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Abstract

Diabetes mellitus currently affects over 350 million patients worldwide and is associated with many deaths from car-
diovascular complications. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors are a novel class of antidiabetic drugs
with cardiovascular benefits beyond other antidiabetic drugs. In the EMPA-REG OUTCOME trial, empagliflozin signifi-
cantly decreases the mortality rate from cardiovascular causes [38% relative risk reduction (RRR)], the mortality rate
from all-causes (32% RRR) and the rate of heart failure hospitalization (35% RRR) in diabetic patients with established
cardiovascular diseases. The possible mechanisms of SGLT-2 inhibitors are proposed to be systemic effects by hemo-
dynamic and metabolic actions. However, the direct mechanisms are not fully understood. In this review, reports con-
cerning the effects of SGLT-2 inhibitors in models of diabetic cardiomyopathy, heart failure and myocardial ischemia
from in vitro, in vivo as well as clinical reports are comprehensively summarized and discussed. By current evidences, it
may be concluded that the direct effects of SGLT-2 inhibitors are potentially mediated through their ability to reduce

cardiac inflammation, oxidative stress, apoptosis, mitochondrial dysfunction and ionic dyshomeostasis.
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Background

Diabetes mellitus (DM) currently affects over 350 mil-
lion patients globally [1]. The causes of death up to 80%
in patients with type 2 DM (T2DM) are associated with
cardiovascular diseases [2, 3]. Diabetic cardiomyopathy
is a progressive disease which affects both cardiac struc-
ture and function in diabetic patients. These abnormali-
ties include cardiac hypertrophy, cardiac apoptosis and
necrosis, ventricular dilatation and interstitial fibrosis
[4, 5] which consequently leads to both systolic and dias-
tolic dysfunctions [6]. Metabolic disturbances, including
hyperglycemia, insulin resistance and hyperlipidemia,
play an important role in the diabetic cardiomyopathy
process by triggering the renin—angiotensin—aldosterone
system, altered lipid metabolism, inflammation, oxida-
tive stress, mitochondrial dysfunction and endoplasmic
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reticulum (ER) stress [7]. Chronic exposure to these con-
ditions make heart limited to physiological adaptation
and repair capacity.

The sodium-—glucose co-transporters (SGLT) are a
family of active glucose transporter proteins with two
major isoforms, SGLT-1 and SGLT-2 [8]. SGLT-1 expres-
sion found in the small intestine, liver, lung, kidney and
heart, whereas SGLT-2 expression is predominantly
found in the kidney [9]. SGLT-2 inhibitors are a novel
class of antidiabetic drugs which produce glycosuric
and natriuretic effects by inhibiting glucose and sodium
reabsorption from the proximal convoluted tubules
[10]. Some SGLT-2 inhibitors, including canagliflozin,
dapagliflozin and empagliflozin, have been approved for
their use in Europe and the USA [11]. Recently, SGLT-2
inhibitors have become the topic of interest due to the
benefits in a cardiovascular outcome trial beyond other
antidiabetic drugs. The EMPA-REG OUTCOME trial
(2010-2015) showed the cardioprotective effect of
empagliflozin by significantly lowering the rate of death
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from cardiovascular causes [38% relative risk reduction
(RRR)], all-cause death (32% RRR) and heart failure hos-
pitalization (HHF) (35% RRR) in T2DM patients with
established cardiovascular diseases (CVD) [12]. These
benefits of empagliflozin are expected to be class effects
with SGLT-2 inhibitors. Several studies also supported
this evidence [13-15] as summarized in Table 1. The
CANVAS trial (2009-2017) showed canagliflozin sig-
nificantly reduced the composite of cardiovascular-cause
death, nonfatal myocardial infarction (MI) or nonfatal
stroke [hazard ratio (HR) 0.86, 95% confidence interval
(CI) 0.75-0.97] and HHF (HR 0.67, 95% CI 0.52-0.87)
[13]. The CVD-REAL study which reported the cardio-
vascular effect of SGLT-2 inhibitors compared to other
glucose-lowering drugs showed that SGLT-2 inhibitors
could significantly decrease the rate of HHF (HR 0.49,
95% CI 0.41-0.57) and all-cause death (HR 0.61, 95% CI
0.51-0.73) [14]. Ongoing cardiovascular trials of SGLT-2
inhibitors include DECLARE-TIMI 58 (dapagliflozin,
2013-2019), VERTIS CV (ertugliflozin, 2013-2019) and
RECEDE-CHF (empagliflozin, 2017-2019) may help to
confirm this expectation [16—18].

