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ORIGINAL INVESTIGATION

The gut hormone glucose‑dependent 
insulinotropic polypeptide is downregulated 
in response to myocardial injury
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Abstract 

Background:  The gut incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulino-
tropic peptide) are secreted by enteroendocrine cells following food intake leading to insulin secretion and glucose 
lowering. Beyond its metabolic function GIP has been found to exhibit direct cardio- and atheroprotective effects in 
mice and to be associated with cardiovascular prognosis in patients with myocardial infarction. The aim of this study 
was to characterize endogenous GIP levels in patients with acute myocardial infarction.

Methods and results:  Serum concentrations of GIP were assessed in 731 patients who presented with clinical 
indication of coronary angiography. Circulating GIP levels were significantly lower in patients with STEMI (ST-elevation 
myocardial infarction; n=100) compared to clinically stable patients without myocardial infarction (n=631) (216.82 
pg/mL [Q1–Q3: 52.37–443.07] vs. 271.54 pg/mL [Q1–Q3: 70.12–542.41], p = 0.0266). To characterize endogenous 
GIP levels in patients with acute myocardial injury we enrolled 18 patients scheduled for cardiac surgery with cardio-
pulmonary bypass and requirement of extracorporeal circulation as a reproducible condition of myocardial injury. 
Blood samples were drawn directly before surgery (baseline), upon arrival at the intensive care unit (ICU), 6 h post 
arrival to the ICU and at the morning of the first and second postoperative days. Mean circulating GIP concentrations 
decreased in response to surgery from 45.3 ± 22.6 pg/mL at baseline to a minimum of 31.9 ± 19.8 pg/mL at the first 
postoperative day (p = 0.0384) and rose again at the second postoperative day (52.1 ± 28.0 pg/mL).

Conclusions:  Circulating GIP levels are downregulated in patients with myocardial infarction and following cardiac 
surgery. These results might suggest nutrition-independent regulation of GIP secretion following myocardial injury in 
humans.
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Introduction
The gut incretin hormones GLP-1 (glucagon-like pep-
tide-1) and GIP (glucose-dependent insulinotropic pep-
tide) are secreted by enteroendocrine cells following 

nutrient intake leading to insulin secretion and glucose 
control [1, 2]. Pharmacological activation of the incretin 
axis is currently used for the treatment of patients with 
type 2 diabetes [3]. Beyond their glucoregulatory func-
tion GLP-1 receptor agonists exert pleiotropic vascular- 
and cardioprotective effects in different organ systems 
[4]. For example, we and others found GLP-1 to reduce 
and stabilize atherosclerotic lesions in ApoE−/− mice by 
diminishing vascular inflammation [5, 6]. Importantly, 
six large clinical trials showed improved cardiovascular 
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outcomes in diabetic patients at high cardiovascular risk 
after treatment with GLP-1-receptor agonists on top of 
standard antidiabetic therapy [7–12]. In contrast, the 
role of the other incretin hormone GIP for cardiovascu-
lar disease (CVD) remains largely unknown. Endogenous 
GIP stimulates glucose-dependent insulin secretion more 
potently than GLP-1 [13, 14]. This effect is however lost 
in patients with diabetes [15, 16]. Further, GIP suppresses 
glucagon secretion in states of hyperglycemia while stim-
ulating glucagon release in hypoglycemic situations [17]. 
Recent efforts have led to the development of combined 
GLP-1/GIP receptor co-agonists which in clinical trials 
were importantly found to have more potent blood glu-
cose lowering and body weight reducing effects than sole 
GLP-1 receptor agonists [18]. Cardiovascular outcome 
trials (i.e. SURPASS-CVOT; NCT04255433) investigating 
whether the superiority of Tirzepatide vs. GLP-1 recep-
tor agonists can be translated into improved cardiovas-
cular prognosis are ongoing. Posthoc-Analyses of recent 
clinical trials yielded encouraging results by showing that 
the reduction in cardiovascular risk markers as hsCRP, 
MCP-1 and ICAM-1 was stronger by dual GIP and 
GLP-1 receptor agonism vs. sole GLP-1 receptor agonism 
[19]. Understanding the cardiovascular functionality of 
GIP therefore seems of great interest. First experimental 
studies suggested GIP to have beneficial cardiovascular 
effects in rodents [20–23]. Recently we found circulat-
ing GIP levels in patients with acute myocardial infarc-
tion to be associated with cardiovascular prognosis. In 
these patients lower GIP levels independently predicted 
adverse outcome (cardiovascular death) [24]. These find-
ings might suggest a cardiovascular protective role of 
the endogenous GIP system. The aim of this study was 
to characterize endogenous GIP levels in patients with 
acute myocardial infarction.

