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ORIGINAL INVESTIGATION

Dual inhibition of sodium–glucose linked 
cotransporters 1 and 2 exacerbates cardiac 
dysfunction following experimental myocardial 
infarction
Kim A. Connelly, Yanling Zhang, Jean‑François Desjardins, Kerri Thai and Richard E. Gilbert* 

Abstract 

Background:  Inhibiting both type 1 and 2 sodium–glucose linked cotransporter (SGLT1/2) offers the potential to 
not only increase glucosuria beyond that seen with selective SGLT2 inhibition alone but to reduce glucose absorption 
from the gut and to thereby also stimulate glucagon-like peptide 1 secretion. However, beyond the kidney and gut, 
SGLT1 is expressed in a range of other organs particularly the heart where it potentially assists GLUT-mediated glucose 
transport. Since cardiac myocytes become more reliant on glucose as a fuel source in the setting of stress, the present 
study sought to compare the effects of dual SGLT1/2 inhibition with selective SGLT2 inhibition in the normal and 
diseased heart.

Methods:  Fischer F344 rats underwent ligation of the left anterior descending coronary artery or sham ligation 
before being randomized to receive the dual SGLT1/2 inhibitor, T-1095, the selective SGLT2 inhibitor, dapagliflozin 
or vehicle. In addition to measuring laboratory parameters, animals also underwent echocardiography and cardiac 
catheterization to assess systolic and diastolic function in detail.

Results:  When compared with rats that had received either vehicle or dapagliflozin, T-1095 exacerbated cardiac dys‑
function in the post myocardial infarction setting. In addition to higher lung weights, T-1095 treated rats had evidence 
of worsened systolic function with lower ejection fractions and reduction in the rate of left ventricle pressure rise in 
early systole (dP/dtmax). Diastolic function was also worse in animals that had received T-1095 with prolongation of the 
time constant for isovolumic-pressure decline (Tau) and an increase in the end-diastolic pressure volume relationship, 
indices of the active, energy-dependent and passive phases of cardiac relaxation.

Conclusions:  The exacerbation of post myocardial infarction cardiac dysfunction with T-1095 in the experimental 
setting suggests the need for caution with the use of dual SGLT1/2 inhibitors in humans.
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Background
Sodium–glucose linked cotransporter-2 inhibitors 
(SGLT2i) increase urinary glucose excretion thereby 
off-loading energy, lowering plasma glucose and body 
weight as well as inducing a modest diuresis that 
reduces extracellular fluid volume and lowers blood 

pressure. In addition, two recent cardiovascular out-
come studies with these agents demonstrated reduc-
tions in heart failure hospitalisation suggesting that this 
class of drug exerts cardioprotective effects beyond glu-
cose and blood pressure lowering [1, 2].

In addition to SGLT2, another glucose transporter, 
SGLT1, cotransports sodium and glucose in the dis-
tal segment of the proximal tubule with higher affinity 
and lower capacity than its more proximal counter-
part. Unlike SGLT2, whose expression is confined to 
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the kidney, SGLT1 is also abundantly present in the gut 
where it accounts for much of glucose (and galactose) 
absorption by enterocytes. Accordingly, combined 
SGLT1/2 inhibition offers the potential to not only 
increase glucosuria beyond that seen with SGLT2 inhi-
bition alone but to reduce glucose absorption allowing 
the monosaccharide to stimulate release of glucagon-
like peptide-1 (GLP-1) in the ileum. As such, dual 
SGLT1/2 inhibition presents an appealing strategy for 
glucose lowering in diabetes with drugs that do so cur-
rently in development [3].

Beyond its expression in the kidney and small intes-
tine, however, SGLT1 is also present in various other 
organs in humans including the lung, liver, pancre-
atic alpha cells, skeletal muscle and particularly in the 
heart where its abundance exceeds that of the kidney 
[4–6]. Similar high expression levels have recently also 
been reported in the hearts of rats and mice [7]. With 
its constant and high energy requirements and little 
storage capacity, the heart requires a constant sup-
ply of energy-generating substrates. This is especially 
important during ischaemia when the ability to gener-
ate more ATP per O2 molecule consumed and to also 
generate ATP anaerobically by glycolysis render glu-
cose preferable to fatty acids as a substrate for energy 
production [8]. Although the facilitated glucose trans-
porters GLUT1 and GLUT4 were previously thought 
to account entirely for glucose transport in the heart, 
more recent studies attest to the additional contribu-
tion of SGLT1 [9–12].