Despite the cardiovascular benefits of SGLT-2 inhibi-
tors, their biological mechanisms leading to cardiopro-
tection are not fully understood. Possible mechanisms
are clearly proposed to be systemic effects by hemo-
dynamic actions via natriuresis and metabolic actions
via glycosuria [19-23]. Natriuresis results in lowering
plasma volume and blood pressure, which are subse-
quently decreasing cardiac preload and afterload [24—-27].
This effect occurs without heart rate changes suggesting
the lack of sympathetic stimulation [24, 28]. Empagliflo-
zin also reduces arterial stiffness and vascular resistance
in diabetic patients [28, 29]. In renal hemodynamics,
empagliflozin attenuates albuminuria and hypergly-
cemia induced glomerular hyperfiltration, resulting
in decreased intraglomerular hypertension [30-32].
The modulation of systemic and renal hemodynam-
ics by SGLT?2 inhibitors decreases cardiac workload and
improves cardiac function. Glycosuria results in reducing
plasma glucose concentration and subsequently decreas-
ing glucotoxicity, a factor which leads to diabetic car-
diomyopathy, as evidenced by the improvement of  cell
function and insulin sensitivity [33, 34]. Interestingly, one
of the benefits of SGLT-2 inhibitors beyond other hypo-
glycemic drugs is that they do not cause hypoglycemia,
since they can enhance endogenous glucose produc-
tion [33, 34]. The mechanism responsible for this ben-
efit is the increase of plasma glucagon concentration by
SGLT-2 inhibitors [33-35]. Dapagliflozin can directly
stimulate pancreatic alpha cells for glucagon secretion
[35]. Glucagon is known as the key hormone for hepatic
glucose production [36, 37], enhances ketogenesis [38,
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39] and improves cardiac contractility [40, 41]. Further-
more, SGLT-2 inhibitors can shift metabolism from car-
bohydrate to lipid [33, 42] and increase ketone body level
in both animal and clinical studies [42-44]. The mecha-
nisms responsible for that are potentially from com-
pensatory mechanisms of glucose lowering drugs [45],
reducing renal ketone body clearance [46] and enhanc-
ing ketone body production by glucagon action [33-35].
Ketone bodies are good energy source in myocardium
especially in failing hearts [47, 48]. In addition, ketone
bodies are associated with anti-arrhythmia and increas-
ing mitochondrial biogenesis [49, 50]. This is known as
the ketone body theory [51]. However, their benefits
and mechanisms are still questionable because ketone
bodies can precipitate diabetic ketoacidosis, a serious
complication of diabetes [46]. Glycosuria also results in
weight and fat mass reduction due to stimulation of lipid
oxidation compensating for energy loss [52-54]. Both
hemodynamic and metabolic actions of SGLT-2 inhibi-
tors potentially work together for improving diabetic
cardiomyopathy and finally resulting in cardioprotection
as shown in the EMPA-REG OUTCOME trial. However,
only systemic mechanisms may be not enough to explain
much better cardiovascular benefits of SGLT-2 inhibitors
when compared to other glucose-lowering drugs. Their
direct cardiac mechanisms, even no SGLT-2 expres-
sion in the heart [9, 55, 56], may be the answers for that.
Therefore, the objective of this review was to compre-
hensively summarize reports from in vitro, in vivo and
clinical studies regarding the evidence of possible direct
mechanisms responsible for cardioprotective effect of
SGLT-2 inhibitors, which are independently from their
systemic actions.

Effects of SGLT-2 inhibitors on cardiac structure

SGLT-2 inhibitors have been shown to improve cardiac
histopathologic changes in the diabetic cardiomyopa-
thy models of mice and rats, the heart failure model of
zebrafish embryos and also the myocardial ischemic
model of rats. These reports are summarized in Table 2.
In 2016, Kusaka et al. studied the effect of empagliflozin
in genetic prediabetes/metabolic syndrome rat model
[57]. After 10 weeks of treatment, empagliflozin signifi-
cantly reduced left ventricular weight, cardiomyocyte
size, cardiac interstitial fibrosis and cardiac interstitial
macrophage infiltration. Several reports that studied the
effect of empagliflozin in genetic diabetic mouse models
also suggested the improvement of cardiac morphologic
changes by decreasing the cardiomyocyte cross sectional
area, interstitial collagen I and III depositions, interstitial
fibrosis and interstitial macrophage infiltration [58, 59].
Lin et al. also reported that empagliflozin could attenu-
ate pericoronary arterial fibrosis and coronary arterial
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thickening [58]. The reduction of cardiac fibrosis was
shown to be due to the attenuation of the expression of
pro-fibrotic signaling pathway, serum- and glucocorti-
coid-regulated kinase 1 (SGK1) and epithelial sodium
channel (ENaC) [59]. In another genetic diabetic mouse
model, empagliflozin was given for a total of 6 weeks [60].
Although there were no significant changes in left ven-
tricular (LV) mass and histologic myocardial fibrosis, the
treatment group showed the decrease of cardiac hyper-
trophy and remodeling markers. Empagliflozin was found
to decrease the mRNA expression of hypertrophic fetal
genes including atrial natriuretic peptide/factor and beta-
myosin heavy chain. It also decreased the expression
of proteins associated with mitogen-activated protein
kinase pathways, including extracellular signal-regulated
kinases, c-Jun NH2-terminal kinases and p38, which
played an important role in the development of cardiac
remodeling [61]. In streptozotocin-induced diabetic car-
diomyopathy rats treated with empagliflozin for 8 weeks,
the attenuation of disordered cell arrays and focal necro-
sis was observed in a dose-dependent manner [62].
Furthermore, Ye et al. showed that the treatment of dapa-
gliflozin for 8 weeks decreased myocardial collagen-1
and collagen-3 mRNA levels and percentage of fibrosis in
genetic diabetic mice [63]. These reports suggest that the
improvement of diabetic cardiomyopathy morphology is
potentially to be class effects of SGLT-2 inhibitors.