Methods
Clinical study I
We analyzed blood samples from 731 patients of our 
cardiovascular biobank (559 male and 172 female), who 
underwent coronary angiography at the University Hos-
pital Aachen (Department of Cardiology). The only 
exclusion criterion was failure to give written informed 
consent. Patients were divided into two groups—patients 
with acute myocardial infarction (STEMI = ST-eleva-
tion myocardial infarction; n = 100) compared to clini-
cally stable patients without myocardial infarction (n = 
631). Of all patients with STEMI (n = 100) two patients 
died within 2 days after enrollment and were classified as 
patients with fatal acute myocardial infarction. Blood was 
collected in a random non-fasting manner. After centrif-
ugation at 2000 g at 4 °C for 20 min, serum aliquots of 1 
mL were frozen immediately at −80 °C. Total GIP serum 

levels were determined by using a commercial ELISA 
kit (Millipore) according to the manufacturers’ instruc-
tions. Study protocols and biosampling were approved by 
the local ethics committee (RWTH  University Hospital 
Aachen) and conducted in accordance with the ethical 
standards laid down in the 1964 Declaration of Helsinki.

Clinical study II
We enrolled 18 patients (11 male, 7 female) scheduled 
for cardiac surgery with cardiopulmonary bypass and 
requirement of extracorporeal circulation as a reproduc-
ible condition of myocardial injury at the University Hos-
pital of Munich (Campus Grosshadern). Patients were 
excluded from the study if they met the following criteria: 
failure to give written informed consent, pregnancy, dia-
betes mellitus, fasting glucose >126  mg/dL, use of anti-
diabetic medication or glucocorticoids.

Blood samples were drawn directly before surgery 
(baseline), upon arrival at the intensive care unit (ICU), 
6 h post arrival to the ICU and at the morning of the first 
and second postoperative days.

Patients were fasted since the evening of the preop-
erative day. Glucose levels were assessed on an hourly 
basis and insulin-infusion rate consequently adjusted to 
maintain glucose levels between 80 and 126 mg/dL. No 
glucose containing solutions were given during the day 
of the procedure, while all patients received continu-
ous infusion of glucose 10% with a rate of 10 ml/h at the 
morning of the first postoperative day. No additional par-
enteral or enteral nutrition was administered during the 
observation period. After centrifugation at 2000g at 4 °C 
for 20 min, serum aliquots of 1 mL were frozen immedi-
ately at −80 °C. Total GIP serum levels were determined 
by using a commercial ELISA kit (Millipore) according 
to the manufacturers’ instructions. Study protocols and 
biosampling were approved by the local ethics committee 
(University Hospital of Munich, Ludwig-Maximilians-
University) and conducted in accordance with the ethical 
standards laid down in the 1964 Declaration of Helsinki.