Given their potential to enter the clinical arena, we 
sought to examine the effects of dual SGLT1/2 inhibi-
tion in experimental heart disease using the rat coronary 
artery ligation model that develops ischemia, infarction 
and heart failure. Accordingly, the primary objective of 
the study was to assess changes in cardiac function and 
secondarily changes in structure. To avoid the require-
ment for longterm parenteral administration with the 
poorly absorbed and rapidly metabolized phlorizin, we 
administered the readily absorbed SGLT1/2 dual inhibi-
tor prodrug, T-1095, that is quickly converted to the 
active moiety, T-1095A following its entry into the sys-
temic circulation [13, 14].

Methods
Animals
Ninety-nine 7-week old male rats Fischer F344 rats 
(Charles River Laboratories, Wilmington, MA, USA) 
were randomized to myocardial infarction or sham 
groups in a ratio of 3:1 using the left anterior descend-
ing (LAD) coronary artery of myocardial infarction that 
provides a robust model of adverse cardiac remodeling 
akin to its human counterpart [15]. Animals were then 

further randomized in a ratio of 1:1:1 to receive either 
vehicle, the dual SGLT1/2 inhibitor, T-1095 (150 mg/kg/
day, Sun-Shine Chemical Technology Co., Ltd, Shanghai, 
China) dosed as previously described [16], or the selec-
tive SGLT2 inhibitor, dapagliflozin 0.5  mg/kg b.i.d (gift 
of Astra Zeneca, Gothenburg, Sweden) [17] by gavage. 
Doses of T-1095 (150  mg/kg/day or 0.1 wt/wt admixed 
in chow) and dapagliflozin (1 mg/kg/day) were based on 
previously published literature according to their ability 
to achieve an approximate 50% reduction in plasma glu-
cose when administered to diabetic rats [18, 19].

Myocardial infarction was induced 1  week later by 
ligation of the LAD coronary artery with sham animals 
undergoing thoracotomy and incision of the pericar-
dial sac, but not LAD ligation [20]. Two days later, rats 
underwent echocardiography, and were randomized on 
confirmation of MI and demonstration of similar MI 
size based upon fractional shortening and wall motion 
score index [21] and followed for a further 7 weeks before 
being terminated. All procedures were performed in the 
research vivarium under anesthesia using 2.5% isoflurane 
supplemented with 100% O2 as previously undertaken 
and shown to effectively reduce consciousness without 
impairing cardiac function [22]. Urine was obtained for 
measurement of glucose concentration just prior to ter-
mination by cervical dislocation under isoflurane anes-
thesia. Because of the comparatively short duration of the 
study in comparison with the half-life of erythrocytes, 
fructosamine rather than hemoglobin A1c was used pro-
vide an integrated index of glycemia. Serum fructosa-
mine concentrations was, accordingly, determined by 
colorimetric assay using a commercial diagnostic assay 
(Roche Diagnostics, Canada) analyzed on the Olympus 
AU400 automated chemistry analyzer (Beckman Coulter, 
Canada).

Animals underwent echocardiography and cardiac 
catheterization as described below. Following these pro-
cedures, rats were terminated and their hearts and lungs 
removed for weighing and other assessments, as also 
described below. Tibial length was measured to provide 
a morphometric index for cardiac hypertrophy and lung 
weight [23].

Sample size estimates were based on similar stud-
ies previously reported by our group using this animal 
model [24]. Of the cohort of 99 rats, five did not show 
evidence of wall motion abnormalities indicative of 
infarction when echocardiography was performed 2 days 
after LAD ligation. A further 17 (8 from the vehicle group 
and 9 from the dapagliflozin group died during surgery 
or during the immediate postoperative recovery period 
following myocardial infarction. Two post-MI animals 
were withdrawn from the study when it became evi-
dent that there were insufficient quantities of T-1095 
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for them to complete. As such, the final number of ani-
mals that completed the study as per protocol were 22, 
13 and 15 among the MI + vehicle, MI + dapagliflozin 
and MI + T-1095 groups, respectively and 12, 7 and 6 
among the sham + vehicle, sham + dapagliflozin and 
sham + T-1095 groups, respectively.

All animals were housed 2/cage at the St. Michael’s 
Hospital Animal Research Vivarium in a temperature-
controlled (22  °C) room with a 12-h light/dark cycle 
and ad  libitum access to commercial standard rat chow. 
Enrichment, proper animal handling and anesthesia 
procedure were used to minimize the pain and distress 
of the animals during the study. All animal studies were 
approved by the St. Michael’s Hospital Animal Care 
Committee in accordance with the Guide for the Care 
and Use of Laboratory Animals (NIH Publication No. 
85-23, revised 1996).

