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Abstract 

Background:  Cardiovascular disease (CVD) is a leading cause of death among adults with type 2 diabetes mellitus 
(T2D). We recently reported that glycemic control in patients with T2D can be significantly improved through a con-
tinuous care intervention (CCI) including nutritional ketosis. The purpose of this study was to examine CVD risk factors 
in this cohort.

Methods:  We investigated CVD risk factors in patients with T2D who participated in a 1 year open label, non-rand-
omized, controlled study. The CCI group (n = 262) received treatment from a health coach and medical provider. A 
usual care (UC) group (n = 87) was independently recruited to track customary T2D progression. Circulating biomark-
ers of cholesterol metabolism and inflammation, blood pressure (BP), carotid intima media thickness (cIMT), multi-fac-
torial risk scores and medication use were examined. A significance level of P < 0.0019 ensured two-tailed significance 
at the 5% level when Bonferroni adjusted for multiple comparisons.

Results:  The CCI group consisted of 262 participants (baseline mean (SD): age 54 (8) year, BMI 40.4 (8.8) kg m−2). 
Intention-to-treat analysis (% change) revealed the following at 1-year: total LDL-particles (LDL-P) (− 4.9%, P = 0.02), 
small LDL-P (− 20.8%, P = 1.2 × 10−12), LDL-P size (+ 1.1%, P = 6.0 × 10−10), ApoB (− 1.6%, P = 0.37), ApoA1 (+ 9.8%, 
P < 10−16), ApoB/ApoA1 ratio (− 9.5%, P = 1.9 × 10−7), triglyceride/HDL-C ratio (− 29.1%, P < 10−16), large VLDL-P 
(− 38.9%, P = 4.2 × 10−15), and LDL-C (+ 9.9%, P = 4.9 × 10−5). Additional effects were reductions in blood pressure, 
high sensitivity C-reactive protein, and white blood cell count (all P < 1 × 10−7) while cIMT was unchanged. The 
10-year atherosclerotic cardiovascular disease (ASCVD) risk score decreased − 11.9% (P = 4.9 × 10−5). Antihypertensive 
medication use was discontinued in 11.4% of CCI participants (P = 5.3 × 10−5). The UC group of 87 participants [base-
line mean (SD): age 52 (10) year, BMI 36.7 (7.2) kg m−2] showed no significant changes. After adjusting for baseline 
differences when comparing CCI and UC groups, significant improvements for the CCI group included small LDL-P, 
ApoA1, triglyceride/HDL-C ratio, HDL-C, hsCRP, and LP-IR score in addition to other biomarkers that were previously 
reported. The CCI group showed a greater rise in LDL-C.
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Background
Despite advances in the prevention and treatment of 
cardiovascular disease (CVD), it remains the leading 
cause of death in adults across the world [1]. Specifically, 
among those with type 2 diabetes (T2D) in the US, CVD 
accounts for 44% of mortality [2]. T2D rates have dou-
bled over the past 20  years [3] and CVD risk increases 
two to fourfold with a diagnosis of T2D [4], warranting 
the identification of novel interventions to combat T2D. 
Intensive lifestyle interventions with dietary carbohy-
drate restriction [5–8], including the recently described 
continuous remote care model, which helps patients 
with T2D sustain nutritional ketosis [9, 10], have demon-
strated improved glycemic control concurrent with med-
ication reduction. However, the long-term sustainability 
and impact of these interventions on CVD risk and lipid 
profiles remains a subject of debate [11, 12].

Atherogenic dyslipidemia, a known risk factor for CVD 
[13], is highly prevalent in patients with T2D [14] and 
tightly linked to high-carbohydrate diets [15]. The condi-
tion is characterized by increased triglycerides, decreased 
high-density lipoprotein cholesterol concentration 
(HDL-C) and increased small low-density lipoprotein 
particle number (small LDL-P). Evidence suggests that 
increased very low-density lipoprotein particle number 
(VLDL-P), and in particular large VLDL-P, may be one 
of the key underlying abnormalities in atherogenic dys-
lipidemia [14, 16–18]. Elevated concentrations of small 
LDL are often associated with increased total LDL par-
ticle number (LDL-P) and ApoB [19, 20]. Particularly in 
patients with insulin resistance and T2D, elevated LDL-P 
and ApoB may exist even with normal to low LDL-C val-
ues [19, 21, 22]. Reliance on LDL-C for risk assessment in 
T2D patients may miss the impact of atherogenic dyslipi-
demia and elevated LDL-P. Researchers have proposed 
that LDL-P or ApoB may be superior to LDL-C as a pre-
dictor of CVD [22–25].

Previous studies of carbohydrate restriction of up to 
1-year found a consistent decrease in triglycerides and 
increase in HDL-C, while LDL-C slightly increased or 
decreased [15, 26–28]. Although LDL-C is a risk factor 
for CVD, low LDL-C may belie elevations in small LDL, 
LDL-P or ApoB. Conversely, increased LDL-C with a 
low carbohydrate diet may primarily reflect the large 

LDL subfraction and may not increase CVD risk if total 
LDL-P or ApoB concentrations are unchanged or decline.

Inflammation, as assessed by elevated high-sensitivity 
C-reactive protein (hsCRP) or white blood cell count 
(WBC) [29–32], is an independent CVD risk factor and is 
involved in all stages of atherogenesis [33]. Inflammation 
is often observed in T2D concurrent with atherogenic 
dyslipidemia [34] and represents an additional CVD risk 
even in individuals with low to normal LDL-C [35, 36]. 
Hypertension is an additive risk factor in this patient 
population. Tighter blood pressure control has been 
associated with reduction in the risk of deaths related 
to diabetes. This included decreased CVD, stroke and 
microvascular complications [37].

For this open label, non-randomized, controlled, 
before-and-after study, we investigated the effects of a 
continuous care intervention (CCI) on CVD risk factors. 
The CCI included individualized digital support with 
telemedicine, health coaching, education in nutritional 
ketosis, biometric feedback, and an online peer-support 
community. Given the multi-faceted pathophysiology of 
CVD, we assessed the 1-year responses in several bio-
markers related to cholesterol and lipoprotein metabo-
lism, blood pressure, and inflammation, as well as carotid 
intima media thickness (cIMT) and medication use. 
Some results were previously reported in relation to gly-
cemic control [10] and are presented here as they pertain 
to the effectiveness of the intervention and CVD risk (i.e. 
body weight and hemoglobin A1c).