Statistical analysis
Continuous data are presented as mean ± SD or SEM 
and median (Q1-Q3) in case of heavily skewed data. 
Categorical outcomes are shown as absolute (No.) and 
relative frequencies (%). A Wilcoxon rank-sum test was 
performed to analyze the group GIP levels in Clinical 
study I. In addition, a linear mixed model was computed 
to adjust for influences of parameters significantly cor-
related with GIP. The association between GIP and other 
characteristics was assessed using the Spearman cor-
relation coefficient ρ. To analyze time effects in Clinical 
study II, a linear mixed model for logarithmized GIP val-
ues with time point as an independent factor, a random 
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patient effect and a compound symmetry covariance 
structure was computed. P-values for the comparison 
between time points 2–5 to 1 (baseline) were adjusted 
using the Dunnett–Hsu adjustment for multiple compar-
isons. The level of significance was set at 5%. Statistical 
analyses were performed with SAS software version 9.4 
(PROC GLIMMIX, PROC NPAR1WAY, PROC MIXED; 
SAS Institute, Cary NC, USA).

Results
Clinical and laboratory baseline characteristics and bio-
marker concentrations are shown in Table  1. The study 
population comprised 731 patients of our cardiovascu-
lar biobank (559 male and 172 female), who underwent 
coronary angiography at the University Hospital Aachen 
(Department of Cardiology). Patients were divided into 
two groups—patients with acute myocardial infarction 
(STEMI = ST-elevation myocardial infarction; n = 100) 
compared to clinically stable patients without myocardial 
infarction (n = 631). GIP levels were not associated with 
age, sex, kidney function, hypertension, creatine kinase, 
troponin or WBC (white blood cells) while we observed 
a significant correlation of GIP levels with BMI (body-
mass-index), CRP (C-reactive protein) and type 2 diabe-
tes (Table 2). As shown in Fig. 1; Table 1 circulating GIP 
levels were significantly lower in patients with STEMI 
compared to clinically stable patients without myocar-
dial infarction (216.82 pg/mL [Q1–Q3: 52.37–443.07] 
vs. 271.54 pg/mL [Q1–Q3: 70.12–542.41], p = 0.0266). 

This association remained significant in a multivariable 
model after adjustment for all parameters which signifi-
cantly correlated with GIP levels (BMI, CRP and type 2 
diabetes) (p = 0.0311). To further elucidate the under-
lying mechanisms of downregulated GIP levels during 
acute myocardial infarction we prospectively enrolled 
18 non-diabetic patients (11 male, 7 female) scheduled 

Table 1  Patient characteristics and GIP serum levels

Continuous variables are expressed as mean ± SD or median (Q1–Q3) in case of heavily skewed data. Categorical variables are shown as absolute (No.) and relative 
frequencies (%)

BMI body-mass-index, CK creatine kinase, CRP C-reactive protein, eGFR estimated glomerular filtration rate, GIP glucose-dependent insulinotropic polypeptide, 
STEMI ST-elevation myocardial infarction

Parameter Control 
(no myocardial infarction)
(n=631)

STEMI
(n=100)

GIP—pg/mL 271.54 (70.12–542.41) 216.82 (52.37–443.07)

Age—years 65.86 ± 12.53 62.24 ± 11.21

BMI—kg/m² 28.51 ± 5.75 26.17 ± 3.79

Male—No. (%) 475 (75.28) 84 (84)

Type 2 Diabetes—No. (%) 211 (33.44) 24 (24)

Hypertension—No. (%) 470 (74.84) 55 (55)

Smoker—No. (%) 123 (19.59) 47 (47)

Creatinine—mg/dL 1 (0.9–1.2) 0.9 (0.8–1.1)

eGFR—mL/min/1,73 m² 71.54 ± 22.89 81.76 ± 18.25

CK—U/L 87 (61–142) 197 (110–481)

Troponin—pg/mL 18 (10–38) 1428.5 (352.5–-2811)

CRP—mg/L 2.2 (2.2–9) 13 (7–33)

Leukocytes—nL 7.57 ± 2.32 9.22 ± 2.55

Coronary artery disease—No. (%) 457 (72.42) 100 (100)

Table 2  Correlation of baseline patient characteristics with GIP 
serum levels

BMI body-mass-index, CK creatine kinase, CRP C-reactive protein, eGFR estimated 
glomerular filtration rate, ρ  Spearman correlation coefficient, N number of 
observations, P-value of the test that Spearman’s rank correlation coefficient 
ρ  = 0