Echocardiography
Transthoracic echocardiography was performed, as pre-
viously described [25], under light anaesthesia (1% isoflu-
rane supplemented with 100% O2), at 2 days and 8 weeks 
post MI, prior to sacrifice. Images were acquired using a 
high-frequency ultrasound system (Vevo 2100, MS-250 
transducer, Visualsonics, Toronto, ON). Two dimensional 
long-axis images of the LV in parasternal long- and short-
axis views with M-mode measurements at mid-papillary 
muscle level and linear dimensions were analyzed offline 
(Vevo 2100 software v. 1.8) using the standard leading 
edge-to-leading edge technique by a single investigator, 
masked to treatment.

MI size was estimated 2  days after LAD ligation by 
measuring the percentage of endocardial circumferential 
extent of LV akinesis at end-diastole using 2D short-axis 
images of the LV at mid-papillary muscle level. Corrected 
LV mass was calculated using the Devereux and Reichek 
“cube” formula that includes a 20% correction for over-
estimation of LV mass based on data derived from pre-
viously reported validation studies [26, 27]. Fractional 
shortening (FS%) was calculated according to the formula: 
FS% = (LVIDd − LVIDs)/LVIDd × 100, where LVIDd and 
LVIDs are end-diastolic diameter and end-systolic diam-
eter respectively, as previously described [28]. Three con-
secutive cardiac cycles were averaged for all analyses.

Cardiac catheterization
Cardiac catheterization was performed as previously 
published [25]. Briefly, rats were anaesthetized with 
2.5% isoflurane, intubated using a 14 gauge catheter and 
ventilated using a pressure controlled ventilator (TOPO 
ventilator, Kent Scientific, Torrington, CT). Adequacy of 
anaesthesia was assessed by lack of response to surgical 

manipulation and loss of muscular tone. Rats were placed 
in the supine position on a water circulating heating pad 
and a 1.4  F pressure–volume (PV) catheter (SPR-838; 
Millar Instruments, Inc., Houston, TX) was inserted 
into the right carotid and advanced into the left ventricle 
and PV loops were generated. All pressure–volume (PV) 
loops were obtained with the ventilator turned off for 
5–10 s and the animal apnoeic.

Data were acquired and recorded with a MPVS ultra® 
data acquisition system (Millar Instruments) and Lab-
Chart Pro software (CHART  8.1 ADInstruments Inc., 
Colorado Springs, CO) under steady-state and following 
inferior vena cava occlusion (preload reduction). Con-
ductance signals acquired with the Millar catheter were 
calibrated with estimated LV volumes derived echocar-
diographically using a two-point calibration method, 
matching LV maximal and minimal conductance signals 
and end-diastolic and end-systolic volumes (EDV and 
ESV) measured in long-axis view for each individual 
rat, respectively. Using the pressure conductance data, a 
range of functional parameters were then calculated.

Histopathology
To determine the extent of extracellular matrix deposi-
tion, sections were stained with antibodies to types I and 
III collagen (Southern Biotech, Birmingham, AL). The 
abundance of matrix within the non-infarct zone was 
then quantified as previously described [29]. To isolate 
the non-infarct zone from the infarct and the peri-infarct 
zone, the infarct and a 2  mm zone on either side of it 
were excluded from analysis. The proportional area stain-
ing brown within the remaining myocardium composed 
the non-infarct zone was then assessed using computer-
assisted image analysis (Aperio ImageScope, Leica Bio-
systems Inc., Concord, Ontario, Canada), as previously 
described [30]. The whole non-infarct zone was used for 
quantification of ECM in order to prevent possible bias 
from using selected fields. For sham animals, the ECM 
content of the entire LV was quantitated by the same 
method, as described above.