Methods
Intervention
As previously described [9, 10], we utilized a prospective, 
longitudinal study design with a cohort of patients with 
T2D from the greater Lafayette, Indiana, USA, region 
who self-selected to participate in the CCI (Clinicaltri-
als.gov Identifier NCT02519309). Participants in the CCI 
were provided access to a web-based software application 
(app) for biomarker reporting and monitoring including 
body weight, blood glucose and blood betahydroxybu-
tyrate (BHB; a marker of ketosis). The remote care team 
consisted of a health coach and physician or nurse prac-
titioner who provided nutritional advice and medication 
management, respectively. Participants were guided by 

Conclusions:  A continuous care treatment including nutritional ketosis in patients with T2D improved most bio-
markers of CVD risk after 1 year. The increase in LDL-cholesterol appeared limited to the large LDL subfraction. LDL 
particle size increased, total LDL-P and ApoB were unchanged, and inflammation and blood pressure decreased.
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individualized nutrition recommendations to achieve 
and sustain nutritional ketosis. Notably, if participants 
reported headaches, constipation or lightheadedness, the 
remote care team recommended individualized adjust-
ments to sodium and fluid intake [10]. CCI participants 
self-selected to receive education via either an onsite 
group setting (CCI-onsite) or via the app (CCI-web). 
There were no instructions given to the CCI group on 
counting or restricting calories. The CCI participants 
were instructed to restrict carbohydrate, eat protein in 
moderation, and consume fat to satiety from the start of 
the study. Due to the well-known systematic errors asso-
ciated with dietary records in an obese population [38], 
we chose not to collect diet records. Social support was 
provided via an online peer community. Inclusion and 
exclusion criteria were previously described [10]. This 
study was approved by the Franciscan Health Lafayette 
Institutional Review Board, and participants provided 
written informed consent.

The frequency of glucose and BHB monitoring, along 
with glycemic control medication management, were 
previously described in detail [9, 10]. Briefly, glucose 
and BHB levels were initially obtained daily using a 
blood glucose and ketone meter (Precision Xtra, Abbott; 
Alameda, CA, USA) to personalize nutrition recommen-
dations and also provide a marker of adherence. The fre-
quency of measurement was modified by the care team 
for each participant based on individual care needs and 
preferences. For participants with a history of hyperten-
sion, a home automatic sphygmomanometer was sup-
plied. Participants reported their home readings in the 
app daily to weekly depending on recent control and 
instruction from the supervising physician. Antihyper-
tensive prescriptions were adjusted based on home read-
ings and reported symptoms. Health coaches responded 
to patient app reported readings of systolic blood pres-
sure less than 110  mmHg with specific questions about 
symptoms of hypotension. Following resolution of 
hypertension, diuretics were the first antihypertensive 
medications to be discontinued, followed by beta block-
ers, unless the participant had a history of coronary 
artery disease. Angiotensin-converting-enzyme inhibi-
tors (ACEs) and angiotensin II receptor blockers (ARBs) 
were generally continued due to known renal protection 
with diabetes [39, 40]. Statin medications were adjusted 
when appropriate to maintain a goal of LDL-P under 
1000 nmol L−1 or participant preference after full risk—
benefit discussion.

To track T2D progression in the same geography and 
health system as the CCI, an independent cohort of 
patients with T2D who received usual care (UC) were 
recruited. These patients were referred to registered 

dietitians providing dietary advice according to Ameri-
can Diabetes Association guidelines [41].

Outcome measures
Anthropometrics and vital signs for the CCI group were 
obtained at baseline, 70 days, and 1 year. A stadiometer 
was used to assess height and used in the calculation of 
body mass index. A calibrated scale in the clinic meas-
ured weight to the nearest 0.1  lb (Model 750, Detecto; 
Webb City, MO, USA) and values were converted to kg. 
Participants were provided a cellular-connected home 
scale for daily weight. Blood pressure was obtained man-
ually by trained staff after participants rested in a seated 
position for 5  min. Adverse events were reported and 
reviewed by the Principal Investigator and the Institu-
tional Review Board.

Fasting blood draws for the CCI group were collected 
at baseline, 70 days, and 1-year follow-up (ranging from 
11 to 15  months). Blood analytes were determined via 
standard procedures at a Clinical Laboratory Improve-
ment Amendment (CLIA) accredited laboratory on the 
day of sample collection or from stored serum. Serum ali-
quots were stored at − 80 °C and thawed for determina-
tion of ApoB, ApoA1, total cholesterol, triglycerides, and 
direct HDL-C concentrations by FDA approved methods 
(Cobas c501, Roche Diagnostics; Indianapolis, IN, USA). 
LDL was calculated using the Friedewald equation [42]. 
Lipid subfractions were quantified using clinical NMR 
LipoProfile® (LabCorp, Burlington NC, USA; [43]). The 
LipoProfile3 algorithm used in the present investigation 
was used previously to relate lipid subfractions to CVD 
risk [35, 44, 45]. The NMR-derived lipoprotein insulin 
resistance score (LP-IR) is proposed to be associated with 
the homeostasis model assessment of insulin resistance 
(HOMA-IR) and glucose disposal rate (GDR) [46]. The 
multifactorial 10-year atherosclerotic cardiovascular dis-
ease (ASCVD) risk score was also computed [47].

Anthropometrics, vital signs and fasting blood draws 
for the UC group were obtained at baseline and 1 year as 
described above using the same clinical facilities and lab-
oratory and data collection methods. Home biometrics 
for the UC group were not tracked and 70-day outcomes 
were not measured.

Carotid ultrasonography for cIMT measure was per-
formed at baseline and 1 year in CCI and UC groups to 
characterize atherosclerotic risk. Ultrasound technicians 
were trained according to protocols that were previ-
ously tested and used to assess subclinical atherosclero-
sis [48, 49]. The right and left common carotid arteries 
were imaged 1  cm distal to the carotid bulb using a 
L12-3 multi-frequency linear-array transducer attached 
to a high-resolution ultrasound system (Phillips EPIQ 
5, Amsterdam, Netherlands). Longitudinal images were 
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captured in three imaging planes: anterior, lateral, and 
posterior. Digital images were analyzed using edge-detec-
tion software (Carotid Analyzer for Research; Medical 
Imaging Application, Coralville, IA) to trace the lumen-
intima and intima-medial boundaries of the artery. Anal-
yses were performed by the same blinded investigator to 
obtain right and left mean arterial diameter and mean 
cIMT. The current study was powered to detect a ∆cIMT 
difference of 0.019 mm between the CCI and UC groups 
at alpha = 0.05 and power = 80%.

Statistics
JMP software (version 5.1, SAS Institute; Cary, SC, 
USA) was used for all statistical analyses except multi-
ple imputation. Multiple imputation using multivariate 
normal distribution, conducted with Stata software (ver-
sion 11, StataCorp; College Station, TX, USA), was used 
to estimate means and standard errors describing the 
variability between imputations. Seven hundred impu-
tations from multivariate normal regression were run to 
estimate the missing values (4% missing at baseline and 
22% missing at 1 year). Two-sample t tests were used to 
test for significance of the differences in baseline bio-
marker values between groups. Two-sample t tests were 
also used to test for differences between 1-year changes 
between groups. Paired t tests and analysis of covari-
ance (ANCOVA) when adjusted for baseline covariates 
(sex, age, baseline BMI, insulin use (user vs. non-user), 
and African–American race) were used to test for sig-
nificance of within-group changes. A secondary analysis 
was conducted with the addition of smoking status as 
a sixth covariate. To reduce skewness before testing for 
significance, triglyceride, triglyceride/HDL-C ratio and 
hsCRP were first log-transformed, however aside from P 
values, the tables present results from the untransformed 
data. Percent change in a given biomarker was calcu-
lated as the mean difference value divided by the mean 
baseline value. The standard error of percent change of a 
given biomarker was calculated as the standard error of 
the change divided by the mean baseline value. Signifi-
cant changes in proportions (e.g. medication use) were 
tested using McNemar’s test with continuity correction 
in completers, and linear regression of the changes in 
the dichotomous states when missing outcome data were 
imputed.