Parameter ρ N p-value

Age—years 0.0557 731 0.1324

BMI—kg/m² 0.0761 724 0.0407

Sex (male) − 0.0163 731 0.6607

Type 2 Diabetes 0.0828 731 0.0252

Hypertension 0.0320 728 0.3885

Smoker − 0.0579 728 0.1187

Creatinine—mg/dL 0.0497 638 0.2096

eGFR—mL/min/1,73 m² − 0.0611 638 0.1234

CK—U/L − 0.0387 610 0.3399

Troponin—pg/mL − 0.0097 351 0.8562

CRP—mg/L 0.0924 607 0.0228

Leukocytes—nL − 0.0455 683 0.2352

Coronary artery disease − 0.0247 731 0.5052
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for cardiac surgery with cardiopulmonary bypass and 
requirement of extracorporeal circulation as a second 
reproducible condition of myocardial injury. Blood sam-
ples were drawn directly before surgery (baseline), upon 
arrival at the intensive care unit (ICU), 6  h post arrival 
to the ICU and at the morning of the first and second 
postoperative days. Mean circulating GIP concentrations 
decreased in response to surgery from 45.3 ± 22.6 pg/
mL at baseline to a minimum of 31.9 ± 19.8 pg/mL at the 
first postoperative day (p = 0.0384) and rose again at the 
second postoperative day (52.1 ± 28.0 pg/mL) (Fig. 2).

Discussion
Under physiological conditions GIP is secreted from 
enteroendocrine K-cells in the gut following food inges-
tion [25]. This study demonstrates that circulating GIP 
levels are reduced in patients after acute myocardial 
infarction or cardiac surgery. These findings might sug-
gest nutrition-independent regulation of GIP secretion 
following acute myocardial injury in humans and warrant 
further investigations.

Nutrient-independent secretion of GLP-1 has been 
extensively studied in the past. We and others observed 
that inflammatory stimuli including LPS (lipopolysac-
charide), IL-6 (interleukin 6) and IL-1b (interleukin 1b) 
directly induce GLP-1 secretion from intestinal L-cells 
through IL-6 signaling [26, 27]. Furthermore, gut intraep-
ithelial lymphocytes were also identified to regulate sys-
temic GLP-1 availability [28]. Consistently mice and 
patients with acute (sepsis [27] or myocardial infarction 
[29]) or chronic inflammatory cardiovascular diseases 
(coronary artery disease (CAD) [30] or heart failure 

Fig. 1   Serum GIP levels are downregulated in patients with acute 
myocardial infarction (Clinical study I): Circulating serum GIP levels 
from patients with acute myocardial infarction (STEMI; n = 100) 
compared to clinically stable patients without myocardial infarction 
(n = 631). A Wilcoxon rank-sum test was performed (p = 0.0266)

Fig. 2   Serum GIP levels are decreased in response to cardiac 
surgery (Clinical study II): Kinetics of serum GIP levels over time after 
cardiac surgery (time point 1: at baseline before cardiac surgery, time 
point 2: at arrival to the ICU (4–6 h post initiation of surgery), time 
point 3: 6 h post arrival to the ICU (10–12 h post initiation of surgery), 
time points 4 and 5: in the morning one and two days after surgery). 
A linear mixed model for logarithmized GIP values with time point 
as independent factor, a random patient effect and a compound 
symmetry covariance structure was computed (time point effect p 
= 0.0105). P-values for the comparison between time points 2– to 
1 (baseline) were adjusted using the Dunnett-Hsu adjustment for 
multiple comparisons (comparison between time point 4 and 
baseline p = 0.0384)
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[31]) show strongly increased circulating GLP-1 levels 
independent of food intake. Elevated GLP-1 levels were 
independently associated with mortality in patients with 
sepsis or myocardial infarction [32, 33]. Mechanistic 
experimental studies suggested upregulated GLP-1 secre-
tion as an endogenous protective counter-regulatory 
response in terms of cardiovascular and inflammatory 
diseases [29].

