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Abstract 

Background:  SGLT2-inhibitors are potent antihyperglycemic drugs for patients with type 2 diabetes and have been 
shown to reduce body weight. However, it is unclear which body compartments are reduced and to what extent.

Methods:  In this longitudinal observational study, we analyzed the body composition of 27 outpatients with type 2 
diabetes mellitus during the first week and up to 6 months after initiation of treatment with SGLT2-inhibitors (n = 18 
empagliflozin, n = 9 dapagliflozin) using bioimpedance spectroscopy (BCM, Fresenius). Fluid status of hyperten‑
sive patients taking medication with hydrochlorothiazide (n = 14) and healthy persons (n = 16) were analyzed for 
comparison.

Results:  At 6 months, HbA1c decreased by 0.8% (IQR 2.3; 0.4), body weight and BMI by 2.6 kg (1.5; 9.3) and 0.9 kg/m2 
(0.4; 3.3), respectively. Bioimpedance spectroscopy revealed significant decrease in adipose tissue mass and fat tissue 
index while lean tissue parameters remained stable. Overhydration (OH) and extracellular water (ECW) decreased by 
− 0.5 L/1.73 m2 (− 0.1; − 0.9) and − 0.4 L/1.73 m2 (− 0.1; − 0.8) at day 3, respectively, and returned to the initial value 
after 3 and 6 months. Plasma renin activity increased by 2.1-fold (0.5; 3.6) at 1 month and returned to the initial level at 
month 3 and 6. Fluid status of patients with SGLT2 inhibitors after 6 months showed no difference from that of hyper‑
tensive patients taking hydrochlorothiazide or healthy persons.

Conclusions:  Body weight reduction under the treatment with SGLT2-inhibitors is caused by reduction of adipose 
tissue mass and transient loss of extracellular fluid, which is accompanied by upregulation of renin–angiotensin–
aldosterone system (RAAS). Permanent loss of extracellular water does not occur under SGLT2 inhibition.
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Background
Inhibitors of the sodium-coupled glucose transporter 
2 (SGLT2) are a promising and increasingly prescribed 
class of oral antidiabetic drugs. SGLT2-inhibitors 
increase urinary excretion of glucose by inhibiting its 
reabsorption via SGLT2 in the proximal tubule of the 
kidney, thus lowering blood glucose levels [1]. Besides 
their antidiabetic effect, loss of body weight has been 
observed consistently [2–4]. However, it is uncertain 
which body compartments and tissues change after the 
initiation of SGLT2 inhibition. In theory, body weight 
loss under treatment with SGLT2 inhibitors could be 
either due to loss of fat mass by a negative effect on the 
energy balance or due to loss of sodium and extracel-
lular volume by a diuretic effect or due to a combina-
tion of both. Previous investigations of changes in body 
composition under SGLT2 inhibitors mainly relied on 
calculated indices or x-ray absorptiometry [5–7]. In 
contrast, quantitative measurements of body composi-
tion have only lately been performed in a few cohorts 
[8–11]. Early changes of body composition during the 
first days after initiation of SGTL2 inhibitors have not 
been investigated yet.

In addition to the antihyperglycemic effect, treat-
ment with SGLT2 inhibitors was associated with reduc-
tion of hospitalization and mortality due to heart failure 
[12–16]. Up to now, the underlying mechanisms remain 
ill-defined, further studies investigating this connection 
are carried out [17] and different theories have been dis-
cussed [18–20]. Due to concomitant natriuresis of SGLT2 
inhibitors, a direct diuretic effect with reduction of extra-
cellular volume is conceivable. The early separation of 
the Kaplan–Meier curves for heart failure hospitaliza-
tion and mortality in patients treated with empagliflozin 
[12] suggests an immediate effect on congestive symp-
toms and strikingly resembles that of thiazide diuretic 
chlorthalidone as observed in the ALLHAT Treatment 
Group in 2007 [21]. Bioimpedance spectroscopy analysis 
as a quantitative measurement method can contribute to 
further define changes of body composition under treat-
ment with SGLT2 inhibitors and to identify changes in 
fluid status that could be responsible for these favorable 
effects in heart failure.

