Kannel WB, McGee DL: Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979, 241: 2035-2038. 10.1001/jama.1979.03290450033020.
Article
CAS
PubMed
Google Scholar
Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof E, Fleischmann KE, Freeman WK, Froehlich JB, Kasper EK, Kersten JR, Riegel B, Robb JF, Smith SC, Jacobs AK, Adams CD, Anderson JL, Antman EM, Buller CE, Creager MA, Ettinger SM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW, Nishimura R, Ornato JP, Page RL, Tarkington LG: ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery): developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. Circulation. 2007, 116: e418-e499. 10.1161/CIRCULATIONAHA.107.185699.
Article
PubMed
Google Scholar
Valenta I, Dilsizian V, Quercioli A, Schelbert HR, Schindler TH: The Influence of Insulin Resistance, Obesity, and Diabetes Mellitus on Vascular Tone and Myocardial Blood Flow. Curr Cardiol Rep. 2011, 14: 217-225.
Article
Google Scholar
Setty S, Sun W, Martinez R, Downey HF, Tune JD: Alpha-adrenoceptor-mediated coronary vasoconstriction is augmented during exercise in experimental diabetes mellitus. J Appl Physiol. 2004, 97: 431-438. 10.1152/japplphysiol.01122.2003.
Article
CAS
PubMed
Google Scholar
Cai H, Harrison DG: Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000, 87: 840-844. 10.1161/01.RES.87.10.840.
Article
CAS
PubMed
Google Scholar
Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T: Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001, 88: E14-E22. 10.1161/01.RES.88.2.e14.
Article
CAS
PubMed
Google Scholar
Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJHM, Stehouwer CDA, Smulders YM, van Hinsbergh VWM: Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endocr Metab Disord. 2013, 14: 39-48. 10.1007/s11154-013-9239-7.
Article
PubMed
Google Scholar
Prior JO, Quiñones MJ, Hernandez-Pampaloni M, Facta AD, Schindler TH, Sayre JW, Hsueh WA, Schelbert HR: Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation. 2005, 111: 2291-2298. 10.1161/01.CIR.0000164232.62768.51.
Article
CAS
PubMed
Google Scholar
Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O, Grunberger G: Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999, 100: 813-819. 10.1161/01.CIR.100.8.813.
Article
CAS
PubMed
Google Scholar
Di Carli MF, Janisse J, Grunberger G, Ager J: Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003, 41: 1387-1393. 10.1016/S0735-1097(03)00166-9.
Article
CAS
PubMed
Google Scholar
Bernard JM, Wouters PF, Doursout MF, Florence B, Chelly JE, Merin RG: Effects of sevoflurane and isoflurane on cardiac and coronary dynamics in chronically instrumented dogs. Anesthesiology. 1990, 72: 659-662. 10.1097/00000542-199004000-00014.
Article
CAS
PubMed
Google Scholar
Crystal GJ, Zhou X, Gurevicius J, Czinn EA, Salem MR, Alam S, Piotrowski A, Hu G: Direct coronary vasomotor effects of sevoflurane and desflurane in in situ canine hearts. Anesthesiology. 2000, 92: 1103-1113. 10.1097/00000542-200004000-00029.
Article
CAS
PubMed
Google Scholar
Conzen PF, Vollmar B, Habazettl H, Frink EJ, Peter K, Messmer K: Systemic and regional hemodynamics of isoflurane and sevoflurane in rats. Anesth Analg. 1992, 74: 79-88.
Article
CAS
PubMed
Google Scholar
Hirano M, Fujigaki T, Shibata O, Sumikawa K: A comparison of coronary hemodynamics during isoflurane and sevoflurane anesthesia in dogs. Anesth Analg. 1995, 80: 651-656.
CAS
PubMed
Google Scholar
Manohar M, Parks CM: Porcine systemic and regional organ blood flow during 1.0 and 1.5 minimum alveolar concentrations of sevoflurane anesthesia without and with 50% nitrous oxide. J Pharmacol Exp Ther. 1984, 231: 640-648.
