Rice JB, Desai U, Cummings AKG, Birnbaum HG, Skornicki M, Parsons NB. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care. 2013;37(3):651–8.
Article
PubMed
Google Scholar
Yazdanpanah L, Nasiri M, Adarvishi S. Literature review on the management of diabetic foot ulcer. World J Diabetes. 2015;6(1):37–53.
Article
PubMed
PubMed Central
Google Scholar
Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet. 2005;366(9498):1719–24.
Article
PubMed
Google Scholar
Tennvall GR, Apelqvist J. Health-economic consequences of diabetic foot lesions. Clin Infect Dis. 2004;39(Suppl 2):132–9.
Article
Google Scholar
Gordois A, Scuffham P, Shearer A, Oglesby A, Tobian JA. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care. 2003;26(6):1790–5.
Article
PubMed
Google Scholar
Ezzati M. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.
Article
Google Scholar
Eliasson M, Talbäck M, Rosén M. Improved survival in both men and women with diabetes between 1980 and 2004—a cohort study in Sweden. Cardiovasc Diabetol. 2008;7:32.
Article
PubMed
PubMed Central
Google Scholar
Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016;4(6):537–47.
Article
PubMed
Google Scholar
Crawford F, Cezard G, Chappell FM, Murray GD, Price JF, Sheikh A, et al. A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS). Health Technol Assess. 2015;19(57):1–207.
Article
PubMed
PubMed Central
Google Scholar
Moulik PK, Mtonga R, Gill GV. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. Diabetes Care. 2003;26(2):491–4.
Article
PubMed
Google Scholar
Brownrigg JR, Hinchliffe RJ, Apelqvist J, Boyko EJ, Fitridge R, Mills JL, et al. Performance of prognostic markers in the prediction of wound healing or amputation among patients with foot ulcers in diabetes: a systematic review. Diabetes Metab Res Rev. 2016;32(Suppl 1):128–35.
Article
CAS
PubMed
Google Scholar
World Health Organization: Global burden of diabetes. In: Global report on diabetes. World Health Organization. 2016. http://www.who.int/diabetes/global-report/en/. Accessed 8 Jun 2016.
Norman PE, Schoen DE, Gurr JM, Kolybaba ML. High rates of amputation among Indigenous people in Western Australia. Med J Aust. 2010;192(7):421.
PubMed
Google Scholar
Venermo M, Manderbacka K, Ikonen T, Keskimäki I, Winel K, Sund R. Amputations and socioeconomic position among persons with diabetes mellitus, a population-based register study. BMJ Open. 2013. doi:10.1136/bmjopen-2012-002395.
Skrepnek GH, Mills JL, Armstrong DG. A diabetic emergency one million feet long: Disparities and burdens of illness among diabetic foot ulcer cases within emergency departments in the United States, 2006–2010. PLoS One. 2015. doi:10.1371/journal.pone.0134914.
Baba M, Davis WA, Norman PE, Davis TM. Temporal changes in the prevalence and associates of diabetes-related lower extremity amputations in patients with type 2 diabetes: the Fremantle diabetes study. Cardiovasc Diabetol. 2015;14:152.
Article
PubMed
PubMed Central
Google Scholar
Bergin SM, Alford JB, Allard BP, Gurr JM, Holland EL, Horsley MW, et al. A limb lost every 3 hours: can Australia reduce amputations in people with diabetes? Med J Aust. 2012;197(4):197–8.
Article
PubMed
Google Scholar
Lazzarini PA, Gurr JM, Rogers JR, Schox A, Bergin SM. Diabetes foot disease: the Cinderella of Australian diabetes management? J Foot Ankle Res. 2012;5(1):24.
Article
PubMed
PubMed Central
Google Scholar
Frykberg RG. Diabetic foot ulcers: pathogenesis and management. Am Fam Physician. 2002;66(9):1655–62.
PubMed
Google Scholar
Henshaw FR, Boughton P, Lo L, McLennan SV, Twigg SM. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: Potential role for CTGF in human diabetic foot ulcer healing. J Diabetes Res. 2015. doi:10.1155/2015/236238.
Noor S, Zubair M, Ahmad J. Diabetic foot ulcer—a review on pathophysiology, classification and microbial etiology. Diabetes Metab Syndr. 2015;9(3):192–9.
Article
PubMed
Google Scholar
Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014;31(8):817–36.
Article
CAS
PubMed
Google Scholar
Mangialardi G, Madeddu P. Bone marrow-derived stem cells: a mixed blessing in the multifaceted world of diabetic complications. Curr Diab Rep. 2016;16:43.
Article
PubMed
PubMed Central
CAS
Google Scholar
DiPersio JF. Diabetic stem-cell “mobilopathy”. N Engl J Med. 2011;365(26):2536–8.
Article
CAS
PubMed
Google Scholar
Stirban A. Microvascular dysfunction in the context of diabetic neuropathy. Curr Diab Rep. 2014;14(11):1–9.
Article
CAS
Google Scholar
Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest. 2007;117(5):1249–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci USA. 2009;106(32):13505–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frank S, Hubner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem. 1995;270(21):12607–13.
Article
CAS
PubMed
Google Scholar
Boulton AJM, Armstrong DG, Albert SF, Frykberg RG, Hellman R, Kirkman MS, et al. Comprehensive foot examination and risk assessment. Diabetes Care. 2008;31(8):1679–85.
