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Hypofibrinolysis in type 2 diabetes and its 
clinical implications: from mechanisms 
to pharmacological modulation
Agata Hanna Bryk‑Wiązania1,2 and Anetta Undas3,4* 

Abstract 

A prothrombotic state is a typical feature of type 2 diabetes mellitus (T2DM). Apart from increased platelet reactiv‑
ity, endothelial dysfunction, hyperfibrinogenemia, and hypofibrinolysis are observed in T2DM. A variety of poorly 
elucidated mechanisms behind impaired fibrinolysis in this disease have been reported, indicating complex associa‑
tions between platelet activation, fibrin formation and clot structure, and fibrinolysis inhibitors, in particular, elevated 
plasminogen antigen inhibitor-1 levels which are closely associated with obesity. Abnormal fibrin clot structure is of 
paramount importance for relative resistance to plasmin-mediated lysis in T2DM. Enhanced thrombin generation, 
a proinflammatory state, increased release of neutrophil extracellular traps, elevated complement C3, along with 
posttranslational modifications of fibrinogen and plasminogen have been regarded to contribute to altered clot 
structure and impaired fibrinolysis in T2DM. Antidiabetic agents such as metformin and insulin, as well as antithrom‑
botic agents, including anticoagulants, have been reported to improve fibrin properties and accelerate fibrinolysis in 
T2DM. Notably, recent evidence shows that hypofibrinolysis, assessed in plasma-based assays, has a predictive value 
in terms of cardiovascular events and cardiovascular mortality in T2DM patients. This review presents the current data 
on the mechanisms underlying arterial and venous thrombotic complications in T2DM patients, with an emphasis on 
hypofibrinolysis and its impact on clinical outcomes. We also discuss potential modulators of fibrinolysis in the search 
for optimal therapy in diabetic patients.
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Introduction
It is estimated that diabetes mellitus (DM) had a global 
prevalence of 9.3% in 2019, of which 90% was accounted 
for by type 2 diabetes mellitus (T2DM) [1]. The typical 
patient with T2DM is obese, male, aged 63 years, suffer-
ing from T2DM for 10 years [2], a smoker, treated with 
antihypertensives, statin and metformin, with a gly-
cated hemoglobin (HbA1c) of 55  mmol/mol (7.2%) [3]. 
Additionally, worse glycemic control is seen in patients 

with a positive family history of T2DM [4]. The preva-
lence of cardiovascular disease (CVD) among patients 
with T2DM varies from 21 [5] to 32% [2, 3], which is 
much higher than in the general population (10.6%) 
[6]. Coronary heart disease (CHD) has a prevalence of 
21.2% in this patient population [2], corresponding to 
an age-standardized incidence rate of CHD of 28.8 and 
23.3 per 1000 person-years for male and female T2DM 
patients, respectively [7]. Type 2 diabetes mellitus con-
fers a two-fold increased risk of ischemic stroke [8] and 
a three–fivefold increased risk of myocardial infarc-
tion (MI) [9], especially among patients with insufficient 
control of cardiovascular risk factors [10]. In contrast to 
the well-established association of T2DM with arterial 
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thromboembolism, its link with venous thromboembo-
lism (VTE) is controversial [11], with a comparable age-
adjusted incidence rate of VTE events in DM and the 
general population of 2.12 [12] vs. 1.83 [11] per 1000 per-
son-years, respectively. The most common manifestation 
of VTE among diabetic patients is deep vein thrombosis 
(DVT, 72%) [13]. Diabetes mellitus has been reported to 
increase the risk of VTE by 60%, but only before adjust-
ment for body-mass index (BMI) [12], hospitalization, 
major surgery, medical illness, or nursing home confine-
ment [14]. Although the prevailing view is that T2DM 
is not an independent risk factor for VTE [15], it can be 
considered as a common comorbidity occurring in 19.1% 
of T2DM patients and is associated with a 74% increased 
risk for recurrent DVT, 40% increase in major bleeding 
in patients receiving anticoagulation [13], as well as a 
2.3-fold increase in post-thrombotic ulcers [16]. Taken 
together, the current evidence indicates that T2DM sub-
stantially elevates arterial thromboembolic risk, in par-
ticular MI and stroke, while its impact on VTE risk and 
complications is largely associated with increased BMI.

Clinical significance of hypofibrinolysis in T2DM
There are several assays used to asses fibrinolysis, some 
of them, like thromboelastography, might be used in a 
personalized medicine approach treatment regimes, 
as presented [17–20] in Table  1. Impaired plasmin-
mediated fibrinolysis in T2DM has been convincingly 
demonstrated by several groups [21–23]. The clinical 
features of a T2DM patient with the worst fibrinolytic 
profile include women with an increased waist-hip cir-
cumference and decreased high-density-lipoprotein 
cholesterol, and who were diagnosed with T2DM at 
least 5  years earlier [23, 24]. Female sex and T2DM 
duration exceeding 5  years have been associated with 
an 8.9 and 9.7% increased lysis time, respectively [23, 
24]. If the genotyping data were available and a patient 
was included in the 3% of T2DM patients being carriers 