In this study, we analyzed the course of body compo-
sition and fluid status as measured by bioimpedance 
spectroscopy in a cohort of patients with type 2 diabetes 
after initiation of therapy with SGLT2 inhibitors empagli-
flozin or dapagliflozin during the first week and a follow 
up period of 6  months. Additionally, body composition 
and fluid status of patients with arterial hypertension and 
established diuretic therapy with hydrochlorothiazide, 
and control groups without SGLT2 inhibitors or diuretic 
medication were analyzed.

Methods
Patients
This study included patients with type 2 diabetes pre-
senting for improvement of antidiabetic therapy at the 
Department of Internal Medicine of the University Hos-
pital of Tübingen between March 2017 and June 2018. 
They all received standardized diabetes group training 
during 5 days which included dietary and lifestyle advice. 
Furthermore, the drug treatment (antidiabetic, antilipi-
demic and antihypertensive drug treatment) was adjusted 
daily to optimize according to the principles of the guide-
lines of the German Diabetes Association, the STENO 
Study [22] and the recently published consensus report 
of the American Diabetes Association and the European 
Association for the Study of Diabetes [23]. Patients with 
type 2 diabetes starting medication with a SGLT2 inhibi-
tor due to indication were included after they provided 
written informed consent (n = 27). Patients were not 
included when they had changes in diuretic therapy, his-
tory of a clinical condition leading to changes in body 
composition like malignant tumor, aggressive diet regi-
men or bariatric surgery or evidence of liver disease, or 
declined to participate (n = 10).

To further compare the fluid status under SGLT2 inhi-
bition with that of healthy individuals, patients with type 
2 diabetes without SGLT2 inhibition and hypertensive 
patients, data obtained from a former study of our group, 
involving patients with chronic kidney disease of all 
stages and hypertension, [24] were re-assessed. To ensure 
comparability, patients with GFR > 60  mL/min/1.73  m2 
and albuminuria < 30  mg/g creatinine were selected for 
the analyses of this manuscript.

Evaluation of body composition and fluid status
Body composition and fluid status were assessed by bio-
impedance spectroscopy using the Fresenius body com-
position monitor (BCM) which is optimized for dry 
weight estimation of dialysis patients [25]. Bioimped-
ance measurements performed at a spectrum of 50 fre-
quencies between 5 and 1000 kHz enable to differentiate 
between intra- and extracellular fluid, as low electronic 
currents cannot pass cell membranes and flow through 
extracellular water only [26]. Parameters of volume status 
and body composition are calculated by the BCM using 
two physiological models: extracellular water (ECW), 
intracellular water (ICW) and total body water (TBW) 
are calculated using the body volume model; the body 
composition model differentiates normally hydrated 
fat mass, normally hydrated lean mass and a remaining 
proportion of water, and lays the foundation to calcu-
late parameters of adipose tissue (adipose tissue mass, 
ATM and fat tissue index, FTI), lean tissue (lean tissue 
mass, LTM and lean tissue index, LIT) and the so-called 
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overhydration (OH) [27]. OH is mainly part of extracellu-
lar fluid and reference values for OH lie between − 1 and 
+ 1 L. Values obtained for OH, ECW and ICW were nor-
malized to a body surface area of 1.73 m2.

Laboratory assays
Blood and spot urine samples were drawn from each 
patient. Urine and plasma creatinine concentrations were 
determined using an enzymatic assay on the ADVIA XPT 
clinical chemical analyzer (Siemens Healthineers, Esch-
born, Germany). Urine protein was determined using a 
turbidimetric benzethonium chloride assay (Roche Diag-
nostics, Mannheim, Germany) on the latter instrument. 
HbA1c measurements were performed using the Tosoh 
glycohemoglobin analyzer HLC-723G8 (Tosoh Bioscience 
Tokyo Japan). Serum aldosterone and plasma renin activity 
were measured manually using RIA methods (Immuno-
tech, Prague, Czech Republic; Zentech, Angleur, Belgium).