Throughout the manuscript, standard deviations are 
presented within parentheses and standard errors are 
presented following “±” symbol. Nominal significance 
levels (P) are presented in the tables; however, a signifi-
cance level of P < 0.0019 ensures simultaneous signifi-
cance at P < 0.05 for a Bonferroni adjustment for the 26 
variables examined. Unless otherwise noted, results pre-
sented are intention-to-treat analyses (all starters) with 

missing values estimated by imputation. Some results are 
designated as completer analyses (excluding participants 
who withdrew or lacked biomarkers at 1 year).

Results
Baseline characteristics of participants
The baseline characteristics of the 262 T2D participants 
who began the CCI are shown in Table 1. There were no 
significant differences in baseline characteristics between 
groups self-selecting web-based (CCI-web) and onsite 
education (CCI-onsite) (Additional file  1: Table  S1) nor 
were there significant differences in biomarker changes at 
1  year between the groups (Additional file  2: Table S2). 
Therefore, results for the two groups were combined for 
further analyses.

The baseline characteristics of participants with meas-
urements at both baseline and 1  year were not signifi-
cantly different from dropouts and participants with 
missing data after correcting for multiple comparisons 
(Additional file  1: Table S1). This suggests that multiple 
imputation may be appropriate for estimating missing 
values in order to estimate outcomes for all starters.

An independently recruited UC group of 87 T2D par-
ticipants, which provided an observational compari-
son group from the same geography and health system, 
showed no significant differences from the CCI group 
in baseline characteristics except mean body weight 
and BMI were higher in the CCI versus the UC group 
(Table 1, P < 0.001).

Changes in biomarkers of CVD risk at 1 year
Two-hundred eighteen (83%) participants remained 
enrolled in the CCI group at 1  year. One-year changes 
in CVD biomarkers are detailed in Table  2 and percent 
changes from baseline are shown in Fig.  1. The within-
CCI group changes in the following lipids and lipopro-
teins were all statistically significant after adjusting for 
multiple comparisons (P < 0.0019), reported here as 
mean percent difference from baseline: ApoA1 (+ 9.8%), 
ApoB/ApoA1 ratio (− 9.5%), triglycerides (− 24.4%), 
LDL-C (+ 9.9%), HDL-C (+ 18.1%), triglyceride/HDL-C 
ratio (− 29.1%), large VLDL-P (− 38.9%), small LDL-P 
(− 20.8%), LDL-particle size (+ 1.1%), total HDL-P 
(+ 4.9%), and large HDL-P (+ 23.5%). There were no 
significant changes after adjusting for multiple compari-
sons in total LDL-P (− 4.9%, P = 0.02) or ApoB (− 1.6%, 
P = 0.37).

The CCI group experienced significant reductions 
in systolic BP (− 4.8%), diastolic BP (− 4.3%), hsCRP 
(− 39.3%) and WBC count (− 9.1%).  Regarding medi-
cation changes, (reported here as  percent use  at  1 
year minus percent use at baseline, while Fig. 1 displays 
percent change of percent use) significant reductions 
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Table 1  Baseline characteristics for participants in the con-
tinuous care intervention (CCI) and usual care (UC) groups

All Completers with data

N Mean (SD) 
or ± SE

N Mean (SD) 
or ± SE

Age (years)

 CCI-all educationa 262 54 (8) 218 54 (8)

 Usual carea 87 52 (10) 78 52 (10)

 CCI-all vs. usual careb 1 ± 1 2 ± 1*

Female (%)

 CCI-all educationa 262 66.8 ± 2.9 218 65.1 ± 3.2

 Usual carea 87 58.6 ± 5.3 78 60.3 ± 5.5

 CCI-all vs. usual careb 8.2 ± 6.0 4.9 ± 6.4

Smokers (%)

 CCI-all educationa 211 3.8 ± 1.3 176 4.0 ± 1.5

 Usual carea 87 14.9 ± 3.8 78 14.1 ± 3.9

 CCI-all vs. usual careb − 11.2 ± 4.0† − 10.1 ± 4.2*

Weight-clinic (kg)

 CCI-all educationa 257 116.5 (25.9) 184 115.4 (24.6)

 Usual carea 83 105.6 (22.2) 69 106.8 (22.2)

 CCI-all vs. usual careb 10.9 ± 2.9‡ 8.6 ± 3.2†

BMI (kg m−2)

 CCI-all educationa 257 40.4 (8.8) 184 39.9 (7.9)

 Usual carea 83 36.7 (7.3) 69 37.1 (7.6)

 CCI-all vs. usual careb 3.7 ± 1.0‡ 2.7 ± 1.1†

Hemoglobin A1c (%)

 CCI-all educationa 262 7.60 (1.50) 204 7.49 (1.40)

 Usual carea 87 7.64 (1.76) 72 7.74 (1.82)

 CCI-all vs. usual careb −0.04 ± 0.21 −0.25 ± 0.24

Systolic blood pressure (mmHg)

 CCI-all educationa 260 132 (14) 187 133 (15)

 Usual carea 79 130 (14) 67 129 (13)

 CCI-all vs. usual careb 2 ± 2 4 ± 2*

Diastolic blood pressure (mmHg)

 CCI-all educationa 260 82 (8) 187 82 (8)

 Usual carea 79 82 (9) 67 81 (8)

 CCI-all vs. usual careb 0 ± 1 0 ± 1

ApoB (mg dL−1)

 CCI-all educationa 248 105 (29) 186 103 (28)

 Usual carea 79 107 (28) 59 106 (30)

 CCI-all vs. usual careb −2 ± 4 −2

ApoA1 (mg dL−1)

 CCI-all educationa 248 146 (28) 185 146 (29)

 Usual carea 79 149 (22) 59 148 (21)

 CCI-all vs. usual careb −3 ± 3 −2 ± 3

ApoB/ApoA1 ratio

 CCI-all educationa 248 0.74 (0.23) 185 0.73 (0.23)

 Usual carea 79 0.73 (0.23) 59 0.73 (0.25)

 CCI-all vs. usual careb 0.01 ± 0.03 0.00 ± 0.04

Triglycerides (mg dL−1)

 CCI-all educationa 247 197 (143) 186 201 (153)

 Usual carea 79 283 (401) 59 297 (458)

Table 1  continued

All Completers with data

N Mean (SD) 
or ± SE

N Mean (SD) 
or ± SE

 CCI-all vs. usual careb −86 ± 46* −97 ± 61

LDL-C (mg dL−1)

 CCI-all educationa 232 103 (33) 172 100 (33)