Article
PubMed
PubMed Central
Google Scholar
Mulder G, Tenenhaus M, D’Souza GF. Reduction of diabetic foot ulcer healing times through use of advanced treatment modalities. Int J Lower Extrem Wounds. 2014;13(4):335–46.
Article
Google Scholar
Eldor R, Raz I, Yehuda AB, Boulton AJM. New and experimental approaches to treatment of diabetic foot ulcers: a comprehensive review of emerging treatment strategies. Diabet Med. 2004;21(11):1161–73.
Article
CAS
PubMed
Google Scholar
Braun LR, Fisk WA, Lev-Tov H, Kirsner RS, Isseroff RR. Diabetic foot ulcer: an evidence-based treatment update. Am J Clin Dermatol. 2014;15(3):267–81.
Article
PubMed
Google Scholar
Amin N, Doupis J. Diabetic foot disease: from the evaluation of the “foot at risk” to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016;7(7):153–64.
Article
PubMed
PubMed Central
Google Scholar
Alavi A, Sibbald RG, Mayer D, Goodman L, Botros M, Armstrong DG, et al. Diabetic foot ulcers: Part II. Management. J Am Acad Dermatol. 2014;70(1):21.e1–24.
Article
Google Scholar
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.
Article
CAS
PubMed
Google Scholar
Heusch G, Bøtker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol. 2015;65(2):177–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am J Physiol Heart Circulatory Physiol. 2003;285(254–2):H579–88.
Article
CAS
Google Scholar
Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87(3):893–9.
Article
CAS
PubMed
Google Scholar
Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106(23):2881–3.
Article
CAS
PubMed
Google Scholar
Sivaraman V, Pickard JM, Hausenloy DJ. Remote ischaemic conditioning: cardiac protection from afar. Anaesthesia. 2015;70(6):732–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moses MA, Addison PD, Neligan PC, Ashrafpour H, Huang N, McAllister SE, et al. Inducing late phase of infarct protection in skeletal muscle by remote preconditioning: Efficacy and mechanism. Am J Physiol Regul Integr Comp Physiol. 2005;289(658–6):R1609–17.
Article
CAS
PubMed
Google Scholar
Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46(3):450–6.
Article
CAS
PubMed
Google Scholar
Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79(18):1853–61.
Article
PubMed
Google Scholar
Shaked G, Czeiger D, AbuArar A, Katz T, Harman-Boehm I, Sebbag G. Intermittent cycles of remote ischemic preconditioning augment diabetic foot ulcer healing. Wound Repair Regen. 2015;23(2):191–6.
Article
PubMed
Google Scholar
Jones H, Hopkins N, Bailey TG, Green DJ, Cable NT, Thijssen DH. Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. Am J Hypertens. 2014;27(7):918–25.
Article
PubMed
Google Scholar
Sharma V, Marsh R, Cunniffe B, Cardinale M, Yellon DM, Davidson SM. From protecting the heart to improving athletic performance—the benefits of local and remote ischaemic preconditioning. Cardiovasc Drugs Ther. 2015;29(6):573–88.
Article
PubMed Central
Google Scholar
Pickard JM, Bøtker HE, Crimi G, Davidson B, Davidson SM, Dutka D, et al. Remote ischemic conditioning: from experimental observation to clinical application: Report from the 8th Biennial Hatter Cardiovascular Institute Workshop. Basic Res Cardiol. 2015;110(1):1–13.
Article
Google Scholar
Przyklenk K. Ischaemic conditioning: pitfalls on the path to clinical translation. Br J Pharmacol. 2015;172(8):1961–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jonker SJ, Menting TP, Warle MC, Ritskes-Hoitinga M, Wever KE. Preclinical evidence for the efficacy of ischemic postconditioning against renal ischemia-reperfusion injury, a systematic review and meta-analysis. PLoS One. 2016;11(3):e0150863.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu J, Liu S, Jia P, Xu X, Song N, Zhang T, et al. Protection of remote ischemic preconditioning against acute kidney injury: a systematic review and meta-analysis. Crit Care. 2016;20(1):111.
Article
PubMed
PubMed Central
Google Scholar
Candilio L, Malik A, Hausenloy DJ. Protection of organs other than the heart by remote ischemic conditioning. J Cardiovasc Med (Hagerstown). 2013;14(3):193–205.
Article
Google Scholar
Veighey K, Macallister RJ. Clinical applications of remote ischemic preconditioning. Cardiol Res Pract. 2012;2012:620681.
PubMed
PubMed Central
Google Scholar
Addison PD, Neligan PC, Ashrafpour H, Khan A, Zhong A, Moses M, et al. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol. 2003;285(4):H1435–43.
Article
CAS
PubMed
Google Scholar
Laude K, Beauchamp P, Thuillez C, Richard V. Endothelial protective effects of preconditioning. Cardiovasc Res. 2002;55(3):466–73.
Article
CAS
PubMed
Google Scholar
Contractor H, Stottrup NB, Cunnington C, Manlhiot C, Diesch J, Ormerod JO, et al. Aldehyde dehydrogenase-2 inhibition blocks remote preconditioning in experimental and human models. Basic Res Cardiol. 2013;108(3):343.
Article
PubMed
CAS
Google Scholar
Epps J, Dieberg G, Smart NA. Repeat remote ischaemic pre-conditioning for improved cardiovascular function in humans: a systematic review. IJC Heart Vasc. 2016;11:55–8.