Statistical analysis
For parameters obtained at baseline and follow up meas-
urements of patients with type 2 diabetes starting medica-
tion with a SGLT2 inhibitor, Friedman test was used to test 
for significant changes during the whole period of follow 
up. Friedman test only analyses data from patients with 
complete follow up and without missing values. Wilcoxon 
Signed-Rank test was used as post-test for differences 
between respective points of follow up. ANOVA and t-test 
for each pair as post-test was used to test for in between 
group differences of healthy controls, patients with type 2 
diabetes with and without SGLT2 inhibitor and patients 
with hypertension with and without hydrochlorothiazide 
treatment. Bonferroni correction for multiple testing was 
performed. Data analysis was performed using the statis-
tical software packages SAS Institute Inc. JMP 13.0, IBM 
SPSS Statistics 25.0 and GraphPad Prism 4.03.

Results
Characterization of the study cohort
The study included consecutively n = 27 patients with 
type 2 diabetes starting medication with an SGLT2 
inhibitor (n = 1 empagliflozin 5 mg; n = 5 empagliflozin 
10 mg; n = 12 empagliflozin 25 mg; n = 1 dapagliflozin 
5 mg; n = 8 dapagliflozin 10 mg). Baseline characteris-
tics of the study cohort are provided in Table 1. Median 
age was 58  years (interquartile range 52; 68), n = 12 
(43%) patients were male and median BMI was 36.3 kg/
m2 (32.6; 46.1) at baseline, respectively. All patients 
had normal renal function and almost no proteinuria. 
Altogether n = 11 patients completed all four follow-up 
visits. N = 17 patients were lost to follow up because 
they had stopped medication with the SGLT2 inhibi-
tor (n = 2) or because they declined or were unable to 

participate in follow up (n = 15). Adverse events from 
medication with the SGTL2 inhibitor were reported 
by n = 3 patients (all urogenital infections). Disturbing 
polyuria especially during the first days of intake was 
reported by some patients.

Table 1  Baseline characteristics of patients before starting 
medication with a SGLT2 inhibitor

Values reported are n (%) for categorical variables and median (interquartile 
range) for continuous variables

RAAS renin–angiotensin–aldosterone system, ACE angiotensin converting 
enzyme, HDL high density lipoprotein, LDL low density lipoprotein

Variable Value

Number of patients 27
Empagliflozin 18 

(1 × 5 mg; 5 × 10 mg; 
12 × 25 mg)

Dapagliflozin 9 (1 × 5 mg; 
8 × 10 mg)

Age (years) 58 (52; 68)

Sex (male) 12 (43%)

BMI (kg/m2) 36.3 (32.6; 46.1)

Body weight (kg) 101.9 (87.8; 128.6)

Blood pressure

 Systolic (mmHg) 141 (129; 153)

 Diastolic (mmHg) 88 (76; 99)

Heart rate (1/min) 78 (70; 88)

Antidiabetic medication

 Insulin 20 (71.5%)

 Metformin 26 (92.9%)

 DPP4 inhibitor 12 (42.9%)

 GLP1 agonist 7 (25%)

Therapy with RAAS inhibitor 25 (93%)

 ACE inhibitor 20 (74%)

 Angiotensin II receptor antagonist 5 (18%)

Statin therapy 15 (56%)

HbA1c (%) 9.1 (8.1; 10.9)

Creatinine (mg/dL) 0.7 (0.6; 0.9)

Proteinuria (mg/g creatinine) 124 (78; 185)

Hematocrit (%) 42 (39; 44)