 Usual carea 70 102 (36) 48 100 (38)

 CCI-all vs. usual careb 1 ± 5 0 ± 6

HDL-C (mg dL−1)

 CCI-all educationa 247 42 (13) 186 42 (14)

 Usual carea 79 38 (11) 59 37 (11)

 CCI-all vs. usual careb 5 ± 2† 5 ± 2†

Triglycerides/HDL-C ratio

 CCI-all educationa 247 5.9 (7.1) 186 6.1 (7.9)

 Usual carea 79 10.5 (23.2) 59 11.5 (26.5)

 CCI-all vs. usual careb −4.6 ± 2.6 −5.4 ± 3.5

Large VLDL-P (nmol L−1)

 CCI-all educationa 259 10 (8) 203 9 (8)

 Usual carea 83 12 (12) 68 12 (13)

 CCI-all vs. usual careb −2 ± 1 −2 ± 2

Total LDL-P (nmol L−1)

 CCI-all educationa 259 1300 (465) 203 1296 (476)

 Usual carea 83 1289 (511) 68 1243 (484)

 CCI-all vs. usual careb 11 ± 63 52 ± 68

Small LDL-P (nmol L−1)

 CCI-all educationa 259 774 (377) 203 778 (378)

 Usual carea 83 719 (322) 68 699 (326)

 CCI-all vs. usual careb 55 ± 42 789 ± 48

LDL-particle size (nm)

 CCI-all educationa 259 20.30 (0.55) 201 20.3 (0.55)

 Usual carea 83 20.33 (0.56) 68 20.32 (0.55)

 CCI-all vs. usual careb −0.03 ± 0.07 −0.03 ± 0.08

Total HDL-P (μmol L−1)

 CCI-all educationa 259 31.3 (6.4) 203 31.7 (6.4)

 Usual carea 83 29.9 (5.8) 68 30.2 (6.0)

 CCI-all vs. usual careb 1.4 ± 0.8 1.5 ± 0.9

Large HDL-P (μmol L−1)

 CCI-all educationa 259 4.3 (2.5) 203 4.2 (2.5)

 Usual carea 83 3.8 (2.1) 68 3.8 (2.1)

 CCI-all vs. usual careb 0.4 ± 0.3 0.4 ± 0.3

LP-IR score

 CCI-all educationa 259 72 (17) 203 72 (18)

 Usual carea 83 75 (16) 68 74 (17)

 CCI-all vs. usual careb −3 ± 2 −2 ± 2

C-reactive protein (mg L−1)

 CCI-all educationa 249 8.5 (14.5) 193 9.0 (16.1)

 Usual carea 85 8.9 (8.6) 70 9.1 (9.0)

 CCI-all vs. usual careb −0.3 ± 1.3 −0.1 ± 1.6

WBC

 CCI-all educationa 260 7.2 (1.9) 204 7.1 (1.8)

 Usual carea 86 8.1 (2.4) 72 8.3 (2.4)
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were observed in overall use of antihypertensive medi-
cation (− 11.4%) and diuretics (− 9.7%) whereas changes 
in ACE or ARB (0.6%) and statin (− 3.3%) use were not 
significant. Significant reductions were observed in both 
multivariate metrics: 10-year ASCVD risk (− 11.9%) 
and LP-IR (− 19.6%). There was no significant change 
in cIMT (averaged right and left values). In addition, 
changes in cIMT were not significantly correlated with 
baseline LDL-P or LDL-C, or changes in LDL-P or 
LDL-C (all P ≥ 0.33).

One-year results from the UC group are provided in 
Table  2 and Fig.  2. Within the UC group, after adjust-
ment for multiple comparisons there were no signifi-
cant changes at 1 year. After adjusting for differences in 

baseline characteristics (sex, age, baseline BMI, insulin 
use (user vs. non-user), and African–American race) and 
multiple comparisons, the changes observed at 1  year 
for the following biomarkers were significantly different 
between the CCI and UC groups (mean ∆CCI − mean 
∆UC, where ∆ is 1  year minus baseline): small LDL-P 
(− 177  nmol  L−1), ApoA1 (+ 16  mg  dL−1), triglycer-
ide/HDL-C ratio (− 3.1), LDL particle size (+ 0.31  nm), 
HDL-C (+ 8  mg  dL−1), LDL-C (+ 22  mg  dL−1), hsCRP 
(− 4.0 mg dL−1), and LP-IR (− 12). Adding smoking sta-
tus to the list of covariates mentioned above did not lead 
to any changes in statistical significance.

There were no significant differences in change in 
biomarkers between the sexes within the CCI group 
or between CCI and UC groups among completers 
(all P > 0.0019). The results related to daily weight and 
ketone measurements were previously reported in 
detail [9, 10]. In brief, almost all CCI participants (96%) 
reported at least one BHB value ≥ 0.5  mmol  L−1 by 
handheld measure. Laboratory-measured BHB at 1 year 
(0.31 ± 0.03 mmol L−1) was almost twice as large as the 
baseline average in the CCI group (0.17 ± 0.01 mmol L−1). 
For this population, additional details on changes in other 
biomarkers related to glycemic control, metabolic acido-
sis, and liver, kidney, and thyroid health were previously 
reported in greater detail [9, 10]. In addition, details on 
safety and adverse events have previously been described 
[10]. A post hoc analysis of covariance on treatment ver-
sus control group differences in 1-year risk factor change 
suggested that weight loss was associated with as much 
as approximately 40–70% of the change in the following 
biomarkers: small LDL-P, ApoA1, triglyceride/HDL-C 
ratio, triglycerides, and HDL-C and over 90% of the dif-
ference in LP-IR score.

Range of outcomes
The distribution and range of intervention response 
for the CCI and UC groups were compared for LDL-P, 
small LDL-P, large VLDL-P, ApoB, ApoA1, ApoB/ApoA1 
ratio, and TG/HDL-C ratio (Additional file 3: Figure S1). 
Ranges of change observed in the CCI group were within 
the ranges observed in the UC group for increases in 
LDL-P, small LDL-P, ApoB and ApoB/ApoA1 ratio. There 
were two CCI participants (2/203, 1.0%) whose change 
in large VLDL-P exceeded the maximum observed in the 
UC group (15.2  nmol  L−1). There was one CCI partici-
pant (1/185, 0.5%) whose change in ApoA1 was less than 
the minimum observed in the UC group (− 58 mg dL−1) 
and one CCI participant (1/186, 0.5%) whose change in 
triglyceride/HDL-C ratio was higher than the maximum 
observed in the UC group (64.9).