In addition to the diabetic cardiomyopathy model,
SGLT-2 inhibitors were also tested in models of myo-
cardial ischemia and heart failure. We recently demon-
strated that by giving dapagliflozin for 4 weeks in high fat
diet induced obese-insulin resistance rats and underwent
acute ischemic/reperfusion (I/R) injury by left anterior
descending artery (LAD) ligation, dapagliflozin could
attenuate myocardial infarct size [64]. In chronic MI rat
model, Lee et al. investigated the effect of dapagliflozin
treatment beginning 1 day after LAD ligation and contin-
ued for 4 weeks [65]. They found that dapagliflozin did
not alter the size of an infarction, however it could atten-
uate myofibroblast infiltration and cardiac fibrosis. In
2017, Shi et al. tested the effect of empagliflozin in aris-
tolochic acid induced heart failure in zebrafish embryos
[66]. Zebrafish embryos treated with aristolochic acid
would develop cardiac hypertrophy, bradycardia and
profound cardiac failure within 3 days of age [67]. Pre-
treatment with empagliflozin showed the improvement
of histopathologic changes including unlooping defects,
cardiac edema and deformed cardiac chambers in a con-
centration-dependent manner [66]. Furthermore, empa-
gliflozin could attenuate the expression of heart failure
markers including atrial natriuretic peptide and brain
natriuretic peptide. In a very recent clinical trial, Januzzi
et al. tested the effect of 2-year canagliflozin treatment in
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666 elderly T2DM patients [68]. Compared to placebo,
treatment with canagliflozin delayed the rise of heart fail-
ure biomarkers including serum N-terminal pro-brain
natriuretic peptide and high-sensitivity troponin L.

Effects of SGLT-2 inhibitors on cardiac function
SGLT-2 inhibitors have also been shown to improve car-
diac function in diabetic cardiomyopathy models and
myocardial ischemic models of mice and rats as summa-
rized in Table 3. In genetic diabetic mice, 8-week treat-
ment of dapagliflozin improved ejection fraction (EF) and
fractional shortening [63]. It also attenuated the increase
in end-systolic volume (ESV), end-diastolic volume
(EDV), interventricular septal thickness in systole and
diastole. Dapagliflozin also improved the E/A (early/late
diastolic) ratio, EF, isovolumic relaxation time (IVRT),
deceleration time (DT) and end diastolic wall thickness
(EDWT) in a diabetic non-obese mouse model [69].
These reports indicated that dapagliflozin could improve
both systolic and diastolic LV function in diabetic mice.

For empagliflozin, a number of reports showed its ben-
efits preferred diastolic function to systolic function [57-
60, 62]. In genetic diabetic mice, empagliflozin improved
diastolic function as seen by increased septal wall motion
and decreased LV filling pressure [59]. It also attenuated
vascular dilating dysfunction by ameliorating the impair-
ment of vascular endothelium-dependent relaxation in
thoracic aortas [58]. Moreover, empagliflozin has been
shown to improve LV diastolic function, both in relaxa-
tion and compliance, as evidenced by a decrease in E
wave (mitral inflow peak velocity), E wave deceleration
time, Tau (time constant for isovolumic relaxation) and
end-diastolic pressure—volume relationship [60]. How-
ever, LV systolic function was not affected in this report.
In a diabetic cardiomyopathy rat model, empagliflozin
also improved LV function by the increase of end-sys-
tolic pressure (ESP), +dp/dt and —dp/dt (the maximal
ascending rate and the maximal descending rate of left
ventricular pressure, respectively) and the decrease of
end-diastolic pressure (EDP) [62]. However, in the pre-
diabetic/metabolic syndrome rat model, 10 weeks of
empagliflozin treatment, which attenuated LV weight and
cardiac interstitial fibrosis, did not significantly improve
heart rate, blood pressure, sympathetic activity or baro-
receptor function [57].

Electrophysiologically, two recent clinical studies
reported the effect of SGLT-2 inhibitors on electrocar-
diographic parameters in patients with T2DM [68, 70].
Sato et al. retrospectively analyzed changes in indices
of ventricular repolarization before and after 0.66-year
treatment with SGLT-2 in 46 people with T2DM [70].
They found the heart rate and QTc interval were not
changed, but QTc dispersion was significantly decreased,
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suggesting that SGLT-2 inhibitors could reverse ven-
tricular repolarization heterogeneity in T2DM patients.
However, inconsistent findings exist. Januzzi et al. dem-
onstrated the negative results from a randomized control
trial which tested the effect of a 2-year canagliflozin treat-
ment compared to placebo in 666 elderly T2DM patients
[68]. They found that canagliflozin did not change any
electrocardiographic parameters including PR interval,
QRS interval, QT/QTc or RR intervals. Therefore, more
clinical trials are required to assess the effects of SGLT-2
inhibitors on the cardiovascular function.

In addition to the diabetic cardiomyopathy models,
SGLT-2 inhibitors also improved cardiac function in
models of myocardial ischemia. In 2018, Tanajak et al.
tested the dapagliflozin effect in obese-insulin resist-
ance rats with I/R injury [64]. Before I/R injury opera-
tion, 4-week dapagliflozin treatment already showed the
improvement of E/A ratio, EF, IVRT, DT and EDWT
which referred to both systolic and diastolic LV func-
tion. Furthermore, during I/R injury, rats treated with
dapagliflozin gave the increase of time to the first ven-
tricular tachycardia/fibrillation onset, the increase of gap
junction protein connexin 43 expression, the decrease
of arrhythmia score and the improvement of EF, stroke
volume, ESP, EDP, ESV and EDV. Similar results were
found in Wistar rats with MI treated with dapagliflozin
for 4 weeks in which the improvement of cardiac func-
tion as evidenced by increasing the maximal rate of LV
+dP/dt and —dP/dt were observed [65]. Based on the
EMPA-REG OUTCOME trial, there were no signifi-
cant differences in the rates of MI between the placebo
and treatment groups [12]. However, as evidenced from
animal studies, SGLT-2 inhibitors could potentially
exert beneficial effects to decrease the severity of MI
both structural and function. Future clinical studies are
needed to warrant these findings from basic reports.