Article
Google Scholar
Thijssen DH, Maxwell J, Green DJ, Cable NT, Jones H. Repeated ischaemic preconditioning: A novel therapeutic intervention and potential underlying mechanisms. Exp Physiol. 2016;101(6):677–92. doi:10.1113/EP085566.
Article
CAS
PubMed
Google Scholar
Madias JE. Sustained blood pressure lowering effect of twice daily remote ischemic conditioning sessions in a normotensive/prehypertensive subject. Int J Cardiol. 2015;182(C):392–4.
Article
PubMed
Google Scholar
Gourine A, Gourine AV. Neural mechanisms of cardioprotection. Physiology. 2014;29(2):133–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol. 2000;278(5):H1571–6.
CAS
PubMed
Google Scholar
Tang ZL, Dai W, Li YJ, Deng HW. Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine. Naunyn Schmiedebergs Arch Pharmacol. 1999;359(3):243–7.
Article
CAS
PubMed
Google Scholar
Aimo A, Borrelli C, Giannoni A, Pastormerlo LE, Barison A, Mirizzi G, et al. Cardioprotection by remote ischemic conditioning: mechanisms and clinical evidences. World J Cardiol. 2015;7(10):621–32.
Article
PubMed
PubMed Central
Google Scholar
Wolfrum S, Nienstedt J, Heidbreder M, Schneider K, Dominiak P, Dendorfer A. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul Pept. 2005;127(1–3):217–24.
Article
CAS
PubMed
Google Scholar
Jensen RV, Stottrup NB, Kristiansen SB, Botker HE. Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res Cardiol. 2012;107(5):1–9.
Article
CAS
Google Scholar
Lim SY, Yellon DM, Hausenloy DJ. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol. 2010;105(5):651–5.
Article
PubMed
Google Scholar
Gross ER, Hsu AK, Urban TJ, Mochly-Rosen D, Gross GJ. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C. Basic Res Cardiol. 2013;108(5):381.
Article
PubMed
CAS
Google Scholar
Donato M, Buchholz B, Rodriguez M, Perez V, Inserte J, Garcia-Dorado D, et al. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol. 2013;98(2):425–34.
Article
PubMed
Google Scholar
Mastitskaya S, Marina N, Gourine A, Gilbey MP, Spyer KM, Teschemacher AG, et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res. 2012;95(4):487–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pickard JM, Davidson SM, Hausenloy DJ, Yellon DM. Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Res Cardiol. 2016;111(4):50.
Article
PubMed
PubMed Central
Google Scholar
Oba T, Yasukawa H, Nagata T, Kyogoku S, Minami T, Nishihara M, et al. Renal nerve-mediated erythropoietin release confers cardioprotection during remote ischemic preconditioning. Circ J. 2015;79(7):1557–67.
Article
PubMed
Google Scholar
Ding YF, Zhang MM, He RR. Role of renal nerve in cardioprotection provided by renal ischemic preconditioning in anesthetized rabbits. Acta Physiol Sin. 2001;53(1):7–12.
CAS
Google Scholar
Mastitskaya S, Basalay M, Hosford PS, Ramage AG, Gourine A, Gourine AV. Identifying the source of a humoral factor of remote (pre)conditioning cardioprotection. PLoS One. 2016;11(2):e0150108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Basalay M, Barsukevich V, Mastitskaya S, Mrochek A, Pernow J, Sjoquist PO, et al. Remote ischaemic pre- and delayed postconditioning—similar degree of cardioprotection but distinct mechanisms. Exp Physiol. 2012;97(8):908–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond). 2009;117(5):191–200.
Article
CAS
PubMed
Google Scholar
Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116(4):674–99.
Article
CAS
PubMed
Google Scholar
Hibert P, Prunier-Mirebeau D, Beseme O, Chwastyniak M, Tamareille S, Lamon D, et al. Apolipoprotein A-I is a potential mediator of remote ischemic preconditioning. PLoS One. 2013;8(10):e77211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalakech H, Hibert P, Prunier-Mirebeau D, Tamareille S, Letournel F, Macchi L, et al. RISK and SAFE signaling pathway involvement in apolipoprotein A-I-induced cardioprotection. PLoS One. 2014;9(9):e107950.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olenchock BA, Moslehi J, Baik AH, Davidson SM, Williams J, Gibson WJ, et al. EGLN1 inhibition and rerouting of α-ketoglutarate suffice for remote ischemic protection. Cell. 2016;164(5):884–95.
Article
CAS
PubMed
Google Scholar
Giricz Z, Varga ZV, Baranyai T, Sipos P, Pálóczi K, Kittel Á, et al. Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol. 2014;68:75–8.
Article
CAS
PubMed
Google Scholar
Hausenloy DJ, Yellon DM. The second window of preconditioning (SWOP) where are we now? Cardiovasc Drugs Ther. 2010;24(3):235–54.
Article
PubMed
Google Scholar
Bolli R. The late phase of preconditioning. Circ Res. 2000;87(11):972–83.
Article
CAS
PubMed
Google Scholar
Kamota T, Li T-S, Morikage N, Murakami M, Ohshima M, Kubo M, et al. Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. J Am Coll Cardiol. 2009;53(19):1814–22.
Article
CAS
PubMed
Google Scholar
Czeiger D, Dukhno O, Douvdevani A, Porat Y, Shimoni D, Fulga V, et al. Transient extremity ischemia augments CD34+ progenitor cell availability. Stem Cell Rev. 2011;7(3):639–45.