Table 1  continued

All Completers with data

N Mean (SD) 
or ± SE

N Mean (SD) 
or ± SE

 CCI-all vs. usual careb −0.9 ± 0.3† −1.2 ± 0.3§

10-year ASCVD risk (%)

 CCI-all educationa 198 11.1 (9.1) 135 12.1 (9.3)

 Usual carea 72 11.8 (10.8) 55 11.4 (10.8)

 CCI-all vs. usual careb −0.6 ± 1.4 0.8 ± 1.6

CIMT-average (mm)

 CCI-all educationa 236 0.681 (0.108) 144 0.692 (0.113)

 Usual carea 84 0.681 (0.116) 68 0.680 (0.111)

 CCI-all vs. usual careb −0.001 ± 0.014 0.013 ± 0.016

Statin (%)

 CCI-all educationa 262 50.0 ± 3.1 218 51.8 ± 3.4

 Usual carea 87 58.6 ± 5.3 73 54.8 ± 5.8

 CCI-all vs. usual careb −8.6 ± 6.1 −3.0 ± 6.7

Any antihypertensive medication (%)

 CCI-all educationa 262 67.2 ± 2.9 218 68.4 ± 3.2

 Usual carea 87 52.9 ± 5.4 73 50.7 ± 5.9

 CCI-all vs. usual careb 14.3 ± 6.1* 17.7 ± 6.7†

ACE or ARB (%)

 CCI-all educationa 262 29.4 ± 2.8 218 28.0 ± 3.0

 Usual carea 87 18.4 ± 4.2 73 16.4 ± 4.3

 CCI-all vs. usual careb 11.0 ± 5.0* 11.5 ± 5.3*

Diuretics (%)

 CCI-all educationa 262 40.8 ± 3.0 218 41.3 ± 3.3

 Usual carea 87 29.9 ± 4.9 73 24.7 ± 5.0

 CCI-all vs. usual careb 11.0 ± 5.8 16.6 ± 6.1†

Significant baseline difference between means or percentages are designated 
by the following symbols: * 0.05 > P ≥ 0.01, †0.01 > P ≥ 0.001, ‡0.001 > P ≥ 
0.0001, §P < 0.0001
a   Mean and standard deviations for continuous variables, percents and 
standard errors for categorical variables 
b   Difference between means or percentages ± 1 standard error of the 
difference 
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Table 2  1-year biomarker changes  for participants in  the continuous care intervention group  compared to  usual care 
group

Completers All starters
(dropouts imputed)d

N 1 year
Mean ± SE

Unadjusted Adjusted for baselinec Unadjusted

Difference (SD) 
or ± SE

Significancee Differ-
ence ± SE

Significancee 1 year
Mean ± SE

Differ-
ence ± SE

Significancee

∆Weight-clinic (kg)

 CCI-all 
educationa

184 101.2 ± 1.6 − 14.2 (10.3) < 10−16 − 13.8 ± 0.6 < 10−16 102.7 ± 1.5 − 13.8 ± 0.7 < 10−16

 Usual carea 69 106.8 ± 2.7 0.04 (5.9) 0.95 − 1.1 ± 1.1 0.29 107.3 ± 2.6 − 0.2 ± 0.8 0.85

 CCI-all vs. 
usual careb

− 14.3 ± 1.0 < 10−16 − 12.7 ± 1.3 < 10−16 − 13.7 ± 1.1 < 10−16

∆Hemoglobin A1c (%)

 CCI-all 
educationa

204 6.20 ± 0.07 − 1.29 (1.32) < 10−16 − 1.32 ± 0.09 < 10−16 6.29 ± 0.07 − 1.30 ± 0.09 < 10−16

 Usual carea 72 7.94 ± 0.22 0.20 (1.35) 0.21 0.22 ± 0.16 0.17 7.84 ± 0.19 0.20 ± 0.15 0.18

 CCI-all vs. 
usual careb

− 1.49 ± 0.18 4.4 × 10−16 − 1.54 ± 0.19 4.4 × 10−16 − 1.50 ± 0.17 < 10−16

∆Systolic blood pressure (mmHg)

 CCI-all 
educationa

187 126 ± 1 − 7 (16) 1.3 × 10−8 − 7 ± 1 1.6 × 10−7 126 ± 1 − 6 ± 1 1.3 × 10−8

 Usual carea 67 129 ± 2 0 (18) 0.91 0 ± 2 0.83 129 ± 2 − 1 ± 2 0.67

 CCI-all vs. 
usual careb

− 7 ± 2 0.005 − 6 ± 3 0.02 − 5 ± 2 0.02

∆Diastolic blood pressure (mmHg)

 CCI-all 
educationa

187 78 ± 1 − 4 (9) 1.4 × 10−7 − 4 ± 1 6.2 × 10−7 79 ± 1  − 4 ± 1 7.2 × 10−8

 Usual carea 67 81 ± 1 0 (10) 0.92 0 ± 1 0.75 81 ± 1 − 1 ± 1 0.45

 CCI-all vs. 
usual careb

− 3 ± 1 0.01 − 3 ± 1 0.03 − 3 ± 1 0.06

∆ApoB (mg dL−1)

 CCI-all 
educationa

186 103 ± 2 − 1 (24) 0.69 − 0 ± 2 0.82 104 ± 2 − 2 ± 2 0.37

 Usual carea 59 107 ± 5 2 (37) 0.75 1 ± 4 0.9 106 ± 4 0 ± 4 0.95

 CCI-all vs. 
usual careb

− 2 ± 5 0.66 − 1 ± 5 0.83 − 2 ± 5 0.67

∆ApoA1 (mg dL−1)

 CCI-all 
educationa

185 160 ± 3 14 (24) 8.9 × 10−16 14 ± 2 4.4 × 10−16 160 ± 2 14 ± 2 < 10−16

 Usual carea 59 145 ± 3 − 3 (19) 0.18 − 2 ± 3 0.55 147 ± 3 − 2 ± 3 0.37

 CCI-all vs. 
usual careb

18 ± 3 4.7 × 10−9 16 ± 4 2.2 × 10−5 17 ± 3 1.4 × 10−7

∆ApoB/ApoA1

 CCI-all 
educationa

185 0.67 ± 0.02 − 0.06 (0.17) 1.8 × 10−6 − 0.06 ± 0.02 0.003 0.67 ± 0.02 − 0.07 ± 0.01 1.9 × 10−7

 Usual carea 59 0.76 ± 0.04 0.03 (0.29) 0.42 0.02 ± 0.03 0.5 0.74 ± 0.03 0.02 ± 0.03 0.58

 CCI-all vs. 
usual careb

− 0.09 ± 0.04 0.02 − 0.08 ± 0.03 0.02 − 0.09 ± 0.03 0.01

∆Triglycerides (mg dL−1)

 CCI-all 
educationa

186 151 ± 11 − 49 (168) 5.6 × 10−5 − 50 ± 16 0.001 148 ± 12 − 48 ± 13 < 10−16

 Usual carea 59 327 ± 65 30 (301) 0.44 31 ± 29 0.27 305 ± 48 28 ± 32 0.43

 CCI-all vs. 
usual careb

− 80 ± 41 0.05 − 81 ± 33 0.02 − 76 ± 35 9.9 × 10−7
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Table 2  continued

Completers All starters
(dropouts imputed)d

N 1 year
Mean ± SE

Unadjusted Adjusted for baselinec Unadjusted

Difference (SD) 
or ± SE

Significancee Differ-
ence ± SE

Significancee 1 year
Mean ± SE

Differ-
ence ± SE

Significancee

∆LDL-C (mg dL−1)

