Leibson CL, Ransom JE, Olson W, Zimmerman BR, O’Fallon WM, Palumbo PJ (2004) Peripheral arterial disease, diabetes, and mortality. Diabetes Care 27(12):2843–2849
Article
PubMed
Google Scholar
Tapp RJ, Balkau B, Shaw JE, Valensi P, Cailleau M, Eschwege E et al (2007) Association of glucose metabolism, smoking and cardiovascular risk factors with incident peripheral arterial disease: the DESIR study. Atherosclerosis 190(1):84–89
Article
CAS
PubMed
Google Scholar
Selvin E, Wattanakit K, Steffes MW, Coresh J, Sharrett AR (2006) HbA1c and peripheral arterial disease in diabetes: the atherosclerosis risk in communities study. Diabetes Care 29(4):877–882
Article
PubMed
Google Scholar
Ogren M, Hedblad B, Engstrom G, Janzon L (2005) Prevalence and prognostic significance of asymptomatic peripheral arterial disease in 68-year-old men with diabetes. Results from the population study ‘Men born in 1914’ from Malmo, Sweden. Eur J Vasc Endovasc Surg 29(2):182–189
Article
CAS
PubMed
Google Scholar
Adler AI, Stevens RJ, Neil A, Stratton IM, Boulton AJ, Holman RR (2002) UKPDS 59: hyperglycemia and other potentially modifiable risk factors for peripheral vascular disease in type 2 diabetes. Diabetes Care 25(5):894–899
Article
PubMed
Google Scholar
Zander E, Heinke P, Reindel J, Kohnert KD, Kairies U, Braun J et al (2002) Peripheral arterial disease in diabetes mellitus type 1 and type 2: are there different risk factors? Vasa 31(4):249–254
Article
CAS
PubMed
Google Scholar
Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassai B et al (2011) Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 343:d4169
Article
PubMed Central
PubMed
Google Scholar
MacGregor AS, Price JF, Hau CM, Lee AJ, Carson MN, Fowkes FG (1999) Role of systolic blood pressure and plasma triglycerides in diabetic peripheral arterial disease. The Edinburgh Artery Study. Diabetes Care 22(3):453–458
Article
CAS
PubMed
Google Scholar
Major AS, Harrison DG (2011) What fans the fire: insights into mechanisms of inflammation in atherosclerosis and diabetes mellitus. Circulation 124(25):2809–2811
Article
PubMed Central
PubMed
Google Scholar
Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P et al (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362(17):1563–1574
Article
PubMed
Google Scholar
Neeper M, Schmidt A, Brett J, Yan S, Wang F, Pan Y et al (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004
CAS
PubMed
Google Scholar
Schmidt AM, Hofmann M, Taguchi A, Yan SD, Stern DM (2000) RAGE: a multiligand receptor contributing to the cellular response in diabetic vasculopathy and inflammation. Semin Thromb Hemost 26(5):485–493
Article
CAS
PubMed
Google Scholar
Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318(20):1315–1321
Article
CAS
PubMed
Google Scholar
Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW (1995) N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34(34):10872–10878
Article
CAS
PubMed
Google Scholar
Uribarri J, Stirban A, Sander D, Cai W, Negrean M, Buenting CE et al (2007) Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. Diabetes Care 30(10):2579–2582
Article
CAS
PubMed
Google Scholar
Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S et al (1999) N epsilon-(Carboxymethyl)Lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274(44):31740–31749
Article
CAS
PubMed
Google Scholar
Hsieh HL, Schafer BW, Weigle B, Heizmann CW (2004) S100 protein translocation in response to extracellular S100 is mediated by receptor for advanced glycation endproducts in human endothelial cells. Biochem Biophys Res Commun 316(3):949–959
Article
CAS
PubMed
Google Scholar
Koyama H, Shoji T, Fukumoto S, Shinohara K, Shoji T, Emoto M et al (2006) Low circulating endogenous secretory receptor for AGEs predicts cardiovascular mortality in patients with end-stage renal disease. Arterioscler Thromb Vasc Biol 27:147–153
Article
PubMed
Google Scholar
Kosaki A, Hasegawa T, Kimura T, Iida K, Hitomi J, Matsubara H et al (2004) Increased plasma S100A12 (EN-RAGE) levels in patients with type 2 diabetes. J Clin Endocrinol Metab 89(11):5423–5428