Potential mechanisms of SGLT-2 inhibitors
responsible for cardioprotection

SGLT-2 inhibitors on cardiac inflammation

Cardiac inflammation is one of the mechanisms that
leads to diabetic cardiomyopathy in diabetic patients
[71-73]. Evidence shows that SGLT-2 inhibitors,
together with systemic effects, could directly decrease
cardiac inflammation. These effects of SGLT-2 inhibi-
tors on cardiac inflammation are summarized in Table 4.
In the genetic prediabetes/metabolic syndrome rat
model, 10 weeks of empagliflozin treatment signifi-
cantly reduced cardiac interstitial macrophage infiltra-
tion [57]. Empagliflozin could also attenuate cardiac
macrophage infiltration by decreasing cell numbers in
the genetic diabetes/obesity mouse model [58]. Lee et al.
also reported the improvement of cardiac inflammation
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in Wistar rats with acute phase of MI treated with dapa-
gliflozin for 2 days [65]. They revealed that dapagliflozin
decreased inflammatory cytokines mRNA levels includ-
ing IL-1P and IL-6, increased anti-inflammatory cytokine
mRNA levels including IL-10, and also increased the
M2/M1 phenotype macrophage ratio. Since M1 is pro-
inflammatory phenotype of macrophage, whereas M2
is anti-inflammatory one [74], these findings indicated
that dapagliflozin promotes macrophage polarization
toward an anti-inflammatory phenotype. Furthermore,
empagliflozin could attenuate the myocardial expression
of pro-inflammatory genes including cyclooxygenase-2
and interleukin-1p (IL-1P) in a heart failure model of
zebrafish embryos [66]. All of these findings suggest that
empagliflozin can reduce cardiac inflammation in dia-
betic cardiomyopathy, myocardial ischemia and heart
failure models. However, we cannot conclude whether
these benefits are from systemic and/or direct cardiac
effects. More in vitro studies are required to explore its
direct role independently from systemic one.
Interestingly, a recent study revealed the direct mech-
anism of SGLT-2 inhibitors on cardiac inflammation
reduction through the reduction of cardiac nucleotide-
binding oligomerization domain-like receptor 3 (NLRP3)
inflammasome [63]. The NLRP3 inflammasome is an
interleukin-1p family cytokine-activating multi-protein
signaling complex upregulated in the heart and associ-
ated with cardiac inflammation in T2DM, which leads to
subsequent diabetic cardiomyopathy [75-79]. NACHT,
LRR and PYD domains-containing protein 3 (NALP-3),
the protein encoded by the NLRP3 gene, together with
apoptosis-associated speck-like protein containing a cas-
pase recruitment domain (ASC) form a protein complex
activating caspase-1, which subsequently leads to stimu-
lating the production of pro-inflammatory cytokines
[72, 73]. Ye et al. tested the effect of 8-week dapagliflo-
zin treatment on cardiac inflammation in genetic diabetic
mice and found that dapagliflozin decreased the levels
of myocardial mRNA associated with NLRP3 inflamma-
some and pro-inflammatory cytokines including NALP-
3, ASC, caspase-1, IL-1p, IL-6 and TNFa [63]. To rule out
systemic effects, they further performed in vitro experi-
ment by incubating mouse cardiofibroblasts in media
containing dapagliflozin for 16 h. Interestingly, dapagli-
flozin also attenuated NALP-3, ASC, caspase-1 and IL-1
mRNA levels in a dose-dependent manner [63]. Since
SGLT-2 does not exist in cardiac tissue [9, 55, 56], these
results suggested that these effects are unrelated from
SGLT-2 and glucose reducing effects of dapagliflozin.

SGLT-2 inhibitors on cardiac oxidative stress
Oxidative stress plays an important role in the patho-
genesis of cardiac hypertrophy and remodeling
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[80-82]. SGLT-2 inhibitors have been shown to act
as antioxidants by decreasing cardiac oxidative stress,
independently from glucose lowering effects, as evi-
dence summarized in Table 5. In genetic prediabetes/
metabolic syndrome rat model, 10 weeks of empa-
gliflozin treatment significantly reduced superox-
ide levels in cardiac tissues [57]. This report showed
the reduction of cardiac hypertrophy and intersti-
tial fibrosis although no blood pressure reduction
or improvement of cardiac autonomic dysfunction.
Therefore, these cardioprotective effects have been
attributed to the lowering of cardiac oxidative stress
and inflammation. In a genetic diabetic mouse model,
10-week empagliflozin treatment could decrease car-
diac and aortic superoxide levels [58]. In a diabetes/
obesity mouse model, Habibi et al. showed empagli-
flozin (10 mg/kg/days) did not alter the levels of car-
diac nitrotyrosine, advanced glycation end products
(AGEs) and receptors for AGEs (RAGEs) [59]. In aortic
tissues of diabetic cardiomyopathy rats, empagliflozin
treatment with high dose (30 mg/kg/days) significantly
decreased AGEs and RAGEs levels but was unchanged
in the low dose (10 mg/kg/days) treatment group [83].
Therefore, a high dose of empagliflozin treatment is
required for oxidative stress reduction.

