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ORIGINAL INVESTIGATION

Human epicardial adipose tissue‑derived 
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Abstract 

Background:  Previous studies have demonstrated that secreted frizzled-related protein 4 (SFRP4) is associated with 
impaired glucose and triglyceride metabolism in patients with stable coronary artery disease. In the present study, 
we investigated human epicardial adipose tissue (EAT)-derived and circulating SFRP4 levels in patients with coronary 
artery disease (CAD).

Methods:  Plasma samples and adipose biopsies from EAT and subcutaneous adipose tissue (SAT) were collected 
from patients with CAD (n = 40) and without CAD (non-CAD, n = 30) during elective cardiac surgery. The presence 
of CAD was identified by coronary angiography. SFRP4 mRNA and protein expression levels in adipose tissue were 
detected by quantitative real-time PCR and immunohistochemistry, respectively. Plasma SFRP4 concentrations were 
measured by an enzyme-linked immunosorbent assay (ELISA). Correlation analysis and multivariate linear regression 
analysis were used to determine the association of SFRP4 expression with atherosclerosis as well as clinical risk factors.

Results:  SFRP4 mRNA and protein expression levels were significantly lower in EAT than in paired SAT in patients with 
and without CAD (all P < 0.05). Compared to non-CAD patients, CAD patients had higher SFRP4 expression levels in 
EAT (both mRNA and protein levels) and in plasma. Multivariate linear regression analysis showed that CAD was an 
independent predictor of SFRP4 expression levels in EAT (beta = 0.442, 95% CI 0.030–0.814; P = 0.036) and in plasma 
(beta = 0.300, 95% CI 0.056–0.545; P = 0.017). SAT-derived SFRP4 mRNA levels were independently associated with 
fasting insulin levels (beta = 0.382, 95% CI 0.008–0.756; P = 0.045). In addition, plasma SFRP4 levels were positively 
correlated with BMI (r = 0.259, P = 0.030), fasting insulin levels (r = 0.306, P = 0.010) and homeostasis model assess-
ment of insulin resistance (HOMA-IR) values (r = 0.331, P = 0.005).

Conclusions:  EAT-derived and circulating SFRP4 expression levels were increased in patients with CAD. EAT SFRP4 
mRNA levels and plasma SFRP4 concentrations were independently associated with the presence of CAD.
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Background
Accumulating evidence has established that the patho-
genesis of obesity-related metabolic disorders involves a 
chronic, low-grade inflammatory state. Adipose tissue is 
a persistent active endocrine organ, secreting numerous 
pro- and anti-inflammatory adipokines in a paracrine or 
endocrine pathway, and this secretion pattern is altered 
in certain pathological conditions involving atherosclero-
sis [1]. Due to the distinctive location and multifaceted 
metabolic properties of epicardial adipose tissue (EAT), 
the association of adipokines derived from EAT and ath-
erosclerosis has been widely investigated [2–4]. Further-
more, a series of adipokines has been shown to accelerate 
or alleviate the initiation and progression of atheroscle-
rosis, which provides a promising therapeutic target for 
the treatment of obesity-related diseases including ath-
erosclerosis [5, 6].

Wingless and Int-1 (Wnt) signaling is involved in 
embryonic development, adipogenesis, carcinogen-
esis and atherosclerosis [7–10]. The secreted frizzled-
related protein family consists of 5 members (SFRP 1-5) 
in humans and antagonizes Wnt signaling [11]. SFRP4 is 
an adipokine, and serum SFRP4 levels have been shown 
to be elevated in patients with different types of diabe-
tes, even a few years before clinical diagnosis of diabetes 
[12, 13]. Moreover, circulating SFRP4 levels are positively 
correlated with glucose, insulin, glycated hemoglobin 
and the homeostasis model assessment of insulin resist-
ance (HOMA-IR) values [14]. Serum SFRP4 levels in 
patients with stable coronary artery disease (CAD) are 
also positively correlated with body mass index (BMI), 
waist circumference and triglycerides, all contributors 
to metabolic syndrome [15]. In addition, SFRP 4 mRNA 
levels are increased in visceral adipose tissue from obese 
individuals and are elevated in human failing hearts due 
to dilated cardiomyopathy or CAD [16, 17].