 CCI-all 
educationa

172 111 ± 3 11 (32) 7.7 × 10−6 11 ± 3 2.6 × 10−5 113 ± 3 10 ± 2 4.9 × 10−5

 Usual carea 48 90 ± 4 − 11 (38) 0.05 − 11 ± 5 0.03 90 ± 5 − 11 ± 5 0.02

 CCI-all vs. 
usual careb

22 ± 6 0.0003 22 ± 6 0.0002 21 ± 5 9.9 × 10−5

∆HDL-C (mg dL−1)

 CCI-all 
educationa

186 50 ± 1 8 (12) < 10−16 7 ± 1 < 10−16 50 ± 1 8 ± 1 < 10−16

 Usual carea 59 35 ± 2 − 2 (9) 0.15 − 1 ± 2 0.69 37 ± 2 − 1 ± 1 0.41

 CCI-all vs. 
usual careb

9 ± 1 1.7 × 10−10 8 ± 2 9.9 × 10−6 9 ± 2 1.2 × 10−8

Triglycerides/HDL-C ratio

 CCI-all 
educationa

186 4.3 ± 0.6 − 1.8 (9.4) < 10−16 − 1.9 ± 0.9 < 10−16 4.1 ± 0.6 − 1.6 ± 0.7 < 10−16

 Usual carea 59 12.5 ± 2.7 0.9 (16.1) 0.1 1.2 ± 1.6 0.16 11.2 ± 2.1 1.0 ± 1.7 0.24

 CCI-all vs. 
usual careb

− 2.8 ± 2.2 3.1 × 10−10 − 3.1 ± 1.8 5.5 × 10−7 − 2.6 ± 1.8 4.5 × 10−9

∆Large VLDL-P (nmol L−1)

 CCI-all 
educationA

203 6 ± 1 − 4 (7) 5.6 × 10−15 − 4 ± 1 1.6 × 10−14 6 ± 1 − 4 ± 1 4.2 × 10−15

 Usual carea 68 12 ± 2 0 (8) 0.71 0 ± 1 0.60 12 ± 1 0 ± 1 0.77

 CCI-all vs. 
usual careb

− 3 ± 1 0.001 − 3 ± 1 0.002 3 ± 1 0.0007

∆Total LDL-P (nmol L−1)

 CCI-all 
educationa

203 1234 ± 30 − 62 (375) 0.02 − 57 ± 29 0.05 1235 ± 29 − 64 ± 26 0.02

 Usual carea 68 1196 ± 60 − 47 (491) 0.43 − 67 ± 53 0.21 1231 ± 57 − 57 ± 56 0.31

 CCI-all vs. 
usual careb

− 15 ± 65 0.82 10 ± 62 0.87 − 7 ± 62 0.91

∆Small LDL-P (nmol L−1)

 CCI-all 
educationa

203 614 ± 22 − 164 (332) 2.2 × 10−12 − 161 ± 24 4.1 × 10−11 613 ± 21 − 161 ± 23 1.2 × 10−12

 Usual carea 68 724 ± 44 25 (370) 0.57 16 ± 45 0.71 740 ± 41 18 ± 42 0.67

 CCI-all vs. 
usual careb

− 189 ± 51 0.0002 − 177 ± 52 0.0007 − 179 ± 48 0.0002

∆LDL-particle size (nm)

 CCI-all 
educationa

201 20.53 ± 0.04 0.23 (0.54) 1.7 × 10−9 0.23 ± 0.04 8.9 × 10−9 20.53 ± 0.04 0.23 ± 0.04 6.0 × 10−10

 Usual carea 68 20.25 ± 0.07 − 0.08 (0.53) 0.24 − 0.08 ± 0.07 0.25 20.25 ± 0.07 − 0.07 ± 0.06 0.25

 CCI-all vs. 
usual careb

0.30 ± 0.07 4.4 × 10−5 0.31 ± 0.08 0.0002 0.30 ± 0.07 3.8 × 10−15

∆Total HDL-P (µmol L−1)

 CCI-all 
educationa

203 33.2 ± 0.5 1.5 (4.9) 1.2 × 10−5 1.5 ± 0.4 2.1 × 10−5 32.8 ± 0.4 1.5 ± 0.3 5.6 × 10−6

 Usual carea 68 29.4 ± 0.8 − 0.8 (4.7) 0.15 − 0.8 ± 0.6 0.23 29.2 ± 0.7 − 0.7 ± 0.6 0.23

 CCI-all vs. 
usual careb

2.3 ± 0.7 0.0004 2.3 ± 0.7 0.003 2.2 ± 0.7 0.0008
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Table 2  continued

Completers All starters
(dropouts imputed)d

N 1 year
Mean ± SE

Unadjusted Adjusted for baselinec Unadjusted

Difference (SD) 
or ± SE

Significancee Differ-
ence ± SE

Significancee 1 year
Mean ± SE

Differ-
ence ± SE

Significancee

∆Large HDL-P (µmol L−1)

 CCI-all 
educationa

203 5.3 ± 0.2 1.0 (2.2) 2.5 × 10−11 1.0 ± 0.2 4.1 × 10−11 5.3 ± 0.2 1.0 ± 0.2 1.2 × 10−11

 Usual carea 68 3.9 ± 0.3 0.1 (1.6) 0.69 0.2 ± 0.3 0.44 3.9 ± 0.3 0.1 ± 0.2 0.74

 CCI-all vs. 
usual careb

0.9 ± 0.3 0.0002 0.8 ± 0.3 0.01 0.9 ± 0.3 0.0004

∆LP-IR score

 CCI-all 
educationa

203 58 ± 2 − 14 (18) < 10−16 − 14 ± 1 < 10−16 58 ± 1 − 14 ± 1 < 10−16

 Usual carea 68 74 ± 2 − 1 (16) 0.73 − 2 ± 2 0.41 75 ± 2 − 1 ± 2 0.74

 CCI-all vs. 
usual careb

− 13 ± 2 3.8 × 10−9 − 12 ± 3 6.2 × 10−6 − 13 ± 2 6.2 × 10−9

∆C-reactive protein (mg L−1)

 CCI-all 
educationa

193 5.7 ± 0.5 − 3.3 (13.4) < 10−8 − 3.1 ± 1.0 < 10−16 5.6 ± 0.6 − 3.6 ± 1.1 < 10−16

 Usual carea 70 10.4 ± 1.8 1.3 (13.3) 0.94 0.9 ± 1.7 0.88 10.3 ± 1.6 1.3 ± 1.5 0.93

 CCI-all vs. 
usual careb

− 4.7 ± 1.9 1.2 × 10−6 − 4.0 ± 2.0 3.0 × 10−5 − 4.9 ± 1.8 9.3 × 10−7

∆WBC (k mm−3)

 CCI-all 
educationa

204 6.5 ± 0.1 − 0.7 (1.4) 2.1 × 10−11 − 0.7 ± 0.1 2.1 × 10−11 6.6 ± 0.1 − 0.7 ± 0.1 3.2 × 10−11