of the BβArg448Lys variant in two alleles, the turbidity 
lysis time would be increased by 23.3% when compared 
to non-carriers and by 17% when compared to carriers 
of one allele [25]. If a T2DM patient was diagnosed with 
advanced CHD requiring coronary artery bypass graft 
surgery, the lysis time would be increased by 5.4% when 
compared with non-T2DM patients [26]. Moreover, 
in patients with a history of MI, measurement of lysis 
time may help to further assess the cardiovascular risk. 
Analysis of 4354 patients following acute MI, enrolled 
in the PLATelet inhibition and patient Outcomes 
(PLATO) trial, has demonstrated increasing DM preva-
lence among each subsequent quartile of lysis time [27]. 
Indeed, a sub-study devoted to 974 patients with DM 
has documented each 50% increase in lysis time being 
associated with a 21% increase in cardiovascular death 
or spontaneous MI, while risk for cardiovascular death 
alone was even higher (36%) [28]. Such results were 
obtained when the model was adjusted for age, gen-
der, BMI, smoking history, hypertension, dyslipidemia, 
chronic kidney disease, acute and previous MI, conges-
tive heart failure, revascularization, ischemic stroke, 
peripheral artery disease, and antiplatelet treatment 
[28]. The plethora of adjustments allows to appreciate 
that hypofibrinolysis in T2DM is associated with cardi-
ovascular death independent of traditional risk factors. 
Increased clot density in T2DM patients, investigated 
using another plasma-based assay, has been linked to a 
5.4-fold increase in cardiovascular mortality in T2DM 
patients [29]. Similar as above, adjustment for CVD 
history prior to the study enrollment, nephropathy, or 
treatment with metformin did not influence the haz-
ard ratios of cardiovascular death [29]. On the other 
hand, T2DM patient who suffered their first episode of 
VTE had a 17% increased turbidity clot lysis time when 
compared to control subjects [30]. In summary, turbid-
ity lysis time may be useful in the characterization of 
current and future cardiovascular risk. Key genetic and 

Table 1  The most commonly used plasma-based global fibrinolysis assays

The final concentration of a reagent was presented, TEG denotes thromboelastography

Clot lysis time by Lisman 
(min) [17]

Turbidity lysis time by Carter 
(s) [18]

Clot lysis time by Pieters 
(min) [19]

Clot lysis time in 
TEG (min) [20]

Reagents/material Plasma Plasma Plasma Whole blood

Coagulation trigger Tissue factor 6 pM Thrombin 0.03 NIH U/mL Thrombin 0.5 NIH U/mL Kaolin (tissue    
 factor may 
 be used 
 additionally)

Calcium chloride 17 mM 7.5 mM 15 mM 2 M

Tissue plasminogen activator 56 ng/mL 83 ng/mL 18 ng/mL –

Phospholipids 10 μM – 10 μM –
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environmental factors affecting fibrinolysis in T2DM 
patients are presented in Table 2.

Summary of the literature
The most relevant research on hypofibrinolysis and 
its clinical implications in T2DM was reviewed. We 
included papers regarding the cellular components, 
including platelet hyperactivity and pathological struc-
ture and function of erythrocytes. They have been fol-
lowed by papers describing the endothelial dysfunction, 
enhanced thrombin generation (TG) and inflammatory 
state, including neutrophil cellular traps (NETs). Then 
we proceeded to the review of literature in the topic of 
qualitative and quantitative changes of fibrinogen, with a 
special emphasis on the posttranslational modifications 
of fibrinogen. This has been followed by the analogical 
modifications of proteins involved in fibrinolysis. In the 
part devoted to the pharmacological interventions, we 
presented data on antidiabetic drugs, aspirin and FXa-
inhibitors. Results of basic research and clinical trials 
were selected from PubMed and Web of Science from 
January 2000 to May 2021, supported by a few seminal 
papers from previous years.

Mechanisms of hypofibrinolysis in T2DM
Key steps of fibrinolysis involve initiation and propaga-
tion [31]. Fibrinolysis starts with the colocation of plas-
minogen and tissue plasminogen activator (tPA) on 
fibrin, where they form a complex that stimulate gen-
eration of plasmin [31]. Plasmin cleaves fibrin produc-
ing fibrin degradation products and terminal C-lysines 
on fibrin providing additional positive feedback through 
enhanced plasminogen binding [31]. The two most criti-
cal serpin inhibitors in fibrinolysis are plasminogen acti-
vator inhibitor 1 (PAI-1) and α2-antiplasmin inhibitor 
[31]. The interaction between serpin inhibitors and tar-
get enzymes are modulated by fibrin and fibrinogen [31]. 
Multiple interacting mechanisms have been postulated to 
be involved in hypofibrinolysis in T2DM (Fig. 1).

Platelet hyperreactivity
Studies spanning over more than 30  years have docu-
mented platelet hyperreactivity in T2DM, which is 
reflected by enhanced biosynthesis of thromboxane 
(TX) A2 [32, 33]. A study by Patrono et al. demonstrated 
that oxidative stress, reflected by a two-fold increased 
synthesis of F2-isoprostane 8-iso-prostaglandin F2α 
(8-iso-PGF2α), a bioactive product of arachidonic acid 
peroxidation, linearly correlated with blood glucose 
levels, largely contributing to persistent platelet activa-
tion in T2DM [34]. The Italian investigators also found 
that postprandial hyperglycemia was associated with 
enhanced lipid peroxidation and platelet activation 