Although circulating SFRP4 levels have been widely 
recognized as a novel biomarker of β-cell dysfunction, 
insulin resistance and other metabolic disorders, little 
is known about serum and EAT-derived SFRP4 expres-
sion in patients with CAD. EAT is not separated from the 
myocardium or coronary artery vascular wall by fascia 
[2]; thus, SFRP4 might have a direct effect on atheroscle-
rosis through a paracrine or vasocrine pathway. To clarify 
this issue, human SFRP4 expression levels in EAT and 
plasma were measured in patients with and without CAD 
who underwent elective cardiac surgery.

Methods
Subjects
The study enrolled 70 patients who underwent elec-
tive cardiac surgery from January to October 2015. All 
patients were divided into either a CAD (n  =  40) or 

non-CAD (n = 30) group according to coronary angiog-
raphy. The CAD group included patients undergoing off-
pump coronary artery bypass grafting (CABG) due to left 
main disease, three-vessel disease or two-vessel disease 
with a proximal left anterior descending lesion. The non-
CAD group included individuals undergoing open-heart 
surgery for atrial septal defect repair or valvular replace-
ment, with no stenosis found in the coronary artery 
lumen. The exclusion criteria consisted of age > 75 years, 
acute myocardial infarction, severe heart failure or car-
diogenic shock, active phase of infectious or rheumatic 
immune disease, liver or renal failure, or pharmacological 
glucocorticoid or immunosuppressive therapy.

The study complied with the Declaration of Helsinki 
and was approved by the Ethics Committee of Beijing 
Anzhen Hospital of Capital Medical University. Written 
informed consent was obtained from each patient.

Clinical data collection
Demographic data, body weight, height, medical history 
and medication use were recorded on admission to the 
hospital. BMI was calculated as weight (kg) divided by 
the square of height (m2).

Blood sample measurement
Fasting venous blood samples were obtained from 
all participants on the morning following admission. 
Blood samples were collected in sodium heparin vacu-
tainers (Becton–Dickinson) and centrifuged for 15 min 
at 3000×g, and then, plasma samples were stored at 
− 80 °C. The lipid profiles and levels of fasting glucose, 
insulin, Glycosylated serum protein and high-sensitivity 
C-reactive protein (hsCRP) were measured in the central 
laboratory of Beijing Anzhen Hospital. Insulin sensitiv-
ity was evaluated by the HOMA-IR, which was calcu-
lated as fasting glucose (mmol/L) × fasting insulin (µU/
mL)/22.5.

Plasma SFRP4 levels were measured in duplicate by a 
commercially available enzyme-linked immunosorb-
ent assay (ELISA) kits (Biomatik, Canada) following the 
manufacturer’s instructions. The ELISA intra-assay and 
inter-assay coefficients of variation were both < 5%.

Adipose tissue acquisition
Paired samples (average 0.3  g each) of EAT and sub-
cutaneous adipose tissue (SAT) were obtained from 
the proximal right coronary artery and the site of the 
chest incision from 16 patients with CAD and 13 non-
CAD patients, who were randomized selected from 
CAD group and non-CAD group, respectively. The 
adipose tissue samples were rinsed with phosphate-
buffered saline, followed by division into two portions. 
One portion was immersed in neutralized formalin for 
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immunohistochemical analysis and the other was frozen 
in liquid nitrogen for RNA isolation.