Article
PubMed
Google Scholar
Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V, et al. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics. 2004;19(1):143–50.
Article
CAS
PubMed
Google Scholar
Shimizu M, Saxena P, Konstantinov IE, Cherepanov V, Cheung MM, Wearden P, et al. Remote ischemic preconditioning decreases adhesion and selectively modifies functional responses of human neutrophils. J Surg Res. 2010;158(1):155–61.
Article
CAS
PubMed
Google Scholar
Cai ZP, Parajuli N, Zheng X, Becker L. Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10. Basic Res Cardiol. 2012. doi:10.1007/s00395-012-0277-1.
Hess DC, Blauenfeldt RA, Andersen G, Hougaard KD, Hoda MN, Ding Y, et al. Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nat Rev Neurol. 2015;11(12):698–710.
Article
CAS
PubMed
Google Scholar
Liu XQ, Sheng R, Qin ZH. The neuroprotective mechanism of brain ischemic preconditioning. Acta Pharmacol Sin. 2009;30(8):1071–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zarbock A, Kellum JA. Remote ischemic preconditioning and protection of the kidney-a novel therapeutic option. Crit Care Med. 2016;44(3):607–16.
Article
CAS
PubMed
Google Scholar
Jones WK, Fan GC, Liao S, Zhang JM, Wang Y, Weintraub NL, et al. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation. 2009;120(11 Suppl):S1–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross GJ, Baker JE, Moore J, Falck JR, Nithipatikom K. Abdominal surgical incision induces remote preconditioning of trauma (RPCT) via activation of bradykinin receptors (BK2R) and the cytochrome p450 epoxygenase pathway in canine hearts. Cardiovasc Drugs Ther. 2011;25(6):517–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redington KL, Disenhouse T, Strantzas SC, Gladstone R, Wei C, Tropak MB, et al. Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res Cardiol. 2012. doi:10.1007/s00395-011-0241-5.
Redington KL, Disenhouse T, Li J, Wei C, Dai X, Gladstone R, et al. Electroacupuncture reduces myocardial infarct size and improves post-ischemic recovery by invoking release of humoral, dialyzable, cardioprotective factors. J Physiol Sci. 2013;63(3):219–23.
Article
PubMed
Google Scholar
White A, Ernst E. A brief history of acupuncture. Rheumatology (Oxford). 2004;43(5):662–3.
Article
CAS
Google Scholar
Bell RM, Bøtker HE, Carr RD, Davidson SM, Downey JM, Dutka DP, et al. 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Basic Res Cardiol. 2016;111(4):1–13.
Article
Google Scholar
Le Page S, Bejan-Angoulvant T, Angoulvant D, Prunier F. Remote ischemic conditioning and cardioprotection: a systematic review and meta-analysis of randomized clinical trials. Basic Res Cardiol. 2015;110(2):11.
Article
PubMed
CAS
Google Scholar
King N, Dieberg G, Smart NA. Remote ischaemic pre-conditioning does not affect clinical outcomes following coronary artery bypass grafting A systematic review and meta-analysis. Clin Trials Regul Sci Cardiol. 2016;17:1–8.
Article
Google Scholar
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 2014;66(4):1142–74.
Article
CAS
PubMed
Google Scholar
Sardar P, Chatterjee S, Kundu A, Samady H, Owan T, Giri J, et al. Remote ischemic preconditioning in patients undergoing cardiovascular surgery: evidence from a meta-analysis of randomized controlled trials. Int J Cardiol. 2016;221:34–41.
Article
PubMed
Google Scholar
McCafferty K, Forbes S, Thiemermann C, Yaqoob MM. The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Dis Model Mech. 2014;7(12):1321–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Iliodromitis EK, Cohen MV, Dagres N, Andreadou I, Kremastinos DT, Downey JM. What is wrong with cardiac conditioning? We may be shooting at moving targets. J Cardiovasc Pharmacol Ther. 2015;20(4):357–69.
Article
PubMed
Google Scholar
Sivaraman V, Yellon DM. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther. 2014;19(1):83–96.
Article
CAS
PubMed
Google Scholar
Fan Y, Yang S, Zhang X, Cao Y, Huang Y. Comparison of cardioprotective efficacy resulting from a combination of atorvastatin and ischaemic post-conditioning in diabetic and non-diabetic rats. Clin Exp Pharmacol Physiol. 2012;39(11):938–43.
Article
CAS
PubMed
Google Scholar
Kloner RA. Remote ischemic conditioning: Its benefits and limitations. J Cardiovasc Pharmacol Ther. 2016;21(2):219–21. doi:10.1177/1074248415618816.
Article
PubMed
Google Scholar
Sardar P, Chatterjee S, Kundu A, Samady H, Owan T, Giri J, et al. Remote ischemic preconditioning in patients undergoing cardiovascular surgery: Evidence from a meta-analysis of randomized controlled trials. Int J Cardiol. 2016;221:34–41.
Article
PubMed
Google Scholar
Lee T-M, Chou T-F. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab. 2003;88(2):531–7.
Article
CAS
PubMed
Google Scholar
Wider J, Przyklenk K. Ischemic conditioning: the challenge of protecting the diabetic heart. Cardiovasc Diagn Ther. 2014;4(5):383–96.