Uric acid (mg/dL) 4.7 (4.3; 5.9)

Cholesterol (mg/dL) 172 (160; 200)

 HDL cholesterol (mg/dL) 46 (37; 54)

 LDL cholesterol (mg/dL) 104 (92; 135)

Macrovascular complications: history of

 Coronary artery disease/myocardial infarc‑
tion

10 (37%)

 Stroke 2 (7%)

 Peripheral artery disease 1 (4%)

Microvascular complications: history of

 Diabetic retinopathy 1 (4%)

 Diabetic nephropathy 8 (31%)

 Diabetic neuropathy 6 (23%)



Page 4 of 12Schork et al. Cardiovasc Diabetol           (2019) 18:46 

Course of HbA1c and body weight
HbA1c was 9.1% (8.1; 10.9) at baseline and decreased 
significantly by 0.9% after 30  days and by 0.8% after 
6  months after initiation of treatment with a SGLT2 
inhibitor, respectively (Additional file  1: Figure  S1A). 
Body weight and BMI at baseline were 101.9  kg (87.8; 
128.6) and 36.3 kg/m2 (32.6; 46.1), respectively. Decrease 
of body weight and BMI in this cohort was − 2.6  kg 
(− 1.5; − 9.3, p = 0.001) and − 0.9  kg/m2 (− 0.4; − 3.3, 
p = 0.001) after 6 months, respectively (Fig. 1a and Addi-
tional file 1: Figure S1B).

Course of body composition and fluid status 
under treatment with SGLT2 inhibitors
Bioimpedance spectroscopy to assess fluid status and 
body composition was performed at baseline and after 
3, 30, 90 and 180  days of medication with an SGLT2 
inhibitor, respectively. ATM was 60.5  kg (45.3; 76.0) at 
baseline and decreased progressively by − 1.4  kg (− 3.5; 
0.7, p = 0.109) at day 30 and − 7.0  kg (− 12.2; − 2.4, 
p = 0.010) at day 180, compared to baseline, respectively 
(Fig.  1b). FTI also decreased significantly by − 1.3  kg/
m2 (− 3.7; − 0.7, p = 0.007) after 6  months (Additional 
file 1: Figure S1C). There were no significant changes in 
LTM or LTI during follow up period (Additional file  1: 
Figure S1D).

Baseline OH and ECW were − 0.1 L/1.73 m2 (− 1.0; 0.7) 
and 16.3 L/1.73 m2 (15; 17), respectively. OH and ECW 
significantly decreased by − 0.5  L/1.73  m2 (− 0.1; − 0.9, 
p = 0.001) and − 0.4  L/1.73  m2 (− 0.8; − 1.0, p = 0.002) 
at day 3 and had returned to the initial value after 3 and 
6 months (Fig. 2), excluding a continuous loss of OH or 
ECW during follow up. Correction for the type of SGLT2 
inhibitor in Wilcoxon Signed-Rank tests showed no dif-
ference between patients with empagliflozin or dapagli-
flozin. Course of total body water and intracellular water 
showed no significant changes during follow up (Addi-
tional file 1: Figure S1E, F).

Course of renin aldosterone axis and blood pressure
Baseline serum aldosterone concentration and plasma 
renin activity was 81 pg/mL (59; 122) and 2.6 ng Ang I/
mL/h (1.5; 4.4), respectively. During treatment with 
SGLT2 inhibitors there was a tendency for elevated 
serum aldosterone concentration and plasma renin activ-
ity at day 30, with plasma renin activity being signifi-
cantly elevated by 2.1-fold (0.5; 3.6, p = 0.044) of baseline 
value at day 30 (Fig. 3). However, after 6 months plasma 
renin activity was almost normalized. These changes 
were observed although nearly all patients had a medi-
cation with RAAS inhibitors (Table  1). Baseline plasma 
NT-pro-BNP was 18 ng/L (18; 73) and showed no signifi-
cant changes during follow up.