Article
CAS
PubMed
Google Scholar
Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP (1999) The role of oxidative stress and NF-kappaB activation in late diabetic complications. BioFactors 10(2–3):157–167
Article
CAS
PubMed
Google Scholar
Kislinger T, Tanji N, Wendt T, Qu W, Lu Y, Ferran LJ Jr et al (2001) Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 21(6):905–910
Article
CAS
PubMed
Google Scholar
Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C et al (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822
Article
CAS
PubMed
Google Scholar
Schmidt AM, Yan SD, Wautier JL, Stern D (1999) Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84(5):489–497
Article
CAS
PubMed
Google Scholar
Cheng C, Tsuneyama K, Kominami R, Shinohara H, Sakurai S, Yonekura H et al (2005) Expression profiling of endogenous secretory receptor for advanced glycation end products in human organs. Mod Pathol 18(10):1385–1396
Article
CAS
PubMed
Google Scholar
Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H et al (2003) Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 370(Pt 3):1097–1109
Article
CAS
PubMed Central
PubMed
Google Scholar
Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, Sakamoto K, Nakatani Y et al (2005) Decreased endogenous secretory advanced glycation end product receptor in type 1 diabetic patients: its possible association with diabetic vascular complications. Diabetes Care 28(11):2716–2721
Article
CAS
PubMed
Google Scholar
Koyama H, Shoji T, Yokoyama H, Motoyama K, Mori K, Fukumoto S et al (2005) Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 25(12):2587–2593
Article
CAS
PubMed
Google Scholar
Basta G, Sironi AM, Lazzerini G, Del Turco S, Buzzigoli E, Casolaro A et al (2006) Circulating soluble receptor for advanced glycation end products is inversely associated with glycemic control and S100A12 protein. J Clin Endocrinol Metab 91(11):4628–4634
Article
CAS
PubMed
Google Scholar
Catalano M, Cortelazzo A, Santi R, Contino L, Demicheli M, Yilmaz Y et al (2008) The Pro12Ala polymorphism of peroxisome proliferator-activated receptor-gamma2 gene is associated with plasma levels of soluble RAGE (Receptor for Advanced Glycation Endproducts) and the presence of peripheral arterial disease. Clin Biochem 41(12):981–985
Article
CAS
PubMed
Google Scholar
Mahajan N, Malik N, Bahl A, Dhawan V (2009) Receptor for advanced glycation end products (RAGE) and its inflammatory ligand EN-RAGE in non-diabetic subjects with pre-mature coronary artery disease. Atherosclerosis 207(2):597–602
Article
CAS
PubMed
Google Scholar
Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ et al (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24(7):1266–1271
Article
CAS
PubMed
Google Scholar
Shiotsu Y, Mori Y, Hatta T, Maki N, Iida K, Matsuoka E et al (2011) Plasma S100A12 levels and peripheral arterial disease in end-stage renal disease. Nephron Extra 1(1):242–250
Article
PubMed Central
PubMed
Google Scholar
Nin JW, Jorsal A, Ferreira I, Schalkwijk CG, Prins MH, Parving HH et al (2011) Higher plasma levels of advanced glycation end products are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study. Diabetes Care 34(2):442–447
Article
CAS
PubMed Central
PubMed
Google Scholar
Karvestedt L, Martensson E, Grill V, Elofsson S, von Wendt G, Hamsten A et al (2011) The prevalence of peripheral neuropathy in a population-based study of patients with type 2 diabetes in Sweden. J Diabetes Complications 25(2):97–106
Article
PubMed
Google Scholar
Karvestedt L, Martensson E, Grill V, Elofsson S, von Wendt G, Hamsten A et al (2009) Peripheral sensory neuropathy associates with micro- or macroangiopathy: results from a population-based study of type 2 diabetic patients in Sweden. Diabetes Care 32(2):317–322
Article
PubMed Central
PubMed
Google Scholar
Breslow NE, Day NE (1987) Statistical methods in cancer research. Volume II–the design and analysis of cohort studies. IARC Sci Publ 82:1–406
Google Scholar
Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17(8):857–872
Article
CAS
PubMed
Google Scholar