PubMed
PubMed Central
Google Scholar
Lejay A, Fang F, John R, Van JAD, Barr M, Thaveau F, et al. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol. 2016;91:11–22.
Article
CAS
PubMed
Google Scholar
Whittington HJ, Babu GG, Mocanu MM, Yellon DM, Hausenloy DJ. The diabetic heart: too sweet for its own good? Cardiol Res Pract. 2012;2012:845698.
PubMed
PubMed Central
Google Scholar
Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol. 2012;11:67.
Article
PubMed
PubMed Central
Google Scholar
D’Ascenzo F, Moretti C, Omede P, Cerrato E, Cavallero E, Er F, et al. Cardiac remote ischaemic preconditioning reduces periprocedural myocardial infarction for patients undergoing percutaneous coronary interventions: a meta-analysis of randomised clinical trials. EuroIntervention. 2014;9(12):1463–71.
Article
PubMed
Google Scholar
Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes. 2005;54(8):2360–4.
Article
CAS
PubMed
Google Scholar
Sivaraman V, Hausenloy DJ, Wynne AM, Yellon DM. Preconditioning the diabetic human myocardium. J Cell Mol Med. 2010;14(6b):1740–6.
Article
CAS
PubMed
Google Scholar
Whittington HJ, Harding I, Stephenson CI, Bell R, Hausenloy DJ, Mocanu MM, et al. Cardioprotection in the aging, diabetic heart: the loss of protective Akt signalling. Cardiovasc Res. 2013;99(4):694–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouchard JF, Lamontagne D. Protection afforded by preconditioning to the diabetic heart against ischaemic injury. Cardiovasc Res. 1998;37(1):82–90.
Article
CAS
PubMed
Google Scholar
Przyklenk K, Maynard M, Greiner DL, Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. 2011;14(5):781–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross ER, Hsu AK, Gross GJ. Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3β. Diabetes. 2007;56(1):127–36.
Article
CAS
PubMed
Google Scholar
Badalzadeh R, Mohammadi M, Yousefi B, Farajnia S, Najafi M, Mohammadi S. Involvement of glycogen synthase kinase-3 beta and oxidation status in the loss of cardioprotection by postconditioning in chronic diabetic male rats. Adv Pharm Bull. 2015;5(3):321–7.
Article
PubMed
PubMed Central
Google Scholar
Wang B, Raedschelders K, Shravah J, Hui Y, Safaei HG, Chen DDY, et al. Differences in myocardial PTEN expression and Akt signalling in type 2 diabetic and nondiabetic patients undergoing coronary bypass surgery. Clin Endocrinol (Oxf). 2011;74(6):705–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
del Valle HF, Lascano EC, Negroni JA. Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels. Cardiovasc Res. 2002;55(3):642–59.
Article
PubMed
Google Scholar
Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, et al. Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280(4):H1744–50.
CAS
PubMed
Google Scholar
Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M. Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res. 2006;69(2):450–8.
Article
CAS
PubMed
Google Scholar
Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW. Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2007;292(2):R920–6.
Article
CAS
PubMed
Google Scholar
Ghosh S, Standen NB, Galinianes M. Failure to precondition pathological human myocardium. J Am Coll Cardiol. 2001;37(3):711–8.
Article
CAS
PubMed
Google Scholar
Lu R, Hu CP, Peng J, Deng HW, Li YJ. Role of calcitonin gene-related peptide in ischaemic preconditioning in diabetic rat hearts. Clin Exp Pharmacol Physiol. 2001;28(5–6):392–6.
Article
CAS
PubMed
Google Scholar
Sotníková R, Nedelčevová J, Navarová J, Nosáĺová V, Drábiková K, Szöcs K, et al. Protection of the vascular endothelium in experimental situations. Interdiscip Toxicol. 2011;4(1):20–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Badalzadeh R, Mokhtari B, Yavari R. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. J Physiol Sci. 2015;65(3):201–15.
Article
PubMed
Google Scholar
Anderson EJ, Rodriguez E, Anderson CA, Thayne K, Chitwood WR, Kypson AP. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol. 2011;300(1):H118–24.
Article
CAS
PubMed
Google Scholar
Jensen RV, Zachara NE, Nielsen PH, Kimose HH, Kristiansen SB, Botker HE. Impact of o-GIcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients. Cardiovasc Res. 2013;97(2):369–78.
Article
CAS
PubMed
Google Scholar
Feuvray D, Lopaschuk GD. Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity of the diabetic heart to ischemic injury is decreased. Cardiovasc Res. 1997;34(1):113–20.
Article
CAS
PubMed
Google Scholar
Ma G, Al-Shabrawey M, Johnson JA, Datar R, Tawfik HE, Guo D, et al. Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn Schmiedebergs Arch Pharmacol. 2006;373(6):415–27.
Article
CAS
PubMed
Google Scholar
Ravingerova T, Neckar J, Kolar F. Ischemic tolerance of rat hearts in acute and chronic phases of experimental diabetes. Mol Cell Biochem. 2003;249(1–2):167–74.
Article
CAS
PubMed
Google Scholar
Ramakrishna V, Jailkhani R. Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol. 2008;45(1):41–6.
Article
CAS
PubMed
Google Scholar
Baranyai T, Nagy CT, Koncsos G, Onodi Z, Karolyi-Szabo M, Makkos A, et al. Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning. Cardiovasc Diabetol. 2015;14:151.