 Usual carea 72 8.3 ± 0.3 − 0.1 (1.6) 0.76 − 0.1 ± 0.2 0.74 8.1 ± 0.3 − 0.1 ± 0.2 0.76

 CCI-all vs. 
usual careb

− 0.6 ± 0.2 0.003 − 0.6 ± 0.2 0.004 − 0.6 ± 0.2 0.003

∆10-year ASCVD risk (%)

 CCI-all 
educationa

135 10.5 ± 0.7 − 1.6 (5.4) 0.0004 − 1.5 ± 0.6 0.01 9.6 ± 0.5 − 1.3 ± 0.3 4.9 × 10−5

 Usual carea 55 12.7 ± 1.5 1.4 (9.3) 0.28 1.1 ± 1.0 0.27 12.9 ± 1.2 1.2 ± 0.9 0.17

 CCI-all vs. 
usual careb

− 3.0 ± 1.3 0.03 − 2.6 ± 1.2 0.03 − 2.6 ± 1.0 0.008

∆CIMT-average (mm)

 CCI-all 
educationa

144 0.695 ± 0.009 0.002 (0.055) 0.63 0.003 ± 0.004 0.45 0.685 ± 0.010 0.002 ± 0.004 0.65

 Usual carea 68 0.680 ± 0.013 0.004 (0.041) 0.37 0.002 ± 0.006 0.74 0.680 ± 0.013 0.001 ± 0.006 0.87

 CCI-all vs. 
usual careb

− 0.002 ± 0.007 0.74 0.001 ± 0.008 0.87 0.001 ± 0.007 0.88

∆Statin (%)

 CCI-all 
educationa

218 48.2 ± 3.4 − 3.7 (34.4) 0.12 − 3.6 ± 2.4 0.13 46.7 ± 3.2 − 3.3 ± 2.3 0.15

 Usual carea 73 64.4 ± 5.6 9.6 (37.9) 0.03 9.5 ± 4.3 0.03 67.4 ± 5.4 8.8 ± 4.3 0.04

 CCI-all vs. 
usual careb

− 13.3 ± 5.0 0.008 − 13.2 ± 5.0 0.009 − 12.1 ± 4.9 0.01

∆Any antihypertensive medication (%)

 CCI-all 
educationa

218 56.4 ± 3.4 − 11.9 (42.3) 3.2 × 10−5 − 11.9 ± 2.9 3.6 × 10−5 55.8 ± 3.3 − 11.4 ± 2.8 5.3 × 10−5

 Usual carea 73 60.3 ± 5.8 9.6 (41.4) 0.05 9.6 ± 5.1 0.06 61.2 ± 5.6 8.3 ± 4.8 0.09

 CCI-all vs. 
usual careb

− 21.5 ± 5.6 0.0002 − 21.6 ± 6.0 0.0004 − 19.7 ± 5.6 0.0004
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Discussion
This study demonstrates that a CCI utilizing remote phy-
sician and health coach support with nutritional ketosis 
beneficially altered most CVD risk factors in patients 
with T2D at 1  year. Changes included: decreased small 
LDL-P, triglycerides, blood pressure and antihypertensive 
medication, hsCRP, and WBC count; increased HDL-C 
and LDL particle size; no change in LDL-P, ApoB, and 
cIMT and an increase in LDL-C. Combined with the pre-
viously reported improvements in glycemic control and 
reduction in obesity [10], which reduce CVD risk [50], 
these results demonstrate multiple additional benefits of 
the CCI with the exception of increased LDL-C.

Studies of dietary carbohydrate restriction, with a pre-
sumed increase in saturated fat intake, have shown mod-
est changes in LDL-C levels [15, 26–28, 51]. The mean 
10  mg  dL−1 change observed in the CCI group in this 
study is numerically higher than the upper range of val-
ues reported by meta-analysis of lipid changes over 1 year 
related to carbohydrate restriction (− 7 to + 7 mg dL−1) 
[52]. Higher LDL-C is related to increased CVD risk [53, 
54], but also is inversely correlated with mortality in two 
large prospective studies and a systemic review [55–57]. 
Additionally, there is no evidence that increasing or 
decreasing LDL-C with diet interventions has any impact 
on mortality. LDL-C increased in the current study but 

both ApoB and LDL-P, measures found to be better pre-
dictors of CVD risk, did not change significantly [20–
23, 25, 58]. In addition, the reduction in small LDL-P, 
increase in LDL size, and decrease in large VLDL-P that 
occurred in the present investigation are also associated 
with reduced CVD risk [59–61].

A decrease in triglycerides and increase in HDL-C has 
also been previously reported in studies of carbohydrate 
restriction [15, 26–28, 50]. In patients with elevated base-
line triglycerides (≥ 200 mg dL−1), a decrease in triglyc-
erides (− 21%) and increase in HDL-C (+ 18%), which is 
similar to the changes observed in the intervention group 
in this study, has been associated with decreased CVD 
events [62]. Taken together, the decrease in triglycerides 
and increase in LDL-C may be partly due to decreased 
cholesterol ester transfer protein (CETP) exchange. 
Further studies on underlying mechanisms will help 
elucidate the causal relationships between the various 
concurrent changes in lipoproteins.

While mean response of CCI participants demon-
strated an improvement in most lipid biomarkers and 
CVD risk factors other than LDL-C, we investigated 
whether a minority of participants might have unfavora-
ble responses to the intervention. Our results suggest 
that a small number of participants (≤ 1%) demonstrated 
changes at 1 year outside the range of what was observed 

Table 2  continued

Completers All starters
(dropouts imputed)d

N 1 year
Mean ± SE

Unadjusted Adjusted for baselinec Unadjusted

Difference (SD) 
or ± SE

Significancee Differ-
ence ± SE

Significancee 1 year
Mean ± SE

Differ-
ence ± SE

Significancee

∆ACE or ARB (%)

 CCI-all 
educationa

218 28.9 ± 3.1 0.9 (27.1) 0.62 1.5 ± 1.9 0.42 30.0 ± 2.9 0.6 ± 1.9 0.76

 Usual carea 73 21.9 ± 4.9 5.5 (28.3) 0.1 3.7 ± 3.3 0.27 23.4 ± 4.7 5.0 ± 3.3 0.13

 CCI-all vs. 
usual careb

− 4.6 ± 3.8 0.23 − 2.1 ± 3.9 0.59 − 4.4 ± 3.8 0.24

∆Diuretics (%)

 CCI-all 
educationa

218 31.7 ± 3.2 − 9.6 (41.3) 0.0006 − 9.5 ± 2.7 0.0004 31.3 ± 3.1 − 9.7 ± 2.7 0.0004

 Usual carea 73 30.1 ± 5.4 5.5 (32.9) 0.16 5.2 ± 4.8 0.28 33.0 ± 5.3 3.2 ± 4.1 0.44