The extent of cardiac myocyte hypertrophy was deter-
mined on haematoxylin and eosin stained sections, as 
previously reported [31]. In brief, stained sections were 
scanned with the Aperio Ultra-Resolution Digital Scan-
ning System (Aperio Technologies Inc., Vista, CA), and 
the images were analyzed with The NDP.view2 viewer 
software (Hamamatsu Photonics, Hamamatsu City, 
Shizuoka Pref., Japan). Cardiac myocytes with ellipti-
cal nuclei in transverse section were selected. Diam-
eter measurements were taken membrane to membrane 
across the narrowest point that crosses the nucleus. The 
average diameter of 30–50 myocytes per animal was 
measured based on the method previously reported [32].
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Western blot
The abundance of SGLT 1 and 2 were assessed by immu-
noblot, as previously described [33] using specific iso-
form antibodies (Santa Cruz Biotechnology, Dallas, TX). 
In brief, small pieces of heart tissue were rapidly col-
lected from the non-infarct zone, snap frozen in liquid 
nitrogen and stored at − 80  °C until use. Lysates were 
prepared by homogenizing frozen heart tissue in ice-cold 
lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1 mM 
EDTA, 1  mM EGTA, 0.5% Triton X-100 containing 
1 mM Na3VO4, 50 mM NaF, 25 mM β-glycerophosphate, 
10  mM Na pyrophosphate, 10  µg/ml aprotinin, 10  µg/
ml leupeptin, 1  mM PMSF, 1  mM DTT). After 30  min 
incubation on ice, lysates were centrifuged to remove 
cell debris. Protein concentration was determined using 
Bradford reagent (Bio-rad, Hercules, CA) and standard-
ized with known amounts of BSA. Western blot analysis 
was performed by resolving 50  µg of total protein on a 
10% SDS-polyacrylamide gel by denaturing discon-
tinuous gel electrophoresis according to the Laemmli 
method, and transferring to PVDF membranes (Roche, 
Mannheim, Germany). After incubating in blocking 
solution (5% nonfat dry milk, Tris buffered saline (pH 
7.5), 0.1% Tween 20), membranes were immunoblotted 
with primary antibodies at 1:1000 dilution overnight at 
4  °C. Membranes were then washed three times (5  min 
each) with TBST and blots were incubated with HRP-
conjugated secondary antibodies (Dako) for 1 h at room 
temperature. The membranes were washed three times, 
and proteins were detected by the ECL system (Roche). 
Rat kidney served as positive control for SGLT2. Signals 
were digitized then analyzed with ImageJ software (NIH, 
Bethesda, MD). Results were calculated as the mean of at 
least three experiments relative to ß-actin immunolabel-
ling. Kidney homogenates served as positive controls for 
both SGLT1 and − 2.

Gene expression
The abundance of atrial natriuretic peptide (ANP) was 
assessed by measuring its mRNA by quantitative real-
time PCR in left ventricular tissue stored at − 80  °C as 
previously described [34]. In brief, SYBR green-based 
measurement of gene expression were performed on 
QuantStudio 7 Flex Real-Time PCR System (Applied Bio-
systems, Foster City, CA) according to the manufacturer’s 
instructions using the predesigned sequence-specific 
primers for ANP from Integrated DNA Technologies 
(Coralville, IA). Data were analyzed using Applied Bio-
systems Comparative CT method.

Statistics
Data are expressed as mean ± SEM unless otherwise 
specified. Between group differences were analyzed 
by one way ANOVA with Fisher’s Protected Least Sig-
nificant Difference test post hoc. All statistics were 
performed using GraphPad Prism 6 for Mac OS X 
(GraphPad Software Inc., San Diego, CA). A p value 
of < 0.05 was regarded as statistically significant.

Results
Morphometric characteristics
No differences in baseline in body weight among the six 
groups were evident prior to randomization. When com-
pared with rats that had been treated with dapagliflozin, 
those randomized to receive T-1095 had lower body 
weights in the post-MI setting (Table  1). Left ventricu-
lar weight, indexed to tibial length, increased following 
myocardial infarction with lower values noted in rats that 
had received dapagliflozin but lower still in those rand-
omized to T-1095. Lung weight indexed to tibial length 
was increased in all animals that had undergone coro-
nary artery ligation but to a greater extent in rats that had 
received T-1095 compared with dapagliflozin-treated 
animals.

Table 1  Animal characteristics and laboratory parameters

BW body weight, SBP systolic blood pressure, LVW left ventricle weight, TL tibia length, Lung W lung weight, BG blood glucose, UG urinary glucose, ANP atrial 
natriuretic peptide, RPL13a Ribosomal Protein L13a, AU arbitrary units, dapa dapagliflozin

* p < 0.05 vs. sham + vehicle group; † p < 0.05 vs. MI + vehicle group

sham + vehicle sham + dapa sham + T-1095 MI + vehicle MI + dapa MI + T-1095

N 12 7 6 22 13 15

BW (g) 305.3 ± 3.8 281.3 ± 3.3* 248.3 ± 8.1* 299.9 ± 3.1 282.8 ± 5.0*† 263.5 ± 4.2*†

LV W/TL (g/mm) 14.8 ± 0.1 13.4 ± 0.1* 12.2 ± 0.3* 15.9 ± 0.2* 15.0 ± 0.2† 14.1 ± 0.4†