Article
PubMed
PubMed Central
Google Scholar
Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol. 2000;278(4):H1218–24.
CAS
PubMed
Google Scholar
Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC. Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am J Physiol. 1998;275(2 Pt 2):H721–5.
CAS
PubMed
Google Scholar
Liu M, Zhou B, Xia ZY, Zhao B, Lei SQ, Yang QJ, et al. Hyperglycemia-induced inhibition of DJ-1 expression compromised the effectiveness of ischemic postconditioning cardioprotection in rats. Oxid Med Cell Longev. 2013;2013:564902.
PubMed
PubMed Central
Google Scholar
Fullmer TM, Pei S, Zhu Y, Sloan C, Manzanares R, Henrie B, et al. Insulin suppresses ischemic preconditioning-mediated cardioprotection through Akt-dependent mechanisms. J Mol Cell Cardiol. 2013;64:20–9.
Article
CAS
PubMed
Google Scholar
Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH. Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology. 2011;114(6):1364–72.
Article
CAS
PubMed
Google Scholar
Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, Cabrelle A, et al. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia–reperfusion injury in rats. Diabetologia. 2006;49(12):3075–84.
Article
CAS
PubMed
Google Scholar
Dang Z, Maselli D, Spinetti G, Sangalli E, Carnelli F, Rosa F, et al. Sensory neuropathy hampers nociception-mediated bone marrow stem cell release in mice and patients with diabetes. Diabetologia. 2015;58(11):2653–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fadini GP, Ferraro F, Quaini F, Asahara T, Madeddu P. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med. 2014;3(8):949–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling L, Shen Y, Wang K, Jiang C, Fang C, Ferro A, et al. Worse clinical outcomes in acute myocardial infarction patients with type 2 diabetes mellitus: Relevance to impaired endothelial progenitor cells mobilization. PLoS One. 2012. doi:10.1371/journal.pone.0050739.
Fadini GP, Avogaro A. Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis. 2013;229(1):23–9.
Article
CAS
PubMed
Google Scholar
Rana A, Goyal N, Ahlawat A, Jamwal S, Reddy BV, Sharma S. Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders. Perfusion. 2015;30(2):94–105.
Article
CAS
PubMed
Google Scholar
Yadav HN, Singh M, Sharma PL. Modulation of the cardioprotective effect of ischemic preconditioning in hyperlipidaemic rat heart. Eur J Pharmacol. 2010;643(1):78–83.
Article
CAS
PubMed
Google Scholar
Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol. 2008;295(4):H1580–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner C, Ebner B, Tillack D, Strasser RH, Weinbrenner C. Cardioprotection by ischemic postconditioning is abrogated in hypertrophied myocardium of spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2013;61(1):35–41.
Article
CAS
PubMed
Google Scholar
Buchholz B, Donato M, D’Annunzio V, Gelpi RJ. Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem. 2014;392(1–2):1–12.
Article
CAS
PubMed
Google Scholar
Helgeland E, Breivik L, Sishi BJ, Engelbrecht AM, Jonassen AK. Intermittent insulin treatment mimics ischemic postconditioning via mitoKATP channels, ROS, and RISK. Scand Cardiovasc J. 2015;49(5):270–9.
Article
PubMed
CAS
Google Scholar
Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y. The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2011;106(6):925–52.
Article
CAS
PubMed
Google Scholar
Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ, Yellon DM, Mocanu MM. Chronic metformin associated cardioprotection against infarction: not just a glucose lowering phenomenon. Cardiovasc Drugs Ther. 2013;27(1):5–16.
Article
CAS
PubMed
Google Scholar
Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, et al. Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol. 2008;103(3):274–84.
Article
CAS
PubMed
Google Scholar
Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–9.
Article
CAS
PubMed
Google Scholar
Kukreja RC, Salloum F, Das A, Ockaili R, Yin C, Bremer YA, et al. Pharmacological preconditioning with sildenafil: basic mechanisms and clinical implications. Vascul Pharmacol. 2005;42(5–6):219–32.
Article
CAS
PubMed
Google Scholar
Ibanez B, Prat-Gonzalez S, Speidl WS, Vilahur G, Pinero A, Cimmino G, et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation. 2007;115(23):2909–16.
Article
CAS
PubMed
Google Scholar
Gu W, Kehl F, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR. Simvastatin restores ischemic preconditioning in the presence of hyperglycemia through a nitric oxide-mediated mechanism. Anesthesiology. 2008;108(4):634–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hausenloy DJ, Wynne AM, Mocanu MM, Yellon DM. Glimepiride treatment facilitates ischemic preconditioning in the diabetic heart. J Cardiovasc Pharmacol Ther. 2013;18(3):263–9.
Article
CAS
PubMed
Google Scholar
Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y. The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol. 2010;298(5):H1454–65.
Article
CAS
PubMed
Google Scholar
Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ, et al. Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res. 2010;106(1):129–32.
Article
CAS
PubMed
Google Scholar
Kleinbongard P, Neuhauser M, Thielmann M, Kottenberg E, Peters J, Jakob H, et al. Confounders of cardioprotection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting. Cardiology. 2016;133(2):128–33.
Article
CAS
PubMed
Google Scholar
Russell JW, Zilliox LA. Diabetic neuropathies. Continuum (Minneap Minn). 2014;20(5 Peripheral Nervous System Disorders):1226–40.