induced by increased production of TXA2 in newly diag-
nosed T2DM patients, with their subsequent reduction 
following acarbose treatment [35]. They also reported 
that 11-dehydro-TXB2 levels and 8-iso-PGF2α excre-
tion rates predicted soluble CD40 ligand (sCD40L) levels 
in T2DM patients in association with an inflammatory 
state, which was reflected by elevated C-reactive protein 
(CRP) concentrations [36]. Of note, a randomized con-
trolled trial by Simeone et  al. showed that weight loss, 
achieved through either lifestyle changes or an incretin-
based therapy, was associated with a significant reduction 
in lipid peroxidation and TX-mediated platelet hyperre-
activity [37]. Increased oxidative stress in subjects with 
T2DM is a consequence of metabolic abnormalities, 
including insulin resistance, hyperinsulinemia, hyper-
glycemia, and dyslipidemia [38], with obesity having 
a crucial role as a clustering factor for all of the above-
mentioned abnormalities, leading to platelet dysfunction. 
Using a euglycemic-hyperinsulinemic clamp in lean non-
diabetic subjects, Westerbacka et  al. observed an inhi-
bition of platelet deposition to collagen and a decrease 
in platelet aggregation to several agonists [39]. Inhibi-
tory effects of insulin under similar conditions were not 
seen in obese patients [39]. This was confirmed during 
a sub-study of the Bypass Angioplasty Revascularization 
Investigation 2 Diabetes (BARI 2D) study, which demon-
strated a positive correlation between BMI and adeno-
sine diphosphate-stimulated increase in platelet-surface 
expression of P-selectin among 193 patients with T2DM 
and stable CHD [40]. Platelet hyperreactivity might con-
tribute to hypofibrinolysis in T2DM in at least two ways. 
More than 90% of PAI-1 is stored in platelet α-granules 
but its substantial portion is inactive [41]. It has been 
reported that platelets of T2DM patients contain a 
decreased amount of PAI-antigen, while PAI-1 concen-
tration and activity in plasma of T2DM patients are sig-
nificantly higher than in controls [42]. An altered platelet 
membrane ultrastructure with apoptotic morphology 
and membrane has been reported in diabetic patents 
[43], along with enhanced platelet-derived microparticle 
(PMP) formation [44]. It has been recently demonstrated 
that under chronic hyperglycemia, protease-activated 
receptor 4 promotes release of PMPs through a Ca2+ -cal-
pain dependent mechanism [45]. Fibrin clots formed in 
the presence of microparticles have been shown to be 
less susceptible to tPA-induced fibrinolysis in healthy 
subjects [46], and this can be most likely extrapolated to 
diabetic patients. In summary, enhanced TX-dependent 
platelet activation is a typical phenomenon in T2DM 
patients and is associated with oxidative stress, a proin-
flammatory state, hyperglycemia, and insulin resistance, 
which may contribute to hypofibrinolysis, at least in part 
through enhanced release of PAI-1 and PMP.
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Fig. 1  Mechanisms involved in hypofibrinolysis in type 2 diabetes mellitus (T2DM) patients. The main contributors to hypofibrinolysis in T2DM are 
platelet activation, endothelial cells (ECs) dysfunction, enhanced thrombin generation, proinflammatory state, increased fibrinogen level along 
with its modifications, and altered fibrin structure. Obesity represented by high body mass index (BMI), hyperinsulinemia, and hyperglycemia (high 
glucose, Glc) all lead to platelet activation reflected by increased release of thromboxane A2 (TXA2), P-selectin, plasminogen activator inhibitor 1 
(PAI-1), and platelet microparticles (PMPs). Another contributor to platelet activation is oxidative stress, which is reflected by increased synthesis of 
F2-isoprostane 8-iso-prostaglandin F2α (8-iso-PGF2α), a product of low-density-lipoprotein (LDL) cholesterol peroxidation, represented by oxidized 
LDL (oxLDL). Down-regulation of the insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3K) pathways with enhancement 
of mitogen-activated protein kinase (MAPK) result in decreased nitric oxide (NO) synthesis and increased PAI-1 release, leading to endothelial 
dysfunction. Advanced glycation end-products (AGE) stimulate overactive NADPH oxidases (NOX), reactive oxygen species (ROS)-producing 
enzyme complexes, which in turn generates tissue factor (TF) in ECs. AGE stimulate monocytes (Mo)/macrophages (Ma) to produce increased 
amounts of TF. Another source of TF are the vascular smooth muscle cells (VSMCs). Increased TF initiates the extrinsic pathway of coagulation and 
together with factor VII (VIIa, activated factor VII) lead to enhanced thrombin generation. Weibel-Palade bodies release increased amounts of von 
Willebrand factor (vWF), which along with increased factor VIII (VIIIa, activated factor VIII) and factor IX (IXa, activated factor IX), form the intrinsic 
pathway of thrombin generation. Increase in both components of the prothrombinase complex, activated factor X (Xa) and V (Va). Other factors 
underlying enhanced thrombin generation are central obesity represented by increased waist-hip circumference (WHC) ratio, elevated C-reactive 
protein (CRP), low glycemia, and time since T2DM diagnosis exceeding 5 years. Hyperglycemia, increased interleukins 6 and 8 (IL-6 and IL-8), along 
with ROS stimulate neutrophils to form the neutrophil extracellular traps (NETs), with an important stage of chromatin decondensation mediated 
by peptidylarginine deiminase 4 (PAD4), followed by a release of nuclear components depicted in light blue, i.e., cell-free DNA (cfDNA), citrullinated 
histone H3 (H3Cit), and granular components depicted in dark blue, i.e., myeloperoxidase (MPO) and neutrophil elastase (NE). Obesity represented 
by increased BMI elevates both CRP and complement C3 (C3) levels. IL-6 and insulin resistance contribute to elevated fibrinogen concentration, 
while hyperglycemia and ROS result in posttranslational modifications, such as fibrinogen glycation (–Glc) and oxidation (–ROS). The fibrin network 
formed from modified fibrinogen, with increased amounts of incorporated α2-antiplasmin (a2AP), NETs, and complement C3, characterized by 
enhanced crosslinking by factor XIII (FXIII), dense and less permeable, being composed of thinner and highly branched fibrin fibers. Additionally, 
increased amount of polyhedrocytes are found in the contracted thrombi of diabetic patients. Decreased plasmin generation, diminished binding 
of plasminogen and tissue plasminogen activator (tPA) to fibrin, along with increased PAI-1, originating from adipocytes and hepatocytes, are also 
involved in hypofibrinolysis observed in T2DM. Glycation of plasminogen was reported in type 1 diabetes mellitus patients and therefore is marked 
with asterisks. α2-antiplasmin is another protein implicated in fibrinolysis and found to be glycated in T2DM. FDP, fibrin degradation products
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Pathological structure and function of erythrocytes
Recent evidence suggests that erythrocytes are impli-
cated into hypofibrinolysis in T2DM patients. As a con-
sequence of a decrease in the cholesterol to phospholipid 
ratio, increased membrane lipid peroxidation, and gly-
cosylation of cytoskeletal proteins, the membrane of red 
blood cells becomes rigid and non-deformable in diabetic 
subjects [47]. It is known that erythrocytes in contracted 
thrombi form close-packed polyhedral erythrocytes, 
polihedrocytes, which contribute to increased resistance 
to fibrinolysis [48]. Enhanced formation of polihedro-
cytes have been reported in T2DM, and increased fasting 
glucose and glycated hemoglobin have been correlated 
with content of polyhedral erythrocytes [49]. It has been 
suggested that the decreased lysability of such clots 
results from decreased penetration of lytic enzymes into 
tightly packed clots rich in polyhedrocytes [48]. Indeed, 
diabetic patients who formed a large amounts of polyhe-
drocytes within thrombi have been demonstrated to have 
longer clot lysis time when compared to those with lower 
amounts of polyhedrocytes [49]. In conclusion, changes 
in ultrastructure of the erythrocyte membrane result in 
its altered mechanical properties, which might impair 
fibrinolysis in T2DM.

