Hostetter MK: Handicaps to host defense: effects of hyperglycemia on C3 and Candida albicans. Diabetes. 1990, 39: 271-275.
Article
CAS
PubMed
Google Scholar
Feener EP, King GL: Vascular dysfunction in diabetes mellitus. Lancet. 1997, 350 Suppl 1: SI9-SI13.
Article
CAS
PubMed
Google Scholar
Carey RM, Siragy HM: The intrarenal renin-angiotensin system and diabetic nephropathy. Trends in Endocrinology and Metabolism. 2003, 14: 274-281. 10.1016/S1043-2760(03)00111-5.
Article
CAS
PubMed
Google Scholar
Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA: Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993, 88: 2510-2516.
Article
CAS
PubMed
Google Scholar
Fogelson BG, Nawas SI, Vigneswaran WT, Ferguson JL, Law WR, Sharma AC: Diabetic patients produce an increase in coronary sinus endothlin-1 after coronary artery bypass grafting. Diabetes. 1998, 47: 1161-1163.
Article
CAS
PubMed
Google Scholar
Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA: Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996, 27: 567-574. 10.1016/0735-1097(95)00522-6.
Article
CAS
PubMed
Google Scholar
Stockklause-Farber K, Balhausen T, Laufer A, Rosen P: Influence of diabetes on cardiac nitric oxide synthase expression and activity. Biochim Biophys Acta. 2000, 1535: 10-20.
Article
Google Scholar
Zhao G, Zhang X, Smith CJ, Xu X, Ochoa M, Greenhouse D, Vogel T, Curran C, Hintze TH: Reduced coronary NO production in conscious dogs after the development of alloxan-induced diabetes. Am J Physiol. 1999, 277: H268-278.
CAS
PubMed
Google Scholar
Tsuneo K, Katsuo K: Effect of chronic insulin treatment on NO production and endothelium-dependent relaxation in aortae from established STZ-induced diabetes rats. Atherosclerosis. 2001, 155: 313-320. 10.1016/S0021-9150(00)00583-9.
Article
Google Scholar
Kumar S, Boehm J, Lee JC: p38 MAP kinases: key signaling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003, 2: 717-726. 10.1038/nrd1177.
Article
CAS
PubMed
Google Scholar
Sharma AC, Motew SJ, Farias S, Alder KJ, Bosmann HB, Law WR, Ferguson JL: Sepsis alters myocardial and plasma concentrations of endothelin and nitric oxide in rats. J Mol Cell Cardiol. 1997, 29: 1469-1477. 10.1006/jmcc.1997.0386.
Article
CAS
PubMed
Google Scholar
Sharma AC, Fogelson BG, Nawas SI, Vigneswaran WT, Sam AD, Alden KJ, Ferguson JL, Law WR: Elevated coronary endothelin-1 but not nitric oxide in diabetics during CABG. Ann Thorac Surg. 1999, 67: 1659-63. 10.1016/S0003-4975(99)00287-8.
Article
CAS
PubMed
Google Scholar
Clerk A, Michael A, Sugden PH: Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy?. J Cell Biol. 1998, 142: 523-535. 10.1083/jcb.142.2.523.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu W, Kato M, Itoigawa M, Murakami H, Yajima M, Wu J, Ishikawa N, Nakashima I: Distinct involvement of NF-kB and p38 mitogen-activated protein kinase pathways in serum deprivation-mediated stimulation of inducible nitric oxide synthase and its inhibition by 4-hydroxynoneal. J Cell Biochem. 2001, 83: 271-280. 10.1002/jcb.1234.
Article
CAS
PubMed
Google Scholar
Gupta A, Brahmbhatt S, Sharma AC: Left ventricular mitogen activated protein kinase signaling following polymicrobial sepsis during streptozotocin-induced hyperglycemia. Biochim Biophys Acta. 2004, 1690: 42-53.
Article
CAS
PubMed
Google Scholar
Pollack JS, Nakane M, Buttery LDK, Martinez A, Springdall JM, Polak JM, Forstermann U, Murad F: Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies. Am J Physiol. 1993, 265: C1379-C1387.
Google Scholar
Le-Marchand-Brustel Y, Freychet P: Effect of fasting and streptozotocin diabetes insulin binding and action in the isolated mouse soleus muscle. J Clin Invest. 1979, 64: 1505-1515.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bar-On H, Roheim PS, Eder HE: Hyperlipoproteinemia in streptozotocin-treated rats. Diabetes. 1976, 25: 509-515.
Article
CAS
PubMed
Google Scholar
Kavalali G, Tuncel H, Goksel S, Hatemi HH: Hypoglycemic activity of Urtica pilulifera in streptozotocin-diabetic. Ethnopharmacol. 2003, 84: 241-245. 10.1016/S0378-8741(02)00315-X.
Article
CAS
Google Scholar
Seyer-Hansen K: Renal hypertrophy in streptozotocin diabetic rats. Clin Sci Mol Med Suppl. 1976, 51: 551-555.
CAS
Google Scholar
Tang D, Yu T, Khraibi AA: Cardiovascular and renal characteristics, and responses to acute volume expansion of a rat model of diabetic pregnancy. Life sciences. 2004, 74: 2909-2918. 10.1016/j.lfs.2003.11.005.
Article
CAS
PubMed
Google Scholar
Umrani DN, Goyal RK: Fenoldopam treatment improves peripheral insulin sensitivity and renal function in STZ-induced type 2 diabetic rats. Clin Exp Hypertension. 2003, 25: 221-233. 10.1081/CEH-120020392.