 CCI-all vs. 
usual careb

− 15.1 ± 4.8 0.001 − 14.7 ± 5.6 0.009 − 12.8 ± 4.9 0.009

a   Means (standard deviations) or ± one standard error are presented. Sample sizes, means, and significance levels refer to subjects with baseline and 1-year 
measurements for completers, and to 349 subjects (262 intervention and 87 usual care) for all starters. Significance levels for completers refer to one-sample t test 
with or without adjustment. Untransformed triglyceride and C-reactive protein values are presented, however, their statistical significances were based on their log-
transformed values
b   Mean differences ± one standard error are presented. Significance levels refer to two-sample t test or analysis of covariance for the differences
c   Adjusted for sex, age, baseline BMI, baseline insulin use (user vs. non-user), and African–American race
d   Imputed values based on 700 iterations from multivariate normal regression
e   A significance level of P < 0.0019 ensures overall simultaneous significance of P <  0.05 over the 26 variables using Bonferroni correction
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in a usual care population (Additional file 3: Figure S1). 
Thus, these results counter the concern that a significant 
portion of participants may have an extremely adverse 
reaction to the CCI (due to presumed increase in satu-
rated fat intake) as compared to UC.

Inflammation is directly involved in all aspects of the 
pathogenesis of CVD [33]. High-sensitivity CRP and 
WBC count are widely accepted markers of inflammation 

and risk factors for CVD [29–32]. In addition to reducing 
cholesterol, reduction in inflammation may be a second-
ary mechanism of statins in lowering CVD risk [63–65]. 
The present study demonstrated a 39% reduction of 
hsCRP and 9% reduction in WBC count in the CCI, indi-
cating a significant reduction in inflammation at 1  year. 
This response may be due in part to suppression of the 
NLRP3 inflammasome by BHB [66].

Fig. 1  Change in biomarkers for CCI group. Bars indicate CCI group mean percent change in biomarkers based on the intention-to-treat analysis 
with missing values imputed. Percent change is computed as the change in mean values from baseline to 1 year divided by the mean baseline 
value. Percent change = 100 ×  [(1 year value − baseline value)/(baseline value)]. Negative values indicate a decrease from baseline to 1 year while 
positive values indicate an increase. The ** symbol after the biomarker label indicates a statistically significant within group change from baseline 
(P < 0.0019, P adjusted for multiple comparisons). Error bars represent ± SE. SE as Percent = 100 × [(1 year value SE)/(baseline value)]
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The reduction of blood pressure with concurrent 
reduction in antihypertensive medication was also sig-
nificant. Blood pressure goals were recently reduced [67] 
and strong evidence exists that elevated blood pressure 
is a primary cardiovascular risk factor [68]. An analysis 

of a large T2D population suggested that antihyperten-
sive medication may have limited effectiveness in reduc-
ing the prevalence of hypertension in these patients [69], 
whereas a study of weight loss interventions showed 
that a decrease in blood pressure predicted regression of 

Fig. 2  Change in biomarkers for UC group. Bars indicate UC group mean percent change in biomarkers based on the intention-to-treat analysis 
with missing values imputed. Percent change is computed as the change in mean values from baseline to 1 year divided by the mean baseline 
value. Percent change = 100 ×  [(1 year value − baseline value)/(baseline value)]. Negative values indicate a decrease from baseline to 1 year while 
positive values indicate an increase. (None of the within group changes were statistically significant, i.e. all P > 0.0019, P adjusted for multiple com-
parisons.) Error bars represent ± SE. SE as Percent = 100 × [(1 year value SE)/(baseline value)]
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carotid vessel wall volume [70]. Thus, additional lifestyle 
interventions that can augment blood pressure reduction 
such as the CCI described here may reduce CVD events. 
Additionally, the antihypertensives that were primarily 
decreased in the current study were shown to increase 
the risk for diabetes [71]. Their removal may represent 
further metabolic benefit.

Carotid intima media thickness (cIMT) is a non-inva-
sive measure of subclinical atherosclerosis that is sig-
nificantly associated with CVD morbidity and mortality 
[48, 49, 72, 73]. However, a recent meta-analysis in 3902 
patients with T2D found that cIMT progression over an 
average of 3.6  years did not correlate with CVD events 
[72]. We found no significant change in cIMT from base-
line to 1 year in either the CCI or UC groups. Progression 
or regression of cIMT may take multiple years to mani-
fest and may require a larger cohort to achieve statistical 
significance [73]. In summary, the cIMT results from this 
study provide no evidence of vascular harm or benefit 
from 1 year of nutritional ketosis in patients with T2D.

Strengths and limitations of the study
Prior studies have demonstrated favorable improvements 
in atherogenic dyslipidemia with minimal or no change 
in LDL-C and LDL-P following managed ketogenic 
diets in small short-term randomized trials. This study’s 
strengths include its larger cohort with high retention, 
prospective design and 1-year duration. The study was 
the first to assess ApoB and ApoA1 in a T2D population 
adhering to a ketogenic diet. This study also has real-
world application due to the outpatient setting without 
the use of meal replacements or food provisions.

Limitations of this study include the lack of randomi-
zation between the CCI and UC groups. In addition, 
the intervention provided to CCI participants was of 
greater intensity than UC. This was a single site study 
and the racial composition of study participants was pre-
dominantly Caucasian. The study was not of sufficient 
size and duration to determine significant differences 
in CVD morbidity or mortality. Since the interven-
tion led to concurrent weight loss and improvements 
in cardiovascular health, it is difficult to conclude how 
much of the improvement can be attributed to weight 
loss versus other simultaneous physiological changes. 
In an attempt to assess the role of weight loss, a post 
hoc analysis of covariance on treatment versus control 
group differences in 1-year risk factor change suggested 
that weight loss was related to a large proportion of the 
change in: small LDL-P, ApoA1, triglyceride/HDL-C 
ratio, triglycerides, and HDL-C and LP-IR score. How-
ever, the results from a recent study comparing a low-fat 
diet group with a low-carbohydrate group, with similar 
weight loss at 12  months between groups, suggest that 

the role of weight loss may be more modest (the low-fat 
group showed only 15% of the HDL-C gain and 35% of 
the triglyceride decrease, relative to the low-carbohy-
drate group) [74]. Additional future studies that tightly 
control weight loss (and other possible mechanisms for 
reduction in CVD risk, e.g. diet, smoking, genetic factors, 
stress, etc.) would lead to better estimates of how much 
weight loss independently contributes to the improve-
ments observed in the intervention group relative to 
other factors. Furthermore, future trials could include a 
longer multi-site, randomized controlled trial to allow 
for hard end point evaluation. Greater racial and ethnic 
diversity, a broader age range, and greater disease sever-
ity could also be evaluated.

Conclusions
A T2D intervention combining technology-enabled con-
tinuous remote care with individualized plans encourag-
ing nutritional ketosis has demonstrated diabetes status 
improvement while improving many CVD risk factors 
including atherogenic dyslipidemia, inflammation and 
blood pressure while decreasing use of antihyperten-
sive mediations. Ongoing research will determine the 
continued safety, sustainability, and effectiveness of the 
intervention.
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