In contrast to GLP-1, nutrition-independent regulation 
of GIP secretion is not well understood. In mice LPS and 
IL-1b administration directly induced GIP secretion and 
patients with peripheral arterial disease (PAD) showed 
higher circulating GIP levels compared to patients with-
out PAD [21, 34]. However, in contrast to GLP-1, patients 
with CAD presented with similar circulating GIP levels 
compared to patients without CAD and GIP was not 
associated with inflammatory markers [21]. To the best 
of our knowledge this is the first study investigating 
endogenous GIP levels in humans following acute myo-
cardial injury or inflammatory challenge. While GLP-1 
has been identified and established over the last 10 years 
as a pleiotropic cardiovascular protective peptide beyond 
its glucoregulatory role, the relevance of GIP for CVD 
remains largely unknown. Interestingly, experimental 
studies found activation of the GIP receptor to exhibit 
various protective effects in cardiovascular murine dis-
ease models (reduction of atherosclerosis, stabilization 
of atherosclerotic plaques, suppression of cardiac hyper-
trophy and fibrosis in heart failure models), which does 
require translational investigations in humans [20–23, 
35]. Recently we found circulating GIP levels in patients 
with acute myocardial infarction to be associated with 
favorable cardiovascular prognosis. In these patients 
higher GIP levels independently predicted reduced car-
diovascular mortality [24]. Bioactive GIP and GLP-1 are 
rapidly inactivated by the enzyme dipeptidyl peptidase 
4 (DPP-4). DPP-4 inhibitors improve glucose metabo-
lism and are clinically used for the treatment of diabetes 
mellitus [3]. However, in several large CV outcome trials 
DPP-4 inhibitors proved CV safety, but failed to reduce 
CV endpoints and mortality [36–38]. Importantly, DPP-4 
inhibitors are not limited to activate GIP and GLP-1 sign-
aling. Next to GIP and GLP-1 DPP-4 has more than 60 
other substrates including GLP-2, substance P, neuro-
peptide Y, stromal cell-derived factor-1α/β (CXCL12), 
GM-CSF (granulocyte macrophage colony-stimulating 
factor), CXCL10 and RANTES (Regulated and normal 
T-Cell-Expressed and Secreted) [39]. Thus, the ques-
tion how activation of the GIP system directly affects 
CV prognosis in patients remains open. Due to lack of 
specificity DPP-4 inhibitors might not be the optimal 
tool to investigate CV outcome effects of GIP in patients. 
Future clinical trials with specific GIP receptor agonists 

are needed to foster our understanding of the gut-heart 
axis as a yet fairly neglected field of system biology and 
to elucidate whether the GIP system might open novel 
therapeutic approaches for the treatment of patients with 
CVD.

This study has several limitations. The underlying 
mechanism leading to the reduction of GIP after myo-
cardial infarction or cardiac surgery remains currently 
unknown. Since GIP levels rose at the late time point 
after cardiac surgery (second post-operative day) with-
out enteral or parenteral nutrition it appears unlikely 
that food restriction was the underlying mechanism of 
reduced GIP levels. Future mechanistic experimental and 
clinical studies investigating the interplay between GIP 
and other metabolic hormones are necessary to improve 
our understanding of GIP regulation in response to acute 
myocardial injury. We here report lower circulating GIP 
concentrations in response to myocardial injury. How-
ever, this observation does not imply a direct reduc-
tion in GIP secretion, since we only measured total GIP 
(including active and inactive cleaved peptides) and not 
active GIP (1-42) levels. Lower total GIP levels could also 
be related to changes in distribution and elimination. 
Finally, we have no information on food intake in Clinical 
Study I, which could have affected GIP secretion.

Conclusions
Circulating GIP levels are downregulated in patients 
with myocardial infarction and following cardiac sur-
gery. These results might suggest nutrition-independent 
regulation of GIP secretion following myocardial injury 
in humans. Upcoming studies are needed to elucidate 
whether GIP might be a novel therapeutic target in CVD.
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