Endothelial dysfunction
Decreased bioavailability of nitric oxide (NO) is a typi-
cal feature of endothelial dysfunction in T2DM, leading 
to vasoconstriction [50]. It is unclear whether decreased 
NO directly contributes to hypofibrinolysis. More impor-
tantly, decreased bioavailability of NO is mediated by the 
same molecular pathway as increased expression of PAI-
1, i.e., a down-regulation of insulin receptor substrate 
1 in endothelial cells with a consequent shift from the 
phosphatidylinositol 3-kinase pathway to mitogen-acti-
vated protein kinase signaling [51]. Several recent stud-
ies [41] have shown PAI-1 levels to be elevated in T2DM 
patients by approximately 25–280% when compared to 
nondiabetic subjects. Interestingly, hyperglycemia is not 
a required factor, while increased PAI-1 has also been 
reported during diabetic hypoglycemia [52, 53]. Endothe-
lial release of PAI-1 is likely to partially account for this 
increase in PAI-1 measured in the blood of subjects with 
insulin-resistant states [54]. Apart from platelets, other 
sources of PAI-1 include hepatocytes [55] and adipocytes 
[56], with the latter being a proxy for a positive correla-
tion between BMI and PAI-1 activity [57]. In a cross-
sectional study of mostly obese patients (76%, median 
BMI 32 kg/m2), circulating PAI-1 antigen contributed in 
13.8% to variance of clot lysis time determined using the 
assay of Lisman [58]. Data about thrombin-activatable 
fibrinolysis inhibitor (TAFI) in T2DM are rather limited, 
although there has been a report demonstrating that both 

antigen and activity are increased by approximately 25% 
and 75%, respectively [59]. In a cross-sectional study of 
55 T2DM patients, soluble thrombomodulin, another 
marker of endothelial dysfunction and potent activator 
of TAFI, was reported to be increased by 45% in patients 
with an HbA1c of 9.1%, when compared to control sub-
jects [60]. Moreover, T2DM is characterized by overac-
tive NADPH oxidases (NOX), which are the source of 
reactive oxygen species (ROS) [61]. When they are acti-
vated by advanced glycation end-products (AGE), gen-
eration of tissue factor (TF) in human endothelial cells is 
initiated [62]. The main sources of TF, a key initiator of 
blood coagulation in  vivo, are monocytes/macrophages 
and vascular smooth muscle cells [63]. Monocytes incu-
bated in  vitro with glycated albumin [64] or AGE [65] 
have been reported to express increased amounts of TF 
on the surface [64, 65], which is in line with data show-
ing increased TF expression on monocytes isolated 
from T2DM patients when compared to healthy volun-
teers [65]. Type 2 diabetes mellitus patients were shown 
to have an approximately fourfold greater procoagulant 
activity of TF, which increased by 30% under hyperinsu-
linemic conditions and by 80% under the mutual action 
of hyperinsulinemia and hyperglycemia [66]. Tissue fac-
tor expression is regulated at the post-transcriptional 
level, being reduced by endothelial microRNA (miR)-19a 
and miR-181b, while increased by miR-126 [67, 68]. In 
summary, the current evidence convincingly shows that 
endothelial dysfunction in T2DM, driven by disturbed 
signaling in the arterial wall along with overactive NOX, 
is related to hypofibrinolysis through increased expres-
sion of PAI-1, TF, thrombomodulin, and most probably 
TAFI.