Analytical Tools for Public Health: Commonly used public health statistics and their confidence intervals. http://www.apho.org.uk/resource/view.aspx?RID=47240
D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753
Article
PubMed
Google Scholar
Statistics. http://www.britannica.com/EBchecked/topic/564172/statistics
Boyles AL, Harris SF, Rooney AA, Thayer KA (2011) Forest plot viewer: a new graphing tool. Epidemiology 22(5):746–747
Article
PubMed
Google Scholar
Nakashima A, Carrero JJ, Qureshi AR, Miyamoto T, Anderstam B, Barany P et al (2010) Effect of circulating soluble receptor for advanced glycation end products (sRAGE) and the proinflammatory RAGE ligand (EN-RAGE, S100A12) on mortality in hemodialysis patients. Clin J Am Soc Nephrol 5(12):2213–2219
Article
CAS
PubMed Central
PubMed
Google Scholar
Shiotsu Y, Mori Y, Nishimura M, Sakoda C, Tokoro T, Hatta T et al (2011) Plasma S100A12 level is associated with cardiovascular disease in hemodialysis patients. Clin J Am Soc Nephrol 6(4):718–723
Article
CAS
PubMed Central
PubMed
Google Scholar
Callaghan BC, Feldman E, Liu J, Kerber K, Pop-Busui R, Moffet H et al (2011) Triglycerides and amputation risk in patients with diabetes: ten-year follow-up in the DISTANCE study. Diabetes Care 34(3):635–640
Article
PubMed Central
PubMed
Google Scholar
Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Boren J, Catapano AL et al (2011) Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 32(11):1345–1361
Article
CAS
PubMed Central
PubMed
Google Scholar
Vlassara H, Striker GE (2011) AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol 7(9):526–539
Article
CAS
PubMed Central
PubMed
Google Scholar
Takenaka K, Yamagishi S, Matsui T, Nakamura K, Imaizumi T (2006) Role of advanced glycation end products (AGEs) in thrombogenic abnormalities in diabetes. Curr Neurovasc Res 3(1):73–77
Article
CAS
PubMed
Google Scholar
Ishibashi Y, Matsui T, Ueda S, Fukami K, Yamagishi S (2014) Advanced glycation end products potentiate citrated plasma-evoked oxidative and inflammatory reactions in endothelial cells by up-regulating protease-activated receptor-1 expression. Cardiovasc Diabetol 13:60
Article
PubMed Central
PubMed
Google Scholar
Ishibashi Y, Matsui T, Maeda S, Higashimoto Y, Yamagishi S (2013) Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovasc Diabetol 12:125
Article
PubMed Central
PubMed
Google Scholar
Fukushima Y, Daida H, Morimoto T, Kasai T, Miyauchi K, Yamagishi S et al (2013) Relationship between advanced glycation end products and plaque progression in patients with acute coronary syndrome: the JAPAN-ACS sub-study. Cardiovasc Diabetol 12:5
Article
CAS
PubMed Central
PubMed
Google Scholar
Skrha J Jr, Muravska A, Flekac M, Horova E, Novak J, Novotny A et al (2014) Fructosamine 3-kinase and glyoxalase I polymorphisms and their association with soluble RAGE and adhesion molecules in diabetes. Physiol Res 63(Suppl 2):S283–S291
CAS
PubMed
Google Scholar
Kallio M, Forsblom C, Groop PH, Groop L, Lepantalo M (2003) Development of new peripheral arterial occlusive disease in patients with type 2 diabetes during a mean follow-up of 11 years. Diabetes Care 26(4):1241–1245
Article
PubMed
Google Scholar
Wattanakit K, Folsom AR, Selvin E, Weatherley BD, Pankow JS, Brancati FL et al (2005) Risk factors for peripheral arterial disease incidence in persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 180(2):389–397
Article
CAS
PubMed
Google Scholar
Groenwold RH, Klungel OH, Grobbee DE, Hoes AW (2011) Selection of confounding variables should not be based on observed associations with exposure. Eur J Epidemiol 26(8):589–593
Article
PubMed Central
PubMed
Google Scholar
Stang A, Poole C, Kuss O (2010) The ongoing tyranny of statistical significance testing in biomedical research. Eur J Epidemiol 25(4):225–230
Article
PubMed
Google Scholar
Cumming G, Finch S (2005) Inference by eye: confidence intervals and how to read pictures of data. Am Psychol 60(2):170–180
Article
PubMed
Google Scholar
Cumming G (2014) The new statistics: why and how. Psychol Sci 25(1):7–29
Article
PubMed
Google Scholar