For a model of acute myocardial ischemia, we pre-
viously demonstrated that dapagliflozin attenuated
malondialdehyde in the cardiac ischemic area of obese-
insulin resistant rats with I/R injury [64]. In a chronic
MI model of rats, Lee et al. showed that dapagliflozin
acted as an antioxidant and mediated M2 macrophage
polarization through the signal transducer and activa-
tor of the transcription 3 (STAT3) mediated pathway
[65]. Antioxidants, the reactive oxygen and nitrogen
species (RONS) scavengers, are known to increase
STAT3 activity which subsequently plays an action
in M2 macrophage polarization upregulation, result-
ing in a decrease of cardiac inflammation [84, 85].
Moreover, myocardial ischemic rats fed with dapa-
gliflozin for 2 days demonstrated the attenuation of
superoxide and nitrotyrosine levels in cardiac tissues
[65]. Dapagliflozin also increased STAT3 activity and
stimulated macrophages toward an anti-inflammatory
phenotype through STAT3 signaling [65]. In an ex vivo
experiment using isolated hearts after 3-day infarction
treated with dapagliflozin for 1 h, dapagliflozin-treated
hearts still had increased STAT3 activity and IL-10
protein levels [65]. This evidence supports the role of
dapagliflozin in MI as antioxidant and inflammatory
modulators through direct RONS-dependent STAT3
signaling, independently from its SGLT-2 and glucose
lowering effects.
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SGLT-2 inhibitors on cardiac apoptosis

Cardiac apoptosis has been shown to be responsible
for cardiomyocyte death during MI and heart failure
[86—88]. Accumulating reports have demonstrated that
SGLT-2 inhibitors could decrease cardiac apoptosis in
diabetic models and myocardial ischemic model of mice
and rats as summarized in Table 6. In genetic diabetic
mouse model, dapagliflozin treatment for 8 weeks signifi-
cantly attenuated apoptotic cells in the left ventricle [63].
Consistently, diabetic cardiomyopathy rats treated with
empagliflozin for 8 weeks had a decreased level of apop-
totic cardiomyocytes [62]. This effect appeared in a dose-
dependent manner since the number of apoptotic cells in
high dose treated group (30 mg/kg/days) was significant
lower than that in a low dose (10 mg/kg/days) treated
group. In that report [62], it has been proposed that
empagliflozin protected against cardiomyocyte apoptosis
by suppression of the endoplasmic reticulum stress (ERS)
pathway.

ERS is one of the pathological conditions in the diabetic
cardiomyopathy which activated reactive oxygen species
(ROS)-mediated cell apoptosis [89]. ERS can be stimu-
lated by situations such as hyperglycemia, hypoxia, and
ROS exposure, which results in abnormal protein folding
and maturation leading to apoptosis [90]. Inhibitions of
ERS could attenuate myocardial apoptosis and diabetic
cardiomyopathy development in streptozotocin-induced
diabetic rats [91, 92]. In response to ERS, glucose-regu-
lated protein 78 (GRP78), a major ER chaperone protein,
is activated and plays a vital role in detecting the anoma-
lous proteins [93]. Once ERS occurred, caspase-12-me-
diated apoptosis, which is a unique apoptosis pathway of
ER, is activated [94, 95]. Then, CCAAT-enhancer-binding
protein homologous protein (CHOP), a subsequent pro-
tein of the apoptotic pathway, can stimulate the caspase
protein in the cytosol, leading to apoptosis [96]. CHOP
can be activated by the over-transcription of activat-
ing transcription factor 4 (ATF4), tumor necrosis factor
receptor-associated factor 2 (TRAF2) and X-box binding
protein 1 (XBP1) [97, 98]. It has been shown that empa-
gliflozin decreased all of mRNA and protein expres-
sions associated with ERS including GRP78, CHOP,
Caspase-12, ATF4, TRAF2 and XBP1 [62]. Interestingly,
these beneficial effects are in a dose-dependent manner.
Thus, another role of empagliflozin in protection against
diabetic cardiomyopathy is by attenuating cardiomyo-
cyte apoptosis through inactivating the ERS pathway.
However, inconsistent findings exist. A report by Ham-
moudi and colleagues demonstrated that empagliflozin
(10 mg/kg/days) did not alter the protein expression of
the antiapoptotic molecule Bcl-2 and the pro-apoptotic
protein Bax in diabetic mice [60]. These inconsistent
findings could be due to different doses of drug used;
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Table 6 Summary of the effects of SGLT-2 inhibitors on cardiac apoptosis in animal models