Enhanced TG
Thrombin concentration influences both the fiber thick-
ness and density of a fibrin clot [69]. High thrombin 
concentrations have been associated with relatively 
non-turbid, less permeable clots, with a dense network 
composed of relatively thin fibrin fibers [69]. Enhanced 
TG was demonstrated in a study involving a repre-
sentative group of 60 T2DM patients at a typical age 
of T2DM diagnosis, namely 64  years, diagnosed with 
T2DM approximately 9  years  prior, treated mainly with 
oral hypoglycemic drugs [70]. Such T2DM patients have 
been demonstrated to have a 14–25% decreased lag-time, 
16–23% shorter time-to-peak, 15–45% increased peak 
thrombin concentration, and 15–28% increased endog-
enous thrombin potential (depending on the coagulation 
trigger and presence of thrombomodulin) when com-
pared to control subjects [70]. Type 2 diabetes mellitus 
coexisting with CVD was associated with a 12% increase 
in endogenous thrombin potential, determined using 
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calibrated automated thrombogram (CAT), when com-
pared to diabetic patients without CVD [71]. Recently, 
our group has reported that among 133 patients with 
T2DM, increased peak thrombin concentration meas-
ured at baseline using CAT (> 283.5  nM) conferred a 
5.6-fold greater risk of cardiovascular mortality dur-
ing a 6-year follow-up [29]. Enhanced TG in T2DM has 
a multifactorial background, given the fact that platelet 
hyperreactivity and increased TF expression, along with 
endothelial injury, all lead to augmented factor Xa-medi-
ated conversion of prothrombin to thrombin, the key 
enzyme in blood coagulation. Other postulated mecha-
nisms leading to enhanced TG include increased cell-
derived microparticles [70], increased coagulation factors 
(II, V, VII, VIII, and X) along with low levels of anticoagu-
lants (protein C) [72], increased von Willebrand factor 
[73], high waist circumference, and a proinflammatory 
state reflected by increased CRP [74]. Recent studies 
have shown that low glycemia (< 4.5 mmol; + 16% higher 
peak thrombin vs. patients with glucose > 6 mmol/l) [75] 
and time since T2DM diagnosis > 5 years (+ 16% higher 
peak thrombin vs. patients with the T2DM duration of 
≤ 5  years) contribute to enhanced thrombin generation 
[23]. In summary, current evidence supports the role of 
enhanced TG in the development of cardiovascular com-
plications in T2DM patients, with some of these compli-
cations likely being related to hypofibrinolysis.

Inflammatory state
Current data supports the view that DM is character-
ized by increased inflammation and by increased lev-
els of CRP, Toll-like receptors 2 and 4, interleukins, and 
NOX [76]. In response to interleukins and ROS [77, 78], 
NETs are released from activated neutrophils. Neutro-
phil extracellular traps may promote thrombosis via sev-
eral pathways. They provide the scaffold for thrombus 
formation, stimulate platelet adhesion and aggregation, 
bind fibrinogen [79], stimulate TG [80], and enhance the 
formation of thicker, more stable and rigid fibrin fibers 
displaying increased lysis time [81]. Although one study 
reported a weaker ability of neutrophils from T2DM 
patients to form NETs [78], the prevailing view is that 
hyperglycemia enhances NETosis, which is reflected by a 
5.6-fold greater formation of NETs when neutrophils are 
incubated with 25 mM glucose [82]. In line with the latter 
concept, increased circulating markers of NETs (nucle-
osomes, extracellular DNA, and neutrophil elastase) 
have been found in the plasma of T2DM patients when 
compared to non-diabetic individuals [82]. Moreover, 
elevated markers of NETs formation have been reported 
in T2DM patients with HbA1c ≥ 8% or with concomi-
tant CVD [58]. Growing evidence supports the view that 
formation of NETs is enhanced in T2DM patients and 

may contribute to the elevated risk for thromboembolic 
events in this disease [83]. Most importantly, elevated 
circulating markers of NETs, defined as citrullinated 
histone H3 and cell-free DNA in the top quartiles, have 
been found to predict clot lysis time when assessed by the 
Lisman method in T2DM patients, accompanied by CVD 
and other important modulators of fibrinolysis such as 
PAI-1 [58]. An increase in circulating markers of NETs 
is related to the level of glycemic control and interleukin 
6 (IL-6)-mediated inflammatory state [58]. Using a pro-
teomic approach, several proteins related to inflamma-
tory processes have been identified in the plasma fibrin 
clot, including complement C3 [84]. Further studies have 
allowed to fully characterize the role of complement C3 
in the clots of T2DM patients and have demonstrated the 
positive relationship between its incorporation into clots 
and BMI [85]. In contrast to CRP levels, complement C3 
contributes to turbidimetric clot lysis to a similar extent 
as PAI-1[85]. Taken together, many recent investigations 
have revealed that NETs and complement C3 are novel 
contributors to hypofibrinolysis in T2DM. Their prog-
nostic value regarding cardiovascular mortality in T2DM 
remains to be established.