Lung W/TL (g/mm) 27.4 ± 0.5 26.8 ± 0.3 24.7 ± 0.4 43.7 ± 3.9* 40.3 ± 4.4* 54.2 ± 5.0*†

UG (mmol/l) 0.34 ± 0.07 316.0 ± 34.3* 256.2 ± 66.6* 0.21 ± 0.03 235.0 ± 10.3*† 205.2 ± 21.6*†

Fructosamine (μM) 141.8 ± 3.3 126.2 ± 2.4* 129.2 ± 2.8* 121.5 ± 3.3* 122.5 ± 2.0* 130.8 ± 4.4*†

ANP: RPL13a mRNA (AU) 1.09 ± 0.23 1.39 ± 0.44 1.52 ± 0.23 13.02 ± 2.33* 7.47 ± 1.15*† 9.61 ± 1.07*
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Laboratory and molecular parameters
Fructosamine concentrations were lower in both dapagli-
flozin and T-1095 when compared with vehicle-treated 
control animals. In rats that had undergone LAD ligation, 
however, fructosamine concentrations were lower than 

in vehicle-treated control animals though less so among 
rats that had received T-1095 (Table  1). No glucosuria 
was detected in untreated animals but was readily appar-
ent in animals that received either T-1095 or dapagliflo-
zin (Table 1). SGLT1 was easily detected by immunoblot 
of cardiac tissue but was unaffected by either myocardial 
infarction or treatment group assignment (Fig. 1). SGLT2 
on the other hand, while abundantly expressed in the 
kidney could not be detected in cardiac tissue (data not 
shown).

The expression of ANP mRNA was assessed as a 
marker of extracellular fluid volume and cardiac wall 
stress. Its abundance was increased in the hearts of all 
animals that had undergone experimental myocardial 
infarction but less so in those that had received dapa-
gliflozin when compared with either vehicle or T-1095 
treated rats (Table 1).

Echocardiography
Ejection fraction and fractional shortening were reduced 
in all animals that undergone experimental myocardial 
infarction when compared with sham surgery animals 
(Fig. 2, Table 2). Ejection fraction was, however, reduced 
to an even greater extent in those rats that had received 
T-1095 than those treated with either vehicle or dapagli-
flozin. Similar changes were also noted in left ventricular 
mass that while increased in all groups that had under-
gone LAD ligation, this was less so in those that had 
received T-1095 when compared with either vehicle- or 
dapagliflozin-treated animals.

Conductance catheterization
Global left ventricular contractility, as measured by the 
rate of left ventricle pressure rise in early systole (dP/
dtmax), was reduced in the post-MI setting but to a 
greater extent in those that had received T-1095 when 

SGLT1

β-actin

1 2 3 4 5 6a

b

Fig. 1  SGLT1 expression. Western blot of cardiac tissue showing 
similar abundance of SGLT1 relative to ß-actin in all groups. N = 6/
group

Fig. 2  Systolic function. Systolic function measured as ejection faction by echocardiography (a) and rate of left ventricle pressure rise in early 
systole (dP/dtmax) by conductance catheterization (b). Animal numbers are provided in Tables 2 and 3. * p < 0.05 vs. sham + vehicle, † p < 0.05 vs. 
MI + vehicle, ‡ p < 0.05 vs. sham + dapagliflozin
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compared with either vehicle or dapagliflozin-treated 
animals (Fig.  2, Table  3). The rapid, early decrease in 
LV pressure during the period of isovolumic relaxa-
tion (dP/dtmin) that reflects diastolic function was 
also reduced in rats that had undergone LAD ligation 
(Fig.  3). The extent of the reduction differed accord-
ing to treatment assignment with those animals ran-
domized to receive T-1095 experiencing the greatest 
reduction. This same pattern was also evident in other 
indices of diastolic function including both Tau, that 
assesses the early energy-dependent phase of relaxa-
tion as well as the end-diastolic pressure volume rela-
tionship (EDPVR) that provides an index of passive LV 
compliance (Fig.  3, Table  3). Systolic blood pressure 
was similar in all groups with the exception of post-MI 
rats receiving T-1095 where it was slightly lower.

Histopathology
Myocyte dimensions differed according to treatment 
assignment. Animals that received T-1095 did not show 

evidence of hypertrophy in the post-MI setting, con-
trasting those in rats randomized to vehicle or dapagli-
flozin (Fig. 4). The extent of fibrosis in the left ventricle 
in the area remote from the site of infarction also dif-
fered according to group assignment. Increased type 
III collagen was evident in the interstitium of those rats 
that had received either vehicle or T-1095 but not in 
those that had been treated with dapagliflozin (Figs. 5, 
6). A different pattern was observed for type I collagen 
where increased deposition was only found in animals 
that had received T-1095 following experimental myo-
cardial infarction (Figs. 5, 6).