CAS
PubMed
Google Scholar
Larach DR, Schuler HG: Direct vasodilation by sevoflurane, isoflurane, and halothane alters coronary flow reserve in the isolated rat heart. Anesthesiology. 1991, 75: 268-278. 10.1097/00000542-199108000-00015.
Article
CAS
PubMed
Google Scholar
Bulte CSE, Slikkerveer J, Kamp O, Heymans MW, Loer SA, de Marchi SF, Vogel R, Boer C, Bouwman RA: General anesthesia with sevoflurane decreases myocardial blood volume and hyperemic blood flow in healthy humans. Anesth Analg. 2013, 116: 767-774. 10.1213/ANE.0b013e31827e4e41.
Article
CAS
PubMed
Google Scholar
Bulte CSE, Slikkerveer J, Meijer RI, Gort D, Kamp O, Loer SA, de Marchi SF, Vogel R, Boer C, Bouwman RA: Contrast-enhanced ultrasound for myocardial perfusion imaging. Anesth Analg. 2012, 114: 938-945. 10.1213/ANE.0b013e318248e261.
Article
PubMed
Google Scholar
Vinik AI, Ziegler D: Diabetic cardiovascular autonomic neuropathy. Circulation. 2007, 115: 387-397. 10.1161/CIRCULATIONAHA.106.634949.
Article
PubMed
Google Scholar
Vogel R, Indermühle A, Reinhardt J, Meier P, Siegrist PT, Namdar M, Kaufmann PA, Seiler C: The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol. 2005, 45: 754-762. 10.1016/j.jacc.2004.11.044.
Article
PubMed
Google Scholar
Madonna R, De Caterina R: Cellular and molecular mechanisms of vascular injury in diabetes–part I: pathways of vascular disease in diabetes. Vascul Pharmacol. 2011, 54: 68-74. 10.1016/j.vph.2011.03.005.
Article
CAS
PubMed
Google Scholar
Picchi A, Limbruno U, Focardi M, Cortese B, Micheli A, Boschi L, Severi S, De Caterina R: Increased basal coronary blood flow as a cause of reduced coronary flow reserve in diabetic patients. Am J Physiol Heart Circ Physiol. 2011, 301: H2279-H2284. 10.1152/ajpheart.00615.2011.
Article
CAS
PubMed
Google Scholar
Cosyns B, Droogmans S, Hernot S, Degaillier C, Garbar C, Weytjens C, Roosens B, Schoors D, Lahoutte T, Franken PR, Van Camp G: Effect of streptozotocin-induced diabetes on myocardial blood flow reserve assessed by myocardial contrast echocardiography in rats. Cardiovasc Diabetol. 2008, 7: 26-10.1186/1475-2840-7-26.
Article
PubMed Central
PubMed
Google Scholar
Akata T, Izumi K, Nakashima M: The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 2): mechanisms of endothelium-independent vasorelaxation. Anesthesiology. 2000, 92: 1441-1453. 10.1097/00000542-200005000-00035.
Article
CAS
PubMed
Google Scholar
Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, Levine TB: Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997, 336: 1208-1215. 10.1056/NEJM199704243361703.
Article
CAS
PubMed
Google Scholar
van den Brom CE, Bulte CS, Loer SA, Bouwman RA, Boer C: Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism. Cardiovasc Diabetol. 2013, 12: 42-10.1186/1475-2840-12-42.
Article
PubMed Central
PubMed
Google Scholar
Zhu M, Chen J, Jiang H, Miao C: Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells. Cardiovasc Diabetol. 2013, 12: 13-10.1186/1475-2840-12-13.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu W-Y, Wang N, Xu H-T, Yuan H-B, Sun H-J, Dun C-L, Zhou S-Q, Zou Z, Shi X-Y: Effects of sevoflurane and propofol on right ventricular function and pulmonary circulation in patients undergone esophagectomy. Int J Clin Exp Pathol. 2014, 7: 272-279.
PubMed Central
PubMed
Google Scholar
El Messaoudi S, Rongen GA, de Boer RA, Riksen NP: The cardioprotective effects of metformin. Curr Opin Lipidol. 2011, 22: 445-453. 10.1097/MOL.0b013e32834ae1a7.