Hyperfibrinogenemia
Persistently increased plasma fibrinogen concentrations 
are a typical laboratory abnormality observed among 
T2DM patients, which is a consequence of increased 
IL-6 level and insulin resistance [9, 86]. Hypofibrinolysis 
seems to be driven by PAI-1 rather than by fibrinogen; 
however, fibrinogen concentrations may still contribute 
to hypofibrinolysis. It has been presented in plasma-puri-
fied models that increasing fibrinogen levels positively 
correlated with clot lysis [87] and also led to more rigid 
fibrin clots when assessed using the rheometric assay 
[88]. Among 502 patients, including 129 with metabolic 
syndrome, fibrinogen concentration contributed to vari-
ance in turbidimetric lysis assay parameters, explaining 
8.6% of time from initiation of coagulation to the 50% clot 
lysis [18]. The contribution of PAI-1 to lysis parameters 
was comparable and ranged from 7 to 13% [18]. However, 
current evidence shows that the relationship between 
patient sex and impairment of fibrinolysis in T2DM 
appears to be independent of fibrinogen levels [24, 89]. 
Hyperfibrinogenemia and cardiovascular risk in T2DM 
have been studied by several investigators. In the Casale 
Monferrato Study, a fibrinogen concentration of > 4.1 g/l 
conferred a 61% increased risk for cardiovascular mortal-
ity during an 11-year follow-up of stable T2DM patients 
when compared to those with a fibrinogen concentration 
of < 3.0 g/l [90]. As shown in a subsequent study of nearly 
3900 T2DM patients with CVD or at least one cardiovas-
cular risk factor, the association between cardiovascular 
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events and fibrinogen is attenuated when adjusted for 
IL-6 levels [91]. In a small observational study of 133 
clinically stable  T2DM patients, no difference was seen 
in the baseline fibrinogen concentration between patients 
who died from cardiovascular causes and survivors in 
the 6-year follow-up period [29]. Conversely, a greater 
baseline plasma fibrinogen concentration was noted in 
diabetic post-MI patients when compared to non-DM 
subjects [92]. Furthermore, a fibrinogen concentration 
of > 2.9 g/l conferred a 7.8-fold greater risk for a subse-
quent major cardiovascular event [92]. A meta-analysis 
published in 2013 involving over 33,000 patients, includ-
ing 1000 with DM, showed that patients with or without 
DM did not differ regarding associations of fibrinogen 
with CVD and all-cause mortality [93]. Moreover, adding 
fibrinogen to the established risk factors did not improve 
the predictive accuracy [93]. Taken together, hyperfi-
brinogenemia might contribute to decreased fibrin clot 
lysability and subsequent thromboembolism in T2DM 
patients; however, its impact does not appear to be inde-
pendent of other cardiovascular risk factors.

Posttranslational modifications affecting fibrin clot 
structure
Abnormal fibrin clot structure in T2DM has been dem-
onstrated in cross-sectional [23, 24, 94–96] and interven-
tional studies [22, 97, 98], using assays based on purified 
fibrinogen [94, 97] or plasma [22–24, 95]. Because fibrin 
functions as both a cofactor and a substrate for the 
fibrinolytic enzyme plasmin, the fibrin structure influ-
ences the clot’s susceptibility to fibrinolysis [69]. A more 
rapid formation of dense, less permeable meshwork com-
posed of thinner and highly branched fibers, observed 
in purified systems, has been attributed to mechanisms 
independent of increased fibrinogen levels. These mecha-
nisms include modifications to the fibrinogen molecule, 
interference with fibrin polymerization, cross-linking 
by factor XIII (FXIII), and binding of tPA and plasmi-
nogen [94]. Three lysine residues on the α chain (K-539, 
K-208, K-448), previously identified to undergo glycation 
in mass-spectrometric analysis of plasma fibrin clots in 
T2DM patients, have been reported to be involved in the 
interaction with FXIII [99]. In 20 T2DM patients with an 
initial HbA1c of 11.7%, insulin treatment was associated 
with a 36% decrease in fibrinogen glycation, which cor-
responded to a 27% decreased rate of lateral aggregation 
and to 14% increased clot permeability [97]. However, 
fibrinogen glycation did not correlate with fibrin fiber 
extensibility, modulus, and stress relaxation [98]. Because 
the mass of glycated fibrinogen exceeded the sum of glu-
cose and fibrinogen, subsequent modification of glycated 
fibrinogen by oxidation was postulated by Dunn et  al. 
[94]. Indeed, markers of oxidative stress in plasma such 

as nitrotyrosine, soluble receptor for AGE, 8-iso-PGF2α, 
oxidized low-density lipoprotein, and total plasma car-
bonylation, have been correlated with plasma fibrin clot 
permeability [100, 101]. However, none of the residues 
responsible for binding plasmin to fibrin or for cleavage 
by plasmin [102] have been subjected to ozone-induced 
oxidation [103], although some of the oxidized sites 
were near these crucial sites. In summary, current evi-
dence shows that the diabetic milieu promotes fibrinogen 
modifications, particularly glycations, which are of para-
mount importance in the formation of abnormal fibrin 
clot structure.