Article
CAS
Google Scholar
Itoh Y, Imamura S, Yamamoto K, Ono Y, Nagata M, Kobayashi T, Kato T, Tomita M, Nakai A, Itoh M, Nagasaka A: Changes of endothelin in streptozotozin-induced diabetic rats: effects of an angiotensin converting enzyme inhibitor, enalapril maleate. Endocrin. 2002, 175: 233-239. 10.1677/joe.0.1750233.
Article
CAS
Google Scholar
Fujii K, Soma M, Huang YS, Manku MS, Horrobin DF: Increased release of prostaglandins from mesenteric vascular bed of diabetic animals. The effects of glucose and insulin. Prostaglandins Leulptroenes Med. 1986, 24: 51-161. 10.1016/0262-1746(86)90206-4.
Article
Google Scholar
Takahashi K, Ghatei MA, Lam HC, O' Halloran DJ, BloomS R: Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia. 1990, 33: 306-310. 10.1007/BF00403325.
Article
CAS
PubMed
Google Scholar
Haak T, Jungmann E, Felber A, Hillmann U, Usadel KH: Increased plasma levels of endothelin in diabetic patients with hypertension. Am J Hypertens. 1992, 5: 161-166.
Article
CAS
PubMed
Google Scholar
Makino A, Oda Shu-Ichi, Katsuo K: Mechanisms underlying increased release of endothelin-1 from aorta in diabetic rats. Peptides. 2001, 22: 639-645. 10.1016/S0196-9781(01)00374-6.
Article
CAS
PubMed
Google Scholar
Kosaka T, Suzuki N, Matsumoto H, Itoh Y, Yasuhara T, Onda H, Fujino M: Synthesis of the vasoconstrictor peptide endothelin in kidney cells. FEBS Letters. 1989, 249: 42-46. 10.1016/0014-5793(89)80011-0.
Article
CAS
PubMed
Google Scholar
Simonson MS, Dunn MJ: Endothelin-1 stimulates contraction of rat glomerular mesangial cells and potentiates beta-adrenergic-mediated cyclic adenosine monophosphate accumulation. Journal of Clinical Investigation. 1990, 85: 790-797.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kohan DE: Endothelin synthesis by rabbit renal tubule cells. Am J Physiol. 1991, 261: F221-F226.
CAS
PubMed
Google Scholar
Vermes I, Spooren PF, Kalsbeek-Batenburg EM, Haanen C: In addition to von Willebrand factor and urinary albumin excretion, plasma endothelin is an indicator of endothelial dysfunction in diabetes mellitus. Diabetologia. 1993, 36: 472-473. 10.1007/BF00402288.
Article
CAS
PubMed
Google Scholar
Boulanger C, Luscher TF: Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest. 1990, 85: 587-590.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hirata Y, Emori T, Eguchi S: Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest. 1993, 91: 1367-1372.
Article
PubMed Central
CAS
PubMed
Google Scholar
Craven PA, DeRubertis FR, Melhem M: Nitric Oxide in diabetic nephropathy. Kidney Int Suppl. 1997, 52: S46-S53.
Google Scholar
Trachtman H, Futterweit S, Pine E, Mann J, Elsa V: Chronic diabetic nephropathy: role of inducible nitric oxide synthase. Pediatr Nephrol. 2002, 17: 20-29. 10.1007/s004670200004.
Article
PubMed
Google Scholar
Sugimoto H, Shikaka K, Matsuda M, Kushiro M, Hayashi Y, Hiragushi K, Wada J, Makino H: Increased expression of endothelial cell nitric oxide synthase in afferent and glomerular hyperfiltraion of diabetic nephropathy. Diabetologia. 1998, 41: 1426-1434. 10.1007/s001250051088.
Article
CAS
PubMed
Google Scholar
Cosenzi A, bernobich E, Bonavita M, Trevisan R, Bellini G, Campanacci L: Early effects of diabetes on inducible nitric oxide synthase in the kidney. Acta Diabetol. 2002, 39: 91-92. 10.1007/s005920200019.
Article
CAS
PubMed
Google Scholar
Haneda M, Araki S, Togawa M, Sugimoto T, Isono M, Kikkawa R: Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes. 1997, 46: 847-853.
Article
CAS
PubMed
Google Scholar
Igarashi M, Wakasaki N, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M, Rhodes CJ, King GL: Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest. 1999, 103: 185-195.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pearson G, Robinson F, Beers G, Xu B, Karandikar M, Berman K, Cobb M: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001, 22: 153-183. 10.1210/er.22.2.153.
CAS
PubMed
Google Scholar
Tian W, Zhang Z, Cohen D: MAPK signaling and the kidney. Am J Physiol Renal Physiol. 2000, 279: F593-F604.
CAS
PubMed
Google Scholar
Fujita H, Omori S, Ishikura K, Hida M, Awazu M: ERK and p38 mediate high-glucose-induced hypertrophy and TGF-β expression in renal tubular cells. Am J Physiol Renal Physiol. 2004, 286: F120-126. 10.1152/ajprenal.00351.2002.
Article
CAS
PubMed
Google Scholar
Purves T, Middlemas A, Agthong S, Jude EB, Boulton AJ, Fernyhough DR, Tomlinson DR: A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J. 2001, 15: 2508-2514. 10.1096/fj.01-0253hyp.
Article
CAS
PubMed
Google Scholar