Discussion
Unlike SGLT2 whose expression is almost exclusively 
confined to the kidney, SGLT1 is abundantly expressed 
in the heart. Blocking the SGLT2 transporter alone with 
dapagliflozin had no effect on cardiac function in either 
the control setting or after myocardial infarction. Dual 
blockade of SGLT 1 and 2 with T-1095, however, while 
not affecting function under physiological circumstances 

Table 2  Echocardiographic parameters

EF ejection fraction, FS fractional shortening, LV mass corr left ventricle mass corrected, LVPW left ventricular posterior wall, LVIDd left ventricle internal diameter in 
diastole, LVIDs left ventricle internal dimension in systole

* p < 0.05 vs. sham + vehicle group; † p < 0.05 vs. MI + vehicle group; ‡ p < 0.05 vs. MI + dapagliflozin group

sham + vehicle sham + dapa sham + T-1095 MI + vehicle MI + dapa MI + T-1095

N 12 7 6 20 12 14

MI size (%) – – – 44 ± 2 38 ± 2 40 ± 2

FS (%) 53 ± 1 55 ± 3 50 ± 3 19 ± 1* 19 ± 1* 16 ± 1*

EF (%) 83 ± 1 84 ± 2 80 ± 3 37 ± 1* 37 ± 1* 31 ± 2*†‡

LV mass corr. (mg) 684 ± 26 608 ± 35* 578 ± 41 827 ± 36* 800 ± 41* 759 ± 39

LVIDd (mm) 6.73 ± 0.08 6.62 ± 0.18* 6.50 ± 0.07* 9.17 ± 0.15* 9.21 ± 0.18* 9.05 ± 0.11*

LVIDs (mm) 3.17 ± 0.09 3.01 ± 0.25 3.25 ± 0.18 7.47 ± 0.17* 7.48 ± 0.20* 7.64 ± 0.11*

Volume s (μl) 63 ± 4 52 ± 6 56 ± 10 359 ± 28* 371 ± 32* 402 ± 18*

Volume d (μl) 289 ± 15 272 ± 19 223 ± 13 574 ± 25* 555 ± 31* 556 ± 19*

Table 3  Conductance catheterization

EDP end-diastolic pressure, Pes end-systolic pressure, HR heart rate, EDPVR end-diastolic pressure volume relationship, ESPVR end-systolic pressure volume relationship

* p < 0.05 vs. sham + vehicle group; † p < 0.05 vs. MI + vehicle group; ‡ p < 0.05 vs. MI + dapagliflozin group

sham + vehicle sham + dapa sham + T-1095 MI + vehicle MI + dapa MI + T-1095

N 5 6 4 20 13 13

EDP (mmHg) 11 ± 2 12 ± 1 16 ± 2* 18 ± 1* 19 ± 1*‡ 26 ± 2*†

Pes (mmHg) 117 ± 11 127 ± 7 127 ± 15 107 ± 5 105 ± 5 95 ± 5*

HR (bpm) 296 ± 12 288 ± 12 299 ± 11 270 ± 7* 258 ± 6* 260 ± 9*

dP/dtmax (mmHg/s) 7031 ± 426 7471 ± 514 7815 ± 504 5443 ± 305* 5141 ± 249* 4201 ± 264*†‡

dP/dtmin (mmHg/s) − 7190 ± 631 − 7922 ± 637 − 8927 ± 906* − 4318 ± 260* − 4192 ± 224* − 3290 ± 246*†‡

EDPVR (mmHg/ml) 0.024 ± 0.004 0.025 ± 0.002 0.03 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.10 ± 0.02*†‡

Tau (ms) 12.5 ± 0.6 12.6 ± 0.8 12.5 ± 0.7 17.5 ± 0.6* 18.0 ± 0.5* 23.2 ± 1.6*†‡
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led to an exacerbation of impairment in both systole and 
diastole in the post myocardial infarction setting.