Animal species  Model Drug/dose/route Major findings Interpretation References
Wistar rats Streptozotocin-induced Empagliflozin (30 or 10 mg/ | Apoptotic cells Empagliflozin, in dose- [62]
diabetic cardiomyopathy kg/days)/PO/8 weeks J GRP78, CHOP protein dependent manner,
expression attenuated cardiomyocyte
} Caspase-12 activity apoptosis by suppress-
J ATF4, TRAF2, and XBP1 ing the endoplasmic
mRNA reticulum stress pathway
All effects are in dose- in streptozotocin-induced
dependent manner diabetic cardiomyopathy
rats
ob/ob mice T2DM/obesity (LV diastolic ~ Empadliflozin (10 mg/kg/ <> Bcl2 and Bax levels Empagliflozin had no effect  [60]

dysfunctions) days)/PO/6 weeks

BTBR ob/ob mice T2DM Dapagliflozin (1 mg/kg/

days)/PO/8 weeks

Rats High fat diet induced
obese-insulin resistance
for 4 weeks then I/R injury
by LAD ligation

Dapagliflozin (1 mg/kg/
days)/PO/4 weeks

on apoptotic protein
expressions in ob/ob mice

J Apoptotic cells Dapagliflozin attenuated [63]
cardiomyocyte apoptosis

in BTBR ob/ob mice
Dapagliflozin attenuated [64]

apoptotic protein expres-

sions in pre-diabetic rats

with cardiac I/R injury

J Bax/Bcl-2 ratio
} Cleavage caspase 3 level

SGLT-2 sodium-glucose co-transporter 2, PO per oral, GRP78 glucose-regulated protein 78, CHOP CCAAT-enhancer-binding protein homologous protein, ATF4
activating transcription factor 4, TRAF2 tumor necrosis factor receptor-associated factor 2, XBP1 X-box binding protein 1, T2DM type 2 diabetic mellitus, LV left
ventricular, Bcl-2 B-cell chronic lymphocytic leukemia/lymphoma-2, Bax Bcl-2-associated X, I/R ischemic/reperfusion, LAD left anterior descending artery

empagliflozin treatment at a low dose might not show
an improvement [59, 83]. Future studies using a higher
dose of empagliflozin treatment should be investigated in
in vivo to explore its role on an apoptotic protein expres-
sion in diabetic cardiomyopathy model.

In myocardial I/R injury model, it has been shown that
treatment with dapagliflozin for 4 weeks in obese-insulin
resistance rats attenuated Bax/Bcl-2 ratio and cleaved
caspase 3 level when these rats underwent I/R injury [64].
By current evidences, SGLT-2 inhibitors seem to attenu-
ate apoptotic myocardial cells in diabetic cardiomyopa-
thy and MI, however more studies are required to explore
their roles on cardiac apoptosis.

SGLT-2 inhibitors on cardiac mitochondrial function
Mitochondria are important to maintain physiological
cardiac function due to their roles in energy production,
calcium homeostasis and ROS production [99]. Mito-
chondrial dysfunction is found to be associated with the
pathological progression of diabetic cardiomyopathy
[100]. Impaired mitochondrial function and dynamics
are observed in diabetic patients and leads to myocardial
contractile dysfunction [101]. Several reports showed
the attenuation of mitochondrial dysfunction by SGLT-2
inhibitor treatment [59, 64].

In a genetic diabetic mouse model, empagliflozin has
been shown to attenuate ultrastructural anomalies of
inter-myofibrillar mitochondria including disorganized
appearance of sarcomeres, reduced matrix electron den-
sity, loss of cristae and mitochondrial fragmentation [59].

In obese-insulin resistant rats treated with dapagliflozin
for 4 weeks before undergoing cardiac I/R injury, dapa-
gliflozin attenuated the increase of mitochondrial ROS
production, depolarization and mitochondrial swelling
[64]. The mitochondrial morphology was also improved
by attenuating mitochondrial fragmentation, loss of cris-
tae and fusion of cristae. For mitochondrial biogenesis,
dapagliflozin increased the protein expressions of peroxi-
some proliferator-activated receptor gamma coactivator
1-alpha (PGC1l-a) and carnitine palmitoyltransferase 1
(CPT1), which were essential proteins for the regula-
tion of cardiac mitochondrial fatty acid oxidation [102,
103]. The expression of complex I of the electron trans-
port chain was also increased by dapagliflozin treatment,
suggesting its role in restoring the reduction of cardiac
energy metabolism during cardiac I/R injury [64].

It is known that mitochondria are dynamic organelles
with the balance of continual fission (division) and fusion
(joining) [104]. These cycles maintain functional mito-
chondria by removing damaged mitochondria and facili-
tating apoptosis when cells are exposed to stress [105].
Dynamin-related protein 1 (DRP1) plays role in constric-
tion of the membrane during fission whereas mitofusin
2 (MFN2) and optic atrophy 1 (OPA1) support fusion
of the outer and inner membranes, respectively [100]. It
has been shown that an inhibition of cardiac mitochon-
drial fission could protect the heart during myocardial
I/R injury and cardiac arrest [106, 107]. Recently, we have
demonstrated that a 4-week treatment with dapagliflozin
attenuated the increase of cardiac mitochondrial fission
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and the decrease of mitochondrial fusion as evidenced
by decreased DRP1 and increased MFN2 and OPAl
expressions in obese-insulin resistant rats undergoing
cardiac I/R injury [64]. The improvement of mitochon-
drial dynamics observed in this study, together with the
improvement of mitochondrial function, morphology,
ROS production, biogenesis and protein expressions
could be the mechanisms responsible for smaller infarct
size with dapagliflozin treatment compared to placebo.
However, these benefits are still unclear whether they are
from direct cardiac and/or systemic effects. More studies
are needed to explore its direct role on the heart.