Office systolic and diastolic blood pressure were 
141  mmHg (129; 153) and 88  mmHg (76; 99) and both 
tended to decrease on day 3 (systolic blood pressure 
− 8  mmHg (− 23; + 6), p = 0.042; diastolic blood pres-
sure − 7  mmHg (− 15; + 4), p = 0.011); there were no 
significant differences of systolic or diastolic blood 
pressure after 1, 3 and 6 months, compared to baseline, 
respectively (Additional file 1: Figure S1G, H). Heart rate 
showed no significant changes during follow up in this 
cohort (Additional file 1: Figure S1I).

Comparison of fluid status under treatment with SGLT2 
inhibitors and thiazide diuretics
To further interpret the fluid status of patients treated 
with SGLT2 inhibitors after 6  months, bioimpedance 
spectroscopy data was reassessed from a former study of 
our group involving healthy controls, a comparable group 
of patients with type 2 diabetes without SGLT2 inhibitor 
treatment, and patients with hypertension with and with-
out diuretic therapy with hydrochlorothiazide for at least 
6  months [24]. Characteristics of these participants are 
provided in Table 2.

Patients with type 2 diabetes taking regular medica-
tion with SGLT2 inhibitors after 6 months of treatment 
showed no significant differences in OH or ECW com-
pared to patients with type 2 diabetes without SGLT2 
inhibitors (with normal renal function), or to healthy 
persons (Fig. 4). Patients with hypertension with regular 
medication with thiazide diuretics also showed no dif-
ference in fluid status compared to healthy controls or 
patients with type 2 diabetes (Fig. 4).

Discussion
We found that the reduction of body weight during 
treatment with the SGLT2 inhibitors empagliflozin and 
dapagliflozin is caused by changes in volume status with 
decrease of extracellular water during the first days of 
intake, and by decrease of adipose tissue mass during the 
following weeks and months. The body weight reduction 
in our study was − 2.6 kg after 6 months and in the same 
range as reported previously with a body weight reduc-
tion of − 1.9 to − 2.3 after 14 to 24 weeks after initiation 
of a SGLT2 inhibitor [3, 5, 6, 28].

In our study, the reduction of body weight after 
6 months was due to a loss of adipose tissue mass, while 
lean tissue mass did not change significantly. This is con-
sistent with results from similar studies that used x-ray 
absorptiometry or calculated indices of adipose tis-
sue mass [5–7]. Other studies involving bioimpedance 
spectroscopy also found that weight loss under SGLT2 
inhibition after 12–104  weeks was mainly via reduc-
tion of adipose mass [8–10]. It has been discussed that 
the loss of adipose mass under SLGT2 inhibition can be 



Page 5 of 12Schork et al. Cardiovasc Diabetol           (2019) 18:46 

Friedman-Test:  Χ² (11) = 28.661   p < 0.001   
Wilcoxon-Tests *p < 0.005 (significant with Bonferroni correc�on) 
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Fig. 1  Course of body weight (a) and adipose tissue mass (ATM; b) under treatment with SGLT2 inhibitors. Left side shows absolute values, right 
side shows values normalized for baseline value. Whiskers indicate median and interquartile range. Friedman test was performed to test for 
significant differences during course of follow up; Wilcoxon Signed-Rank test was used to evaluate for differences between respective points of 
follow up; Bonferroni correction for multiple testing was performed
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attributed to an energy loss due to increased glycosuria 
[28–30] and increased lipid utilization [31]. Interestingly, 
besides body fat, epicardial fat was reduced under medi-
cation with SGLT2 inhibitors, providing another possible 
mechanism of reduction of cardiovascular mortality by 
SGLT2 inhibitors [32, 33].