Ligation of the left anterior descending coronary artery 
leads to substantial infarction of the left ventricle, provid-
ing a well-established model of progressive heart failure 
in rodents [15]. As expected, all animals in the current 
study that had undergone ligation displayed evidence 
of systolic dysfunction. Notably, the key features of left 
ventricular function such as ejection fraction and dP/
dtmax were both worse in the group that had received the 
SGLT1/2 inhibitor, T-1095 when compared with those 
treated with either vehicle or dapagliflozin. Similarly, 
diastolic function was also abnormal 4  weeks following 
LAD ligation but worse still among those rats that had 
received T-1095. Moreover, abnormalities in both the 
early, active, energy-dependent phase of diastole as indi-
cated by prolongation of the diastolic time constant, Tau 
and the later, more passive phase of diastole as reflected 
by an increase in the end-diastolic pressure volume rela-
tionship (EDPVR) were also more severely affected in 
T-1095-treated animals.

Following ischaemic necrosis of the myocardium 
the heart undergoes adaptive (in addition to adverse) 

remodelling in an attempt to compensate for the loss 
of contractile tissue. In this regard, an increase in left 
ventricular wall thickness as a consequence of myo-
cyte hypertrophy reduces wall stress, as dictated by the 
Laplace law [35]. Notably, the requirement for anabolic 
growth in addition to maintaining ATP generation for 
cardiac contractility necessitates an increase in glycolytic 
flux [36]. In this setting, the role of SGLT1-mediated glu-
cose entry into cardiac myocytes that can be inhibited by 
agents such as T-1095 becomes increasingly important 
[11, 37, 38]. Indeed, inhibition of cardiac hypertrophy 
in the setting of increased wall stress, as demonstrated 
in the present study would be predicted to be detri-
mental [39] as demonstrated by the cardiac dysfunction 
and reduced survival when hypertrophy is inhibited in 
experimental animals subjected to cardiac stress [40–44]. 
In contrast to the aforementioned primary inhibition of 
myocyte hypertrophy, ACE inhibitors and β-blockers 
reduce preload and afterload so that the need for hyper-
trophy is reduced and reverse remodeling may occur.

Beyond the effects on myocyte hypertrophy, we also 
observed increased collagen deposition in animals 
that had received T-1095. As described above, T-1095 

Fig. 3  Diastolic function. Diastolic function measured as left ventricular end-diastolic pressure (EDP, a), the early decrease in LV pressure during 
isovolumic relaxation (dP/dtmin, b), end-diastolic pressure volume relationship (EDPVR, c) and the diastolic time constant, Tau (d), all measured by 
conductance cardiac catheterization. Animal numbers are provided in Table 3. * p < 0.05 vs. sham + vehicle, † p < 0.05 vs. MI + vehicle, ‡ p < 0.05 vs. 
MI + dapagliflozin
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mediated inhibition of SGLT1 leads to a diminution in 
glucose entry that reduces ATP generation, consistent 
with the reduction in systolic function (EF, dp/dtmax) and 
the impairment in the active phase of diastolic relaxa-
tion (Tau) reported in the present study. In addition to 
impaired function, however, the resultant energy deple-
tion would also provide a profibrotic stimulus [45] that 
would lead to the increase in interstitial collagen.

Phlorizin, the prototypical SGLT1/2 inhibitor is poorly 
absorbed from the gut so that in addition to a low plasma 
concentration following oral dosing, its high luminal con-
centration induces diarrhoea by inhibiting enterocyte 
SGLT1. To overcome these limitations, we took advan-
tage of T-1095, a phlorizin derivative prodrug that is 

readily absorbed from small intestine prior to being con-
verted to its active form, T-1095A, in the systemic circu-
lation [13]. Similar to phlorizin that is a near-equipotent 
inhibitor of SGLT1 and 2, T-1095A has only a fourfold 
selectivity for SGLT2 over SGLT1 [14]. In contrast, the 
three widely-marketed SGLT2 inhibitors, canagliflozin, 
dapagliflozin and empagliflozin that have SGLT2:SGLT1 
selectivity ratios in the order of > 250, > 1200 and > 2500, 
respectively [46] and while canagliflozin may inhibit gut 
SGLT1 in clinically used doses [47], its plasma concentra-
tion would not be expected to reach levels high enough 
to inhibit cardiac SGLT1. Beyond canagliflozin, however, 
drugs with even less selectivity are in development, seek-
ing to capitalise on the theoretical additional glucose 

Fig. 4  Myocyte size. Hematoxylin and eosin-stained cardiac tissue from rats receiving vehicle (a, d), dapagliflozin (b, e) or T-1095 (c, f) in sham (a–c) 
and post-MI (d–f) settings along with quantitative analysis of myocyte size (g). Animal numbers are provided in Table 1. Scale bar: 100 microns. 
* p < 0.05 vs. sham + vehicle, † p < 0.05 vs. MI + vehicle, ‡ p < 0.05 vs. MI + dapagliflozin
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lowering that may be achieved by inhibiting SGLT1 in the 
distal segments of the proximal tubule as well as SGLT2 
in the more proximal segments [48]. Notably, two drugs 
designed to inhibit SGLT1 have already entered clinical 
trials. Sotagloflozin (LX4211) with an IC50 ratio of 20:1 
in favour of SGLT2 has completed phase 3 while others 
such as GSK-1614235 (Glaxo Smith-Kline, PA), designed 
to preferentially inhibit SGLT1 with an IC50 that is 300-
fold less for SGLT1 versus SGLT2, has recently under-
gone phase 1 clinical testing [49].