SGLT-2 inhibitors on cardiac ionic homeostasis

Cardiac Ca?" and Na™ homeostasis plays an impor-
tant role in maintaining physiologic cardiac function,
including rhythm and contraction [108, 109]. Intracel-
lular Na™ and Ca* loading has been observed in dia-
betic hearts, particularly in heart failure [110-112].
Reduction of myocardial intracellular Na® concentra-
tion by inhibition of Na*/Ca®* or Na*/H* exchangers
improves heart failure and cardiac hypertrophy [113—
115]. SGLT-2 inhibitors have been shown to improve
cardiac Na™ and Ca®?*, as evidence summarized in
Table 7. Baartscheer and colleagues demonstrated
the direct myocardial effects of empagliflozin on Na™
and Ca’" concentration alteration, independent from
SGLT-2 activity [116]. In isolated ventricular myo-
cytes from rabbits and rats incubated with empagliflo-
zin for 3 h, empagliflozin decreased cytoplasmic Na*t
([Na'],) and Ca** ([Ca®'].) and also increased mito-
chondrial Ca®* concentration ([Ca®']_). These effects
were similar to the effect of Nat/H* exchange (NHE)
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inhibitor [110]. These findings were confirmed in cells
pre-treated with cariporide, a strong NHE inhibitor,
in which the results showed that empagliflozin had
very little effect on the [Na']_ of these cells. Therefore,
despite no SGLT-2 expression in the heart [9, 55, 56],
empagliflozin could have cardiac effects by decreasing
myocardial [Na'], and [Ca®'], and increasing [Ca®*]
through the inhibition of NHE directly. Moreover, Liu
and O’Rourke demonstrated that high [Na']. could
cause low [Ca”"]  through its efflux via mitochondrial
Na™/Ca’" exchanger (NCX) [117]. Increasing [Ca**]_,
could prevent sudden death in a swine heart failure
model [113]. Taken together, SGLT-2 inhibitors directly
inhibited myocardial NHE and consequently decreased
the cytoplasmic Na™ level, leading to increased mito-
chondrial Ca®" level and decreased cytoplasmic Ca*"
level through mitochondrial NCX activity. In addition,
it has been shown that empagliflozin improved LV dias-
tolic function by increasing sarcoplasmic endoplasmic
reticulum Ca?*-ATPase (SERCA2a) activity in genetic
diabetic mice [60]. Consistent with this report, Joubert
et al. also showed that dapagliflozin increased SERCA2a
function in a diabetic lipodystrophic mouse model [69].
SERCAZ2a is an important calcium handling protein
which regulates cardiac contractility via Ca*" reuptake
into sarcoplasmic reticulum [118]. Decreased SERCA?2a
activity can cause abnormal Ca®" handling and a con-
tractile state, leading to cardiac contractile dysfunction
[119]. All of these findings indicate that the improve-
ment of cardiac calcium handling of SGLT-2 inhibitors
through these mechanisms could be responsible for the
protective effect in heart failure observed in the EMPA-
REG OUTCOME trial.

Table 7 Summary of the effects of SGLT-2 inhibitors on cardiac ionic homeostasis in animal models

Animal species Model Drug/dose/route

Major findings Interpretation References

In vitro isolated ventricu-
lar myocytes

Rabbits and rats
media/3 h

ob/ob mice T2DM/obesity (LV dias-

tolic dysfunctions)

Seipin knockout (SKO)
mice

Diabetic lipodystrophic
cardiomyopathy

Empadliflozin (1 umol/l)/

Empagliflozin (10 mg/kg/
days)/PO/6 weeks

Dapagliflozin (1 mg/kg/
days)/PO/8 weeks

| Myocardial [Na*]. and [116]
[Ca™"],

4 Myocardial [Ca**1,,

These effects were
strongly reduced after
pre-treated with NHE
inhibitor

4 SERCA2a/PLN ratio,
PLN phosphorylation

Empagliflozin has cardiac
effects by decreasing
myocardial cytoplasmic
[Na*].and [Ca’*].and
increasing [Ca*™1,,
through inhibition of
NHE directly

Empagliflozin enhances [60]
SERCA2a activity lead-
ing to improve cardiac
contractile dysfunction
in ob/ob mice

4 SERCA2a/PLN ratio Dapagliflozin enhances [69]
SERCA2a activity lead-
ing to improve cardiac
contractile dysfunction

in SKO mice

[Na™], cytoplasmic Na* concentration, [Ca®*], cytoplasmic Ca®* concentration, [Ca®*],,, mitochondrial Ca** concentration, NHE Na*/H™ exchange, T2DM type 2
diabetic mellitus, LV left ventricular, PO per oral, SERCA2a sarcoplasmic endoplasmic reticulum calcium (Ca2*) ATPase, PLN phospholamban
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Conclusions and perspectives
The cardioprotection of SGLT-2 inhibitors has been
demonstrated in models of diabetic cardiomyopathy,
heart failure and myocardial ischemia. They are seen to
be effective by improving cardiac morphologic changes
including cardiac hypertrophy, interstitial fibrosis, heart
failure and myocardial infarct size. They also improve
both systolic and diastolic LV function in diabetic cardio-
myopathy and prevent cardiac arrhythmia in cardiac I/R
injury. Potential mechanisms responsible for the cardio-
protective effects of SGLT-2 inhibitors are through direct
and systemic effects which are summarized in Fig. 1.
Their systemic effects are modulated by hemodynamic
actions via natriuresis and metabolic actions via glycosu-
ria. The direct effects of SGLT-2 inhibitors could poten-
tially mediate through their abilities to attenuate cardiac
inflammation, oxidative stress, apoptosis, mitochondrial
dysfunction and ionic dyshomeostasis.