Article
CAS
PubMed
Google Scholar
Elmadhun NY, Lassaletta AD, Chu LM, Sellke FW: Metformin alters the insulin signaling pathway in ischemic cardiac tissue in a swine model of metabolic syndrome. J Thorac Cardiovasc Surg. 2013, 145: 258-265. 10.1016/j.jtcvs.2012.09.028. discussion 265–6
Article
PubMed Central
CAS
PubMed
Google Scholar
Jadhav S, Ferrell W, Greer IA, Petrie JR, Cobbe SM, Sattar N: Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2006, 48: 956-963. 10.1016/j.jacc.2006.04.088.
Article
CAS
PubMed
Google Scholar
Schindler TH, Facta AD, Prior JO, Cadenas J, Hsueh WA, Quinones MJ, Schelbert HR: Improvement in coronary vascular dysfunction produced with euglycaemic control in patients with type 2 diabetes. Heart. 2007, 93: 345-349. 10.1136/hrt.2006.094128.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maruyama I, Tomiyama Y, Maruyama K, Ojima K, Kobayashi K, Kobayashi M, Yamazaki Y, Kojima M, Shibata N: Effects of mitiglinide and sulfonylureas in isolated canine coronary arteries and perfused rat hearts. Eur J Pharmacol. 2006, 531: 194-200. 10.1016/j.ejphar.2005.11.060.
Article
CAS
PubMed
Google Scholar
Legtenberg RJ, Houston RJF, Heerschap A, Oeseburg B, Smits P: Glibenclamide attenuates ischemia-induced acidosis and loss of cardiac function in rats. Eur J Pharmacol. 2002, 434: 35-42. 10.1016/S0014-2999(01)01483-2.
Article
CAS
PubMed
Google Scholar
Pop-Busui R, Oral E, Raffel D, Byun J, Bajirovic V, Vivekanandan-Giri A, Kellogg A, Pennathur S, Stevens MJ: Impact of rosiglitazone and glyburide on nitrosative stress and myocardial blood flow regulation in type 2 diabetes mellitus. Metab Clin Exp. 2009, 58: 989-994. 10.1016/j.metabol.2009.02.020.
Article
CAS
PubMed
Google Scholar
Gejl M, Søndergaard HM, Stecher C, Bibby BM, Møller N, Bøtker HE, Hansen SB, Gjedde A, Rungby J, Brock B: Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012, 97: E1165-E1169. 10.1210/jc.2011-3456.
Article
CAS
PubMed
Google Scholar
McMahon GT, Plutzky J, Daher E, Bhattacharyya T, Grunberger G, DiCarli MF: Effect of a peroxisome proliferator-activated receptor-gamma agonist on myocardial blood flow in type 2 diabetes. Diabetes Care. 2005, 28: 1145-1150. 10.2337/diacare.28.5.1145.
Article
CAS
PubMed
Google Scholar
Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P: Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest. 1994, 94: 2511-2515. 10.1172/JCI117621.
Article
PubMed Central
CAS
PubMed
Google Scholar
Georgescu A, Popov D, Constantin A, Nemecz M, Alexandru N, Cochior D, Tudor A: Dysfunction of human subcutaneous fat arterioles in obesity alone or obesity associated with Type 2 diabetes. Clin Sci. 2011, 120: 463-472. 10.1042/CS20100355.
Article
CAS
PubMed
Google Scholar
de Boer MP, Meijer RI, Newman J, Stehouwer CDA, Eringa EC, Smulders YM, Serne EH: Insulin-induced changes in microvascular vasomotion and capillary recruitment are associated in humans. Microcirculation. In press
Wang T-D, Chen W-J, Cheng W-C, Lin J-W, Chen M-F, Lee Y-T: Relation of improvement in endothelium-dependent flow-mediated vasodilation after rosiglitazone to changes in asymmetric dimethylarginine, endothelin-1, and C-reactive protein in nondiabetic patients with the metabolic syndrome. Am J Cardiol. 2006, 98: 1057-1062. 10.1016/j.amjcard.2006.05.027.
Article
CAS
PubMed
Google Scholar