Posttranslational modifications affecting proteins involved 
in fibrinolysis
In a purified system, clots from T2DM patients with an 
HbA1c of 7.9% have been demonstrated to have a twofold 
decreased clot lysis velocity along with 30% decreased 
binding of plasminogen and tPA to fibrin clots, as well 
as decreased plasmin activation [21]. Mass-spectrom-
etry of the highly purified human fibrinogen (glycated 
in vitro) revealed that the lysine residues on the β chain 
(K-133) which underwent glycation were situated within 
the ‘‘plasmin-sensitive’’ coiled–coil region, near the sites 
of plasmin proteolysis [104]. Another glycation site on 
the fibrinogen α chain, which was previously implicated 
in the interaction with plasmin, has been identified from 
plasma-derived fibrin clots of T2DM patients [99]. Post-
translational modifications of plasminogen have been 
investigated in type 1 DM. Because hyperglycemia is 
the common core metabolic abnormality, results from 
these studies can most likely be extrapolated to T2DM 
patients. Two glycation sites involved in fibrin binding 
and plasminogen cleavage have been identified on plas-
minogen purified from 20 patients with type 1 DM. These 
patients had a mean age of 22 years, were 50% male, diag-
nosed with DM 11 years prior, treated with insulin [105]. 
Plasminogen purified from these patients showed 2.3-
fold longer lysis time and 2.2-fold decreased catalytic effi-
ciency [105]. In vitro, after incubation of α2-antiplasmin 
with glucose at concentrations encountered in 
T2DM, eleven glycation sites have been identified on 
α2-antiplasmin, including on four (K-418, K-427, K-434, 
K-441) out of six lysine residues, known to be impor-
tant for mediating the interaction with plasmin [106], 
the biological significance of these glycations remains to 
be established. Interestingly, α2-antiplasmin incubation 
with glucose in similar conditions as above was associ-
ated with decreased α2-antiplasmin binding affinity to 
fibrin [107]. This finding seems to be counterintuitive to 
previous reports showing increased FXIII-induced cross-
linkage of α2-antiplasmin to fibrin when compared to 
control subjects both in fibrin from fibrinogen purified 
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from T2DM patients (by 20%) [21] and in a plasma-based 
assay (by 6%) [108]. It appears that the results strongly 
depend on the model chosen for investigation, with 
plasma-based assays probably being the most appropri-
ate. Finally, increased α2-antiplasmin incorporation into 
fibrin has been implicated in compromised fibrinolysis in 
women with T2DM when compared to men with T2DM 
[24]. Perhaps, this could be due to different glycation pat-
terns; however, this should be investigated in future stud-
ies. In summary, modifications of both fibrinogen and 
plasminogen are implicated in hypofibrinolysis in T2DM. 
Moreover, α2-antiplasmin undergoes glycation, with pos-
sible links to compromised fibrinolysis, which requires 
further studies.

Iron metabolism and fibrinolysis
Individuals with T2DM have higher plasma levels of fer-
ritin and tend to have higher total plasma levels of iron 
[109]. Trivalent iron, that circulates in blood, initiates a 
hydroxyl radical-catalyzed conversion of fibrinogen into 
a fibrin-like polymer (parafibrin) that is resistant to the 
proteolytic dissolution and causes chronic inflammation 
[110]. Interestingly, very recently it has been shown that 
empagliflozin increases erythropoiesis and augments 
iron utilization [111]. Whether this would serve some 
pathway how empagliflozin could decrease prothrom-
botic tendency in T2DM, remains to be established. 
Taken together, current data suggest that iron may be 
involved in hypofibrinolysis in T2DM.

Pharmacological interventions
Antidiabetic drugs
Metformin has an established role in the prevention of 
T2DM-related death, reducing it by 42% when compared 
to dietary treatment alone [112] and by 36% when com-
pared to sulfonylureas [113]. Metformin has been dem-
onstrated to decrease platelet activity and concentrations 
of fibrinogen, PAI-1, and tPA [86, 114]; to reduce oxida-
tive stress as reflected by levels of 8-iso-PGF2α, methyl-
glyoxal, and carboxymethyl-lysine [115, 116]; to decrease 
the formation of NETs, and levels of circulating cell-free 
DNA and IL-6 [117]; and to improve endothelial function 
[118]. Metformin exerts vasoprotective effect by reducing 
the TF activity in the blood of T2DM patients and inhib-
iting TF transcription via AMP-activated protein kinase 
in human monocytes [119]. In pooled diabetic plasma-
clot turbidity, metformin increased the lag period and 
decreased the maximum turbidity, along with decreasing 
FXIII antigen level and activity. Additionally, metformin 
was shown to inhibit fibrinopeptide cleavage from fibrin-
ogen [120]. The effect of insulin on the fibrin clot struc-
ture in T2DM has been considered controversial, being 
absent in plasma-based clot assays with high fibrinogen 

levels in T2DM and control patients [22] but present in 
purified-fibrinogen assays where insulin decreased lat-
eral aggregation and increased permeability and lysis rate 
[97].

Data regarding the effects of new antidiabetic drugs 
on fibrinolysis are rather scarce. In  vitro, dipeptidyl 
peptidase-4 (DPP-4) has been demonstrated to increase 
ROS generation and expression of the receptor for AGE 
in endothelial cells. Linagliptin, a DPP-4 inhibitor, has 
been shown to prevent these unfavorable effects, along 
with decreasing PAI-1 gene expression in endothelial 
cells [121]. Additionally, both vildagliptin and sitag-
liptin have been reported to decrease PAI-1 [122, 123] 
levels in T2DM patients, in contrast to glucagon-like 
peptide-1 receptor agonists [124]. In a randomized trial, 
a 12-months long treatment with empagliflozin (10 mg/
day, n = 31) has resulted in 25% decrease in PAI-1 con-
centration when compared with standard therapy [125]. 
This has been however attributed to the synergistic action 
on glucose metabolism, the weight loss and changes in 
leptin concentrations [125]. In polycystic ovary syn-
drome, exenatide was shown to decrease lysis time, with-
out having any effect on clot density [124]. However, 
to date, there have been no reports on the effect of the 
new antidiabetic drugs on clot lysis time in patients with 
T2DM.

