scholar
  7. Hemmingsen B, Sonne DP, Metzendorf MI, Richter B. Dipeptidyl-peptidase (DPP)-4 inhibitors and glucagon-like peptide (GLP)-1 analogues for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev. 2017;5:CD012204.PubMedGoogle Scholar
  8. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.View ArticlePubMedPubMed CentralGoogle Scholar
  9. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.View ArticlePubMedGoogle Scholar
  10. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, Chan JC, Choi J, Gustavson SM, Iqbal N, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.View ArticlePubMedGoogle Scholar
  11. Gantz I, Chen M, Suryawanshi S, Ntabadde C, Shah S, O’Neill EA, Engel SS, Kaufman KD, Lai E. A randomized, placebo-controlled study of the cardiovascular safety of the once-weekly DPP-4 inhibitor omarigliptin in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16(1):112.View ArticlePubMedPubMed CentralGoogle Scholar
  12. Zhang Z, Chen X, Lu P, Zhang J, Xu Y, He W, Li M, Zhang S, Jia J, Shao S, et al. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes. Cardiovasc Diabetol. 2017;16(1):31.View ArticlePubMedPubMed CentralGoogle Scholar
  13. Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, Pagidipati NJ, Chan JC, Gustavson SM, Iqbal N, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2017. https://doi.org/10.1016/S2213-8587(17)30412-6.PubMedGoogle Scholar
  14. Barkas F, Elisaf M, Tsimihodimos V, Milionis H. Dipeptidyl peptidase-4 inhibitors and protection against stroke: a systematic review and meta-analysis. Diabetes Metab. 2017;43(1):1–8.View ArticlePubMedGoogle Scholar
  15. Li YR, Tsai SS, Chen DY, Chen ST, Sun JH, Chang HY, Liou MJ, Chen TH. Linagliptin and cardiovascular outcomes in type 2 diabetes after acute coronary syndrome or acute ischemic stroke. Cardiovasc Diabetol. 2018;17(1):2.View ArticlePubMedPubMed CentralGoogle Scholar
  16. Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB, Jorgensen E, Helqvist S, Saunamaki K, Clemmensen P, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–9.View ArticlePubMedGoogle Scholar
  17. Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, Hibbert S, Budnik N, Zampedri L, Dickson J, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1664–75.View ArticlePubMedGoogle Scholar
  18. Athauda D, Foltynie T. Protective effects of the GLP-1 mimetic exendin-4 in Parkinson’s disease. Neuropharmacology. 2017. https://doi.org/10.1016/j.neuropharm.2017.09.023.PubMedGoogle Scholar
  19. Luitse MJ, Biessels GJ, Rutten GE, Kappelle LJ. Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol. 2012;11(3):261–71.View ArticlePubMedGoogle Scholar
  20. Ullberg T, Zia E, Petersson J, Norrving B. Changes in functional outcome over the first year after stroke: an observational study from the Swedish stroke register. Stroke. 2015;46(2):389–94.View ArticlePubMedGoogle Scholar

Copyright

© The Author(s) 2018

Advertisement