Focus on The EMPA-REG OUTCOME trial, empagli-
flozin decreased the rate of death from cardiovascular
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causes and HHF in T2DM patients with established CVD
[12]. The mechanisms of SGLT-2 inhibitors responsible
for these benefits could be due to their systemic as well
as direct cardiac effects. SGLT-2 inhibitors can modify
risk factors of major cardiovascular events including dia-
betes and hypertension via lowering blood glucose and
blood pressure, respectively. They also directly attenu-
ate cardiac inflammation, oxidative stress [63, 65] which
lead to improving both cardiac structure and function,
and finally result in decreased mortality rate from car-
diovascular causes. For reducing HHF, natriuretic effect
of SGLT-2 inhibitors results in lowering plasma volume
and blood pressure, which are subsequently decreasing
cardiac preload and afterload [24-26]. SGLT-2 inhibi-
tors also directly improve cardiac calcium handling via
inhibiting myocardial NHE which subsequently decrease
intracellular Na* and Ca*" loading mostly found in heart
failure [116]. Therefore, cardiac contractility and cardiac
output could be improved in heart failure patients as
observed in clinical trials [12—-15].

SGLT-2 Inhibitors

v

Systemic effects

-

1 NLRP3

v

Direct cardiac effects

+ NHE inhibition

{ Hypertrophy

{ Fibrosis

{ Heart failure

I Myocardial infarct size

palmitoyltransferase

. inflammasome I Zztfjxj;:vanon LERS é;no;:ahes 1 [Na“e, [Ca**]c
L Glucotoxicity I Plasinavolame LIL-1B.IL-6 l Nlﬂ - 4 Bax/Bcl-2 ratio A P‘éec;ng R T [Caz‘]m
7 Insulin sensitivity U i s + M2 macrophage J Mal t}; e J Caspase activity  Fisst a7 _ T Ca?* handling
T Glucagon 1 Arterial stiffness polarization londiaueide isnygision 7'SERCa2a activity
7 Fuel shift to lipid ([ ' ' "
T Ketones !)odxes { Glomerular | Macrophage N :
1 Body weight I . St 4 Inflammation N 1 Energy production T Rhythm
yperfiltration inflitration 5 1 Apoptotic cells "
{ Fat mass 1 Fibrosis 1 Apoptosis LROS 7T Contraction
Cardioprotection

Cardiac Structure Cardiac Function

7T Systolic and diastolic function
{ Arrhythmia during /R injury

Fig. 1 Potential mechanisms responsible for cardioprotective effect of SGLT-2 Inhibitors. From current evidence from both in vitro or ex vivo
experiments, SGLT-2 inhibitors have been demonstrated that they could have direct cardiac effects on inflammation [63], oxidative stress [65], and
jonic dyshomeostasis [116]. Although the effects of SGLT-2 inhibitors on the attenuation of apoptosis and mitochondrial dysfunction could be
direct cardiac effects [59, 62, 64], they have not been proved by either in vitro or ex vivo experiments. Italics indicate the mechanisms have not been
proved by either in vitro or ex vivo experiments. SGLT-2 sodium-glucose co-transporter 2, NLRP3 nucleotide-binding oligomerization domain-like
receptor 3, IL interleukin, STAT3 signal transducer and activator of transcription 3, ERS endoplasmic reticulum stress, Bcl-2 B cell chronic lymphocytic
leukemia/lymphoma-2, Bax Bcl-2-associated X, PGC1-a peroxisome proliferator-activated receptor gamma coactivator 1-alpha, CPT1 carnitine

1, ROS reactive oxygen species, NHE Na*/H* exchange, [Na*], cytoplasmic Na™ concentration, [Ca®*], cytoplasmic Ca?™
concentration, [Ca“]m mitochondrial Ca?* concentration, SERCA2a sarcoplasmic endoplasmic reticulum Ca®*-ATPase, I/R ischemic/reperfusion
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Despite these growing number of reports, the car-
dioprotective effects in some respects such as cardiac
apoptosis and mitochondrial dysfunctions are still
unclear whether they are the direct effects or systemic
effects of SGLT-2 inhibitors. More studies of heart fail-
ure and myocardial ischemic models are required to
investigate the roles of SGLT-2 inhibitors on the heart.
Although SGLT-2 does not exist in the myocardium
[9, 55, 56], Park et al. reported that endothelial cells of
porcine coronary artery exposed to high glucose upreg-
ulated SGLT-2 expression despite no expression in nor-
mal condition [120]. Even the role of SGLT-2 on vessels
has not been understood yet. It has been shown that
chronic treatment of SGLT-2 inhibitors in a diabetic
mouse model attenuated vascular relaxation dysfunc-
tion and atherosclerosis in aorta and coronary artery
[58, 121, 122]. More studies investigating the roles of
SGLT-2 inhibitors on the heart are needed to warrant
their use in the future.
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