The present study has several limitations. First 
and foremost, while a commonly used model, the 
abrupt induction of ischemic necrosis in a rodent 
heart has only superficial resemblance to the myocar-
dial infarction in humans that occurs in the setting of 

longstanding atherosclerotic disease, collateral devel-
opment and in whom a vast array of cardioprotective 
measures are now employed. Notably, clinical studies 
of SGLT2 inhibitors have not shown evidence of benefit 
in being able to reduce the risk of myocardial infarc-
tion. As such, the absence of significant improvement 
in cardiac parameters with dapagliflozin should not be 
interpreted as an indication that this compound does 
not prevent hospitalization for heart failure in the clini-
cal setting especially considering the positive findings 
of its phase 2/3 program [50], post-marketing studies 
[51] and the effects of other members of the SGLT2 
inhibitory class [52] along with supporting basic and 
translational research studies [53–55]. Secondly, the 
compound used to inhibit SGLT1/2, T-1095, is not one 

Fig. 5  Collagen deposition. Immunolabelling of collagen III in hearts from rats receiving vehicle (a, d), dapagliflozin (b, e) or T-1095 (c, f) in sham 
(a–c) and post-MI (d–f) settings along with quantitative analysis of its abundance (g). Scale bar: 100 microns. * p < 0.05 vs. sham + vehicle
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that is in current use and while the drug was used as a 
pharmacological probe, extrapolations to other chemi-
cal entities may not be warranted. In particular, the 
combined SGLT1/2 inhibitor, sotagliflozin, as noted 
previously, has a 20:1 selectivity in favour of SGLT2, 
contrasting the 4:1 ratio for T-1095.

Although T-1095A’s ability to inhibit SGLT1-mediated 
glucose uptake has been well-documented [13, 14, 16], 
we did not directly assess glucose transport into the myo-
cardium in the current study. Several other groups have 
explored the effects of SGLT1 inhibition in heart in cells, 
atrial strips and using the ex vivo Langendorff technique 
with T-1095 and phlorizin [10, 11, 38, 56]. These stud-
ies demonstrated the importance of SGLT1-mediated 

glucose transport in the stress setting whereby its inhi-
bition exacerbates ischemia–reperfusion injury [38, 56]. 
The novelty and potential clinical relevance of the current 
study, however, centers on it being the first to examine 
the effects of SGLT1 inhibition following cardiac injury in 
the in vivo setting. Notably, given SGLT-mediated effects 
on preload and afterload [57], we used conductance 
catheterization that unlike echocardiography provides 
load-independent measurements of cardiac function 
in intact animals [25]. While the plasma concentration 
of T-1095A was not measured in the current study, its 
effects on SGLT-1 mediated glucose transport can be 
inferred from the IC50 for rat SGLT1 of < 1 µM [14] and 
the plasma concentration of ~ 10  µM that, according to 

Fig. 6  Collagen deposition. Immunolabelling of collagen I in hearts from rats receiving vehicle (a, d), dapagliflozin (b, d) or T-1095 (c, e) in sham 
(a–c) and post-MI (d–f) settings along with quantitative analysis of its abundance (g). Scale bar: 100 microns. * p < 0.05 vs. sham + vehicle
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published pharmacokinetic for the compound, would 
have been attained with the doses used [58]. Finally, 
although a direct effect of T-1095 on cardiac SGLT1 pro-
vides a cogent explanation for the observed effects, it is 
conceivable that altered glucose transport in other cells 
that express SGLT1 might have contributed, including 
the cardiac capillary endothelium [4].

Conclusions
The exacerbation of post myocardial infarction cardiac 
dysfunction with T-1095 in the experimental setting sug-
gests the need for caution with the use of dual SGLT1/2 
inhibitors in humans, reinforcing the prudent approach 
taken by regulatory authorities in specifically studying 
patients with cardiovascular disease before bringing a 
new glucose-lowering drug to market.
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