Google Scholar
Tentolouris N, Pagoni S, Tzonou A, Katsilambros N. Peripheral neuropathy does not invariably coexist with autonomic neuropathy in diabetes mellitus. Eur J Intern Med. 2001;12(1):20–7.
Article
PubMed
Google Scholar
Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–93.
Article
PubMed
PubMed Central
Google Scholar
Rota E, Quadri R, Fanti E, Isoardo G, Poglio F, Tavella A, et al. Electrophysiological findings of peripheral neuropathy in newly diagnosed type II diabetes mellitus. J Peripher Nerv Syst. 2005;10(4):348–53.
Article
PubMed
Google Scholar
Alcayaga-Miranda F, Varas-Godoy M, Khoury M. Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration. Stem Cells Intl. 2016;2016:3409169.
Article
CAS
Google Scholar
Elsharawy MA, Naim M, Greish S. Human CD34+ stem cells promote healing of diabetic foot ulcers in rats. Interact CardioVasc Thorac Surg. 2012;14(3):288–93.
Article
PubMed
Google Scholar
Albiero M, Poncina N, Tjwa M, Ciciliot S, Menegazzo L, Ceolotto G, et al. Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes. 2014;63(4):1353–65.
Article
CAS
PubMed
Google Scholar
Ferraro F, Lymperi S, Mendez-Ferrer S, Saez B, Spencer JA, Yeap BY, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med. 2011;3(104):104ral.
Article
CAS
Google Scholar
Busik JV, Tikhonenko M, Bhatwadekar A, Opreanu M, Yakubova N, Caballero S, et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med. 2009;206(13):2897–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407–21.
Article
CAS
PubMed
Google Scholar
Verrotti A, Prezioso G, Scattoni R, Chiarelli F. Autonomic neuropathy in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5:e205.
Google Scholar
Pop-Busui R. Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care. 2010;33(2):434–41.
Article
PubMed
PubMed Central
Google Scholar
Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes. 2014;5(1):17–39.
Article
PubMed
PubMed Central
Google Scholar
DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and diagnosing heart disease. “A clinical perspective”. Heart Int. 2014;9(2):37–44.
PubMed
PubMed Central
Google Scholar
Charnogursky GA, Emanuele NV, Emanuele MA. Neurologic complications of diabetes. Curr Neurol Neurosci Rep. 2014. doi:10.1007/s11910-014-0457-5.
Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur J Intern Med. 2012;23(6):499–505.
Article
CAS
PubMed
Google Scholar
Jones KL, Russo A, Stevens JE, Wishart JM, Berry MK, Horowitz M. Predictors of delayed gastric emptying in diabetes. Diabetes Care. 2001;24(7):1264–9.
Article
CAS
PubMed
Google Scholar
Donazzan L, Mahfoud F, Schirmer SH, Bohm M. Renal nerve ablation. Heart. 2015;101(4):320–8.
Article
PubMed
Google Scholar
Bosman DR, Osborne CA, Marsden JT, Macdougall IC, Gardner WN, Watkins PJ. Erythropoietin response to hypoxia in patients with diabetic autonomic neuropathy and non-diabetic chronic renal failure. Diabet Med. 2002;19(1):65–9.
Article
CAS
PubMed
Google Scholar
Juhn MS, Parsons B, Varvara R, Sadosky A. Pregabalin for painful diabetic peripheral neuropathy: strategies for dosing, monotherapy vs. Combination therapy, treatment-refractory patients, and adverse events. Curr Med Res Opin. 2015;31(5):1017–26.
Article
CAS
PubMed
Google Scholar
Alles SR, Smith PA. The anti-allodynic gabapentinoids: myths, paradoxes, and acute effects. Neuroscientist. 2016. doi:10.1177/1073858416628793.
Fehrenbacher JC, Taylor CP, Vasko MR. Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain. 2003;105(1–2):133–41.
Article
CAS
PubMed
Google Scholar
Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia. 2004;45(Suppl 6):13–8.
Article
CAS
PubMed
Google Scholar
Li D, Li NS, Chen QQ, Guo R, Xu PS, Deng HW, et al. Calcitonin gene-related peptide-mediated cardioprotection of postconditioning in isolated rat hearts. Regul Pept. 2008;147(1–3):4–8.
Article
CAS
PubMed
Google Scholar
Papanas N, Ziegler D. New vistas in the diagnosis of diabetic polyneuropathy. Endocrine. 2014;47(3):690–8.
Article
CAS
PubMed
Google Scholar
Dyck PJ, Herrmann DN, Staff NP, Dyck PJ. Assessing decreased sensation and increased sensory phenomena in diabetic polyneuropathies. Diabetes. 2013;62(11):3677–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki T, Shiota M, Sano S, et al. Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. Int J Cardiol. 2015;178:239–46.
Article
PubMed
Google Scholar
Liang Y, Li YP, He F, Liu XQ, Zhang JY. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease. Braz J Med Biol Res. 2015;48(6):568–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karakoyun R, Koksoy C, Yilmaz TU, Altun H, Banli O, Albayrak A, et al. The angiogenic effects of ischemic conditioning in experimental critical limb ischemia. Eur J Vasc Endovasc Surg. 2014;47(2):172–9.
Article
CAS
PubMed
Google Scholar
Wei M, Xin P, Li S, Tao J, Li Y, Li J, et al. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ Res. 2011;108(10):1220–5.