As the probably most obvious mechanism of car-
diovascular risk reduction under SGLT2 inhibition, a 
diuretic effect as a consequence of increased glucosu-
ria and natriuresis, can be expected [20]. A novel and 
important finding of the present study is that changes in 
body fluid status are transient after initiation of SGLT2 
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Fig. 2  Course of overhydration (OH; a) and extracellular water (ECW; b) under treatment with SGLT2 inhibitors. Left side shows absolute values, 
right side shows values normalized for baseline value. Whiskers indicate median and interquartile range. Friedman test was performed to test for 
significant differences during course of follow up; Wilcoxon Signed-Rank test was used to evaluate for differences between respective points of 
follow up; Bonferroni correction for multiple testing was performed
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inhibitor treatment with empagliflozin or dapagliflo-
zin. Extracellular water was reduced rapidly and signifi-
cantly after 3  days, but had returned to baseline value 
when measured after three and 6 months. In a cohort of 
post-transplant diabetes mellitus, Schwaiger et  al. [11] 
also found a decrease of extracellular fluid after 4 weeks 
and extracellular water returned to baseline value in the 

further course. In Japanese patients treated with ipragli-
flozin, Iizuka et  al. [8] found a reduction of total body 
water by − 0.43  kg at 4  weeks, and a rising tendency at 
12 weeks (− 0.37 kg), compared to baseline, respectively, 
with changes of body fluid mainly caused by extracellular 
water and no significant changes of intracellular water; 
however, changes of volume status during the first days 
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Table 2  Characteristics of  healthy controls, hypertensive patients with  and  without hydrochlorothiazide treatment 
and patients with type 2 diabetes with and without SGLT2 inhibitor treatment

Values reported are n (%) for categorical variables and median (interquartile range) for continuous variables. Values reported for patients with type 2 diabetes with 
SGLT2 inhibitor are values measured at the end of follow up period (day 180 of medication with SGLT2 inhibitor). Hypertensive patients with hydrochlorothiazide 
treatment included have taken hydrochlorothiazide for at least 6 months

HCT hydrochlorothiazide, OH overhydration, ECW extracellular water, RAAS renin–angiotensin–aldosterone system, na not applicable
a  Only baseline value available

Variable Healthy Hypertensive 
with HCT

Hypertensive 
without HCT

Type 2 diabetes 
with SGLT2 
inhibitor

Type 2 diabetes 
without SGLT2 
inhibitor

ANOVA p

n 16 14 16 13 5 na

Age (years) 50 (35; 61) 56 (48; 63) 52 (43; 58) 64 (56; 71) 56 (54; 73) 0.0098

Sex (male) 4 (25%) 3 (21%) 5 (31%) 4 (31%) 5 (100%) 0.0472

BMI (kg/m2) 29.0 (24.8; 30.4) 30.1 (25.6; 33.4) 28.8 (25.0; 32.5) 32.7 (27.8; 37.6) 32.2 (30.5; 35.6) 0.1195

Body weight (kg) 74.9 (71.1; 84.5) 78.6 (71.0; 100.8) 83.2 (67.4; 95.4) 87.0 (72.6; 113.5) 89.7 (65.8; 98.9) 0.1409

Creatinine (mg/dL) 0.7 (0.6; 0.9) 0.8 (0.7; 0.8) 0.8 (0.6; 1.0) 0.7 (0.5; 0.9)a 0.6 (0.6;0.9) 0.5019

Proteinuria (mg/g creatinine) 12.6 (6.3; 16.2) 19.3 (13.5; 24.0) 11.4 (10.2; 18.3) 136 (69;197)a 137 (120; 619) < 0.0001

Renin (ng Ang L/mL/h) 1.3 (0.4; 3.1) 1.8 (0.3; 5.6) 2.8 (0.7; 6.7) 2.5 (0.9; 7.5) 4.5 (2.3; 21) 0.0986

Aldosterone (pg/mL) 161 (123; 194) 106 (75; 163) 102 (96; 146) 79 (64; 105) 112 (68; 147) 0.0254