Aspirin and FXa‑inhibitors
The antiplatelet effects of aspirin in T2DM patients 
were extensively explored in a study by Patrono et  al., 
which showed that sCD40L and 11-dehydro-TXB2 lev-
els decreased after 7  days of aspirin use (30, 100 or 
325  mg daily) [36]. Sub-optimal platelet inhibition in 
approximately one-third of T2DM patients on a once-
daily low-dose aspirin regimen has been represented by 
the shorter-than-expected inhibition of platelet-derived 
TXA2, supporting the concept of accelerated cyclooxy-
genase-1 renewal during the dosing interval [126]. The 
main drivers of this reduced responsiveness appeared to 
be obesity and increased platelet turnover, which is the 
reason why a twice-daily aspirin regimen or doubling 
the once-daily dose have been suggested in patients with 
a BMI > 35  kg/m2 [127]. A recent large meta-analysis 
failed to show any effect of aspirin 81–650  mg daily in 
the primary prevention of cardiovascular events in dia-
betic patients [128]. Although DM is an indication for 
initiating aspirin in the primary prevention of CVD in 
a proposed stepwise approach [129], effective and safe 
platelet-targeted strategies to prevent cardiovascular 
events in this clinical setting require further investiga-
tion. Another effect of aspirin is the acetylation of pro-
teins other than cyclooxygenase, such as fibrinogen 
[130]. This leads to increased fibrin clot fiber thickness, 
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increased clot permeability, and decreased clot lysis time 
[131, 132]. Mass-spectrometry analysis of fibrinogen 
incubated with aspirin identified 10 sites of acetylation 
but did not find any evidence for competition between 
glycation and acetylation [133]. A mass spectrometric 
study of plasma-based clots from T2DM patients has 
demonstrated that the intensity of fibrinogen acetylation, 
as well as clot properties, were unaffected by aspirin in a 
dose of 75 mg taken once daily [104]. However, this study 
also showed that glycation may block sites which were 
previously identified in vitro to be acetylated on fibrino-
gen [104]. Possible interference between these two pro-
cesses has recently been suggested for two lysine residues 
on α2-antiplasmin [106], with a potential reversal of gly-
cation by aspirin [107].

Results from the Cardiovascular Outcomes for People 
Using Anticoagulation Strategies (COMPASS) study, 
specifically a sub-study in diabetic patients by Bhatt 
et  al., are in line with the antithrombotic effects of 
aspirin targeting clot properties [134]. This study dem-
onstrated that the addition of rivaroxaban to aspirin 
resulted in a 26% decreased hazard ratio of cardiovas-
cular events at the cost of increased risk of major bleed-
ing [134]. These results were consistent with another 
trial, carried out in patients with unstable CHD, includ-
ing 30% with diabetes, that demonstrated improvement 
in ischemic outcomes by addition of low-dose rivaroxa-
ban (2.5  mg bid) on top of dual anti-platelet therapy 
[135]. The benefits of additional therapy with low-dose 
rivaroxaban are predicted to be even greater in real-
word practice than in clinical trials [136]. The current 
evidence regarding the effects of rivaroxaban on clot 
properties comes largely from studies performed in 
nondiabetic settings. In a plasma-based study, treat-
ment with rivaroxaban 20  mg once daily resulted in a 
25% decrease in clot lysis time compared to baseline 
after 2–6  h from administration, with a return of clot 
lysis time to baseline after 20–25  h from administra-
tion [137]. In a cohort of atrial fibrillation patients, 
including 18% with diabetes, apixaban has been dem-
onstrated to enhance endogenous fibrinolysis measured 
in the Global Thrombosis Test, with maximal effects in 
those with impaired fibrinolysis pre-treatment [138]. 
The effect of rivaroxaban 2.5  mg bid on clot proper-
ties and fibrinolysis in T2DM patients remains to be 
better characterized. If the fibrinolysis tests could be 
helpful in identifying the T2DM patients who should 
receive such therapy, this requires substantial research 
efforts to reach the following goals: characterization of 
the effect of low-dose FXa inhibitors on fibrinolysis in 
human plasma; identification of the clinical and bio-
chemical determinants of the well and poor response 
to low-dose FXa inhibitors; and implementation of the 

global standard of testing fibrinolysis in T2DM patients 
by diabetologists and cardiologists before introducing 
anticoagulant drugs. Taken together, the modulation of 
fibrinolysis could be an important element of therapy 
in diabetic patients with the goal of reducing mortality, 
which is closely associated with cardiovascular disease. 
Pharmacological factors affecting fibrinolysis in T2DM 
have been summarized in Table 2.

Conclusions
The current evidence indicates that impaired fibrinoly-
sis characterizes patients with T2DM. However, the 
optimal test to assess the efficiency of fibrinolysis in this 
disease remains to be established given several assays 
used in clinical studies in recent years and their limita-
tions. Recent studies have identified novel mechanisms 
involved in hypofibrinolysis in T2DM, including NETs 
and posttranslational modifications of proteins involved 
in fibrin formation and lysis. Over the past decade, sev-
eral unexpected findings were revealed, including the fact 
that prolonged T2DM duration and decreased glycemic 
levels are factors contributing to altered fibrin structure 
and impaired lysis. The beneficial effects of antidiabetic 
drugs, in particular metformin, could be at least in part 
associated with fibrinolysis. Novel antidiabetic drugs 
are undoubtedly an integral part of T2DM treatment. 
Because of this, it is required that further studies regard-
ing their impact on fibrinolysis be conducted. Due to 
the major involvement of protein glycation, it might be 
speculated that all hypoglycemic agents may improve 
fibrinolysis. In addition, treatment with low-dose FXa 
inhibitors and aspirin in diabetic patients at high risk for 
cardiovascular mortality could also be beneficial in terms 
of fibrinolysis. Presumably, multiple interventions are 
needed to improve fibrinolysis in T2DM. Further stud-
ies are needed to evaluate the actual role of enhanced 
fibrinolysis in the prevention of morbidity and mortality 
in a rapidly growing population of patients with T2DM 
worldwide.
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