RNA isolation and quantitative real‑time PCR
Total RNA was extracted from adipose tissue samples 
using the Trizol reagent (Invitrogen, USA). The concen-
tration and purity of isolated RNA were evaluated by cal-
culating the ratio of optical density at 260  nm (OD260) 
and 280  nm (OD 280), and the integrity of RNA was 
determined by the 18S and 28S ribosomal bands. RNA 
(2 µg) was used for reverse transcription using the GoS-
cript Reverse Transcription System (Promega, USA). 
Quantitative real-time PCR analysis was performed with 
a CFX Real-Time PCR Detection System (Bio-Rad, USA). 
Each reaction included: 1  µL of cDNA, 0.5  µL of each 
primer (10  µmol/L), 10  µL of SYBR Premix Ex TaqTM 
(TAKARA, Japan) and 8 µL of sterile water. The mRNA 
amplification conditions were 1 min at 95 °C, followed by 
44 cycles of 5  s at 95  °C and 30  s at 60  °C, then 0.5  °C 
increments every 5 s from 55 to 95 °C. All the PCR effi-
ciencies ranged from 90 to 105%.

The primers were designed using Primer Premier 
6.0 software (Premier, Canada) with their sites span-
ning introns. The sequences were as follows SFRP4, for-
ward 5′-GGACCCTGCCAAGTTCAAGA-3′, reverse 
5′-ACGGCATACGTGTCGTAGTC-3′; β-actin, forward  
5′-AGGTCATCACCATTGGCAAT-3′, reverse 5′-ACTC 
GTCATACTCCTGCTTG-3′. Threshold cycle values were  
recorded and relative gene expression was calculated 
using the formula 2−ΔΔ CT.

Immunohistochemistry
Available EAT and paired SAT samples were randomly 
selected from the CAD group (n = 8) and the non-CAD 
group (n = 8). Paraffin-embedded serial biopsy sections 
were deparaffinized and rehydrated, followed by stain-
ing with hematoxylin and eosin. Selected sections were 
incubated in 3% H2O2 for 15 min, and then blocked with 
normal goat serum for 20  min, followed by incubation 
with the primary antibody (SFRP4, 1:50 dilution, Abcam, 
USA) at 4  °C overnight in a moisture chamber after 
removal of excess serum. The slides were incubated with 
biotinylated secondary antibodies for 20 min, avidin–bio-
tin reagents for 20  min, followed by diaminobenzidine 
(DAB) and counterstained for 1  min with hematoxylin. 
High quality images were observed with a light micro-
scope and recorded. Positive staining for SFRP4 was 
indicated by a brown color. Expression of SFRP4 was 
quantified by calculating the integrated optical density 
(IOD) of positively stained tissue using Image-Pro plus 
software 6.0 (Media Cybernetics, USA). The IOD of each 
section was calculated from four separate fields viewed at 
100 × magnification.

Statistical analysis
Continuous data are expressed as the mean ± SD or the 
median (lower quartile, upper quartile), as appropriate. 
Mean values were compared using Student’s t test, and 
median values were compared using the Mann–Whitney 
U test. Categorical variables are expressed as percentages 
and were analyzed by a Chi square test. The Spearman 
or Pearson correlation tests were performed to com-
pare SFRP4 levels and clinical variables. The associations 
between SFRP4 levels and clinical factors, including CAD 
(present (1)/not present (0)), were determined by uni-
variate analysis and multivariate linear regression analy-
sis. All statistical analyses were performed using SPSS 
22.0 software (SPSS, Inc., Chicago, IL, USA). A value of 
P < 0.05 was considered statistically significant.

Results
Patient characteristics
The baseline characteristics of the patients are shown in 
Table 1. Plasma SFRP4 concentrations were significantly 
higher in patients with CAD than in those without CAD 
(16.8 ± 3.3 ng/mL vs 14.5 ± 2.3 ng/mL, P < 0.001). Com-
pared to non-CAD patients, CAD patients were more 
likely to have lower total cholesterol and low-density 
lipoprotein cholesterol levels, partially due to increased 
patients use of prescription statins in the CAD group. In 
addition, aspirin and nitrates were also more frequently 
used by CAD patients. This medication use pattern was 
also observed in patients with or without CAD who pro-
vided adipose tissue. No significant differences in age, 
sex, BMI, diabetes, hypertension, use of other current 
medications or of other laboratory examinations were 
observed.