Medication with RAAS inhibitor 0 11 (79%) 14 (88%) 12 (92%) 5 (100%) na

ANOVA p = 0.3518 ANOVA p = 0.6782 
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Fig. 4  Overhydration (OH; a), L/1.73 m2 and extracellular water (ECW; b), L/1.73 m2 in healthy controls, hypertensive patients with and without 
hydrochlorothiazide and in patients with type 2 diabetes with and without SGLT2 inhibitor. Values reported for patients with type 2 diabetes 
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of SGLT2 inhibition were not measured and follow up 
period was shorter, thus missing data on initial as well 
as long term changes in body fluid status. In our cohort, 
extracellular water was consistently decreased after 1 and 
3 months (− 0.4 L/1.73 m2 at day 30 and − 0.2 L/1.73 m2 
at day 90, compared to baseline, respectively), and 
showed a return to initial value in the long term follow up 
(− 0.01 L/1.73 m2 at day 180 compared to baseline).

As one consequence of the diuretic effect of SGLT2 
inhibitors, a reduction of arterial blood pressure can be 
expected. In our cohort, along with the course of OH and 
ECW, systolic and diastolic office blood pressure tended 
to decrease after 3  days, but there were no significant 
differences after 3 and 6 months, compared to baseline, 
respectively. However, in our study, blood pressure was 
measured only as a single office blood pressure. In studies 
that considered ambulatory blood pressure monitoring, 
SGLT2 inhibitors have been shown to reduce blood pres-
sure measured after 3 and 6 months of intake [34–37].

In accordance to our finding of transient decreased 
OH and ECW, increase of urine volume after initiation of 
SGLT2 inhibitors has also been found to be transient and 
was caused rather by natriuresis than by osmotic diure-
sis due to glycosuria [29, 38]. After initiation of SGLT2 
inhibition, an initial, but no long-term elevated natriu-
resis has been shown, and compensatory mechanisms 
such as increased sodium reuptake through following 
tubular transporters and activation of RAAS, have been 
investigated [38, 39]. Systemic RAAS has been shown 
to be activated transiently in patients with type 2 dia-
betes after beginning of SGLT2 inhibitors [39], whereas 
intrarenal RAAS is not activated after SGLT2 inhibi-
tion [40]. SGLT2 inhibitors have been recommended as 
combination therapy to RAAS inhibitors, especially in 
diabetic kidney disease [41]. In our study, despite pre-
existing medication with RAAS inhibitors in nearly all 
patients, changes of fluid status were accompanied by a 
trend towards elevated plasma renin activity and serum 
aldosterone concentration after 30  days, suggesting an 
increased activity of RAAS, with normalization after 
6 months. Our results therefore confirm active counter-
acting mechanisms of fluid regulation after inhibition of 
SGLT2 as discussed previously [39].

SGLT2 inhibitors have been suspected to promote the 
occurrence of stroke due to volume depletion [42, 43], 
with the Kaplan–Meier curves suggesting elevated risk of 
stroke during the first time after initiation of SGLT2 inhi-
bition [44]. In the long term, however, stroke incidence 
is not elevated paralleling the normalization of volume 
depletion [45]. Another concern about the diuretic effect 
of SGLT2 inhibitors is that they could promote renal 
failure. Indeed, parallel to the reduction of ECW after 
3 days and 1 month in our cohort, a decline of GFR was 

observed after initiation of SGLT2 inhibitors [46]. How-
ever, in the long term course, SGLT2 inhibitors have even 
been associated with a slower progression of chronic 
kidney disease [30, 46]. In our cohort, ongoing fluid loss 
or reduction of extracellular water as a risk of stroke or 
prerenal kidney injury was not observed with SGLT2 
inhibition, supporting the safety of prescribing SGLT2 
inhibitors, as long as counter-regulating mechanisms of 
fluid status are operative.