Article
CAS
PubMed
Google Scholar
Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE. Remote limb ischemic conditioning enhances motor learning in healthy humans. J Neurophysiol. 2015;113(10):3708–19.
Article
PubMed
PubMed Central
Google Scholar
Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics. 2015;12(3):667–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Depre C, Park JY, Shen YT, Zhao X, Qiu H, Yan L, et al. Molecular mechanisms mediating preconditioning following chronic ischemia differ from those in classical second window. Am J Physiol Heart Circ Physiol. 2010;299(3):H752–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen YT, Depre C, Yan L, Park JY, Tian B, Jain K, et al. Repetitive ischemia by coronary stenosis induces a novel window of ischemic preconditioning. Circulation. 2008;118(19):1961–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luca MC, Liuni A, McLaughlin K, Gori T, Parker JD. Daily ischemic preconditioning provides sustained protection from ischemia-reperfusion induced endothelial dysfunction: A human study. J Am Heart Assoc. 2013. doi:10.1161/JAHA.112.000075.
Kimura M, Ueda K, Goto C, Jitsuiki D, Nishioka K, Umemura T, et al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27(6):1403–10.
Article
CAS
PubMed
Google Scholar
Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg. 1999;68(5):1905–12.
Article
CAS
PubMed
Google Scholar
Takizawa S, Nagata E, Nakayama T, Masuda H, Asahara T. Recent progress in endothelial progenitor cell culture systems: potential for stroke therapy. Neurol Med Chir (Tokyo). 2016;56(6):302–9.
Article
PubMed
PubMed Central
Google Scholar
Martin A, Komada MR, Sane DC. Abnormal angiogenesis in diabetes mellitus. Med Res Rev. 2003;23(2):117–45.
Article
CAS
PubMed
Google Scholar
Thom SR, Hampton M, Troiano MA, Mirza Z, Malay DS, Shannon S, et al. Measurements of CD34+/CD45-dim stem cells predict healing of diabetic neuropathic wounds. Diabetes. 2016;65(2):486–97.
Article
CAS
PubMed
Google Scholar
Jeong J-O, Kim M-O, Kim H, Lee M-Y, Kim S-W, Ii M, et al. Dual angiogenic and neurotrophic effects of bone marrow–derived endothelial progenitor cells on diabetic neuropathy. Circulation. 2009;119(5):699–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shantsila E, Watson T, Lip G. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol. 2007. doi:10.1016/j.jacc.2006.09.050.
Van Craenenbroeck EM, Conraads VM. Endothelial progenitor cells in vascular health: focus on lifestyle. Microvasc Res. 2010;79(3):184–92.
Article
PubMed
CAS
Google Scholar
Li TB, Zhang JJ, Liu B, Liu WQ, Wu Y, Xiong XM, et al. Involvement of NADPH oxidases and non-muscle myosin light chain in senescence of endothelial progenitor cells in hyperlipidemia. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(3):289–302.
Article
CAS
PubMed
Google Scholar
Sloth AD, Schmidt MR, Munk K, Schmidt M, Pedersen L, Sorensen HT, et al. Impact of cardiovascular risk factors and medication use on the efficacy of remote ischaemic conditioning: post hoc subgroup analysis of a randomised controlled trial. BMJ Open. 2015;5(4):e006923.
Article
PubMed
PubMed Central
Google Scholar
Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.
Article
CAS
PubMed
Google Scholar
Hausenloy DJ, Whittington HJ, Wynne AM, Begum SS, Theodorou L, Riksen N, et al. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol. 2013;12:154.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Wei J, Hu S, Hu L. Beneficial effects of statins on endothelial progenitor cells. Am J Med Sci. 2012;344(3):220–6.
Article
PubMed
Google Scholar
Hibbert B, Simard T, Ramirez FD, Pourdjabbar A, Raizman JE, Maze R, et al. The effect of statins on circulating endothelial progenitor cells in humans: a systematic review. J Cardiovasc Pharmacol. 2013;62(5):491–6.
Article
CAS
PubMed
Google Scholar
Fadini GP, Boscaro E, Albiero M, Menegazzo L, Frison V, De Kreutzenberg S, et al. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1α. Diabetes Care. 2010;33(7):1607–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delagarde H, Ouadraougo N, Grall S, Macchi L, Roy PM, Abraham P, et al. Remote ischaemic preconditioning in intermittent claudication. Arch Cardiovasc Dis. 2015;108(10):472–9.
Article
PubMed
Google Scholar
Whittaker P, Przyklenk K. From ischemic conditioning to ‘hyperconditioning’: clinical phenomenon and basic science opportunity. Dose-Response. 2014;12(4):650–63.
Article
PubMed
PubMed Central
Google Scholar
Heyman SN, Leibowitz D, Mor-Yosef Levi I, Liberman A, Eisenkraft A, Elcalai R, et al. Adaptive response to hypoxia and remote ischemia preconditioning: a new HIF era in clinical medicine. Acta Physiol (Oxf). 2015. doi:10.1111/apha.12613.
PubMed
Google Scholar
Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.
Article
PubMed
Google Scholar
Behl T, Kotwani A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol Res. 2015;99:137–48.
Article
CAS
PubMed
Google Scholar
Fadini GP, Avogaro A. It is all in the blood: the multifaceted contribution of circulating progenitor cells in diabetic complications. Exp Diabetes Res. 2012;2012:742976.
PubMed
PubMed Central
Google Scholar