At baseline, participants of our study were normally 
hydrated as both, OH and ECW were in reference ranges. 
Comparison to a group of hypertensive patients with 
medication with hydrochlorothiazide as a diuretic agent 
showed no differences in fluid status of patients with 
chronic intake of SGLT2 inhibitors, hydrochlorothiazide, 
or no diuretic medication. This suggests that there is 
also no ongoing loss of extracellular water under treat-
ment with the diuretic hydrochlorothiazide similar to 
SGLT2 inhibitors due to counter-regulation. In contrast 
to our study cohort, patients with heart failure are at risk 
for fluid overload and extracellular water accumulation, 
leading to hydropic decompensation and hospitalization 
[47]. Treatment with SGLT2 inhibitors has been shown 
to reduce this risk [12] and was found to be safe and effi-
cient in patients with type 2 diabetes and different stages 
of cardiovascular disease [48]. SGLT2 inhibition could 
lead to a sustained correction of fluid accumulation in 
patients starting with an elevated level of overhydration 
and extracellular water. This is supported by the finding 
that patients at risk for heart failure, who were treated 
with empagliflozin, had a reduced need for loop diuretics 
[14]. In a cohort of chronic kidney disease patients with 
fluid retention, decrease of extracellular fluid under med-
ication with dapagliflozin was smaller than under medi-
cation with furosemide, but larger than under medication 
with tolvaptan [49]. Our data therefore are compatible 
with the notion that the protective effect of SGLT2 inhib-
itors from heart failure is related to their effect on extra-
cellular volume and overhydration. This effect could even 
be enhanced in patients with overhydration at baseline.

Overall, the diuretic effect of SGLT2 inhibitors seems 
to be most effective during the initial period of SGLT2 
inhibition [38], and we showed that it causes changes in 
fluid status and could therefore be responsible for fast 
acting beneficial effects on heart failure; reduction of adi-
pose tissue that we confirmed in the follow up period of 
SGLT2 inhibition indicates that additional mechanisms 
for risk reduction in heart failure could gain importance 
in the long term course, such as lipid utilization [31], 
reduction of epicardial fat [32, 33], and effects on vascu-
lar endothelial function [50].

The limitations of this study are the small number of 
patients and healthy participants without heart failure or 
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proteinuria, conditions known to be associated with overhy-
dration and edema. The strengths of the study are the direct 
measurements with the output of quantitative data of vol-
ume status and body composition by using bioimpedance 
spectroscopy. To our knowledge, it is the first study concen-
trating on the changes of fluid status and body composition 
during the first days after initiation of SGLT2 inhibitor treat-
ment and during a follow up period of 6 months. Even in 
our small cohort, significant changes in the intraindividual 
course of the parameters of interest could be detected, indi-
cating robustness of the observed changes.

Conclusions
In conclusion, our study shows that body weight reduc-
tion under the intake of SGLT2 inhibitors is caused by a 
decrease of adipose tissue mass after 6 months of intake 
and by a transient decrease of extracellular water after 
3 days and 1 month, which is counterbalanced by upreg-
ulation of renin–angiotensin–aldosterone system. Our 
data argue against an ongoing fluid loss under treatment 
with SGLT2 inhibitors, which is also not seen in chronic 
thiazide treatment.

Additional file

Additional file 1: Figure S1. Course of HbA1c (A), BMI (B), fat tissue index 
(FTI, C), lean tissue index (LTI, D), total body water (E), intracellular water 
(F), systolic and diastolic blood pressure (G and H) and heart rate (I) under 
treatment with SGLT2 inhibitors. Left side shows absolute values, right side 
shows values normalized for baseline value. Whiskers indicate median and 
interquartile range. Friedman test was performed to test for significant 
differences during course of follow up; Wilcoxon Signed-Rank test was 
used to evaluate for differences between respective points of follow up; 
Bonferroni correction for multiple testing was performed.
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