Quantitative real‑time PCR analysis
As shown in Fig.  1a, SFRP4 mRNA levels were signifi-
cantly lower in EAT than in paired SAT samples in both 
the CAD group (0.23 vs 0.61, P =  0.011) and the non-
CAD group (0.19 vs 0.93, P =  0.002). Figure  1b shows 
that EAT SFRP4 mRNA levels were markedly increased 
in CAD patients compared to non-CAD patients (1.60 vs 
0.92, P = 0.017), while SAT SFRP4 mRNA levels were not 
markedly different between the two groups (1.38 vs 0.93, 
P = 0.069).

Immunohistochemical analysis
Figure  2A shows representative immuno-stained 
adipose sections from patients in the CAD group 
(Fig.  2A-a, b) and the non-CAD group (Fig.  2A-c, d), 
and reveals that SFRP4 protein was expressed in both 
EAT and SAT, most prominently in the cytoplasm, as 
well as in the stromal vasculature. As shown in Fig. 2B, 
SFRP4 protein levels were higher in SAT than in the 
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Table 1  Baseline characteristics of patients in the CAD vs non-CAD groups

Data are shown as mean ± SD, median (lower quartile, upper quartile), or number (%)

CAD coronary artery disease, BMI body mass index, LVEF left ventricular ejection fraction, HOMA-IR homeostasis model assessment of insulin resistance, HDL-C high-
density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, hsCRP high-sensitivity C-reactive protein, T2DM type 2 diabetes, ACEI/ARB angiotensin-
converting enzyme inhibitor/angiotensin II type 1 receptor blocker

* P < 0.05, Total—CAD vs Total—non-CAD

** P < 0.01, Total—CAD vs Total—non-CAD
¶  P < 0.05, Adipose—CAD vs Adipose—non-CAD
§  P < 0.01, Adipose—CAD vs Adipose—non-CAD
a  CAD or NACAD patients with adipose tissue available

Total—CAD (40) Total—non-CAD (30) Adipose—CADa (16) Adipose—non-CADa (13)

Age (years) 60.9 ± 6.6 58.2 ± 6.3 59.6 ± 9.0 57.8 ± 6.4

Male (%) 31 (77.5) 17 (56.7) 11 (68.8) 7 (53.8)

BMI (kg/m2) 25.9 ± 2.9 24.7 ± 3.0 26.2 ± 2.0 24.5 ± 2.6

LVEF (%) 58.1 ± 9.3 56.2 ± 9.5 62.0 ± 7.9 60.5 ± 5.7

Fasting glucose (mmol/L) 6.2 (5.7, 7.8) 5.4 (5.0, 6.5) 6.6 (5.6, 7.5) 6.2 (5.1, 8.1)

Glycosylated serum protein (%) 15.2 (13.8, 18.3) 15.1 (13.8, 18.5) 17.4 (13.4, 19.4) 14.7 (13.6, 15.7)

Fasting insulin(uU/mL) 36.1 (24.4, 53.3) 24.1 (13.4, 36.2) 35.2 (18.8, 74.4) 21.7 (14.0, 32.1)

HOMA-IR 9.8 (6.7, 15.2) 6.1 (3.4, 10.0) 9.0 (6.4, 26.2) 5.1 (3.6, 9.6)

Triglycerides (mmol/L) 1.5 (1.0, 2.4) 1.5 (1.0, 1.9) 1.9 (1.1, 2.5) 1.2 (0.7, 1.7)

Total cholesterol (mmol/L) 4.0 ± 1.1 4.7 ± 0.9* 4.1 ± 1.1 4.6 ± 0.8

HDL-C (mmol/L) 1.0 (0.8, 1.3) 1.2 (0.9, 1.5) 1.0 (0.8, 1.2) 1.2 (0.8, 1.4)

LDL-C (mmol/L) 2.6 ± 0.9 3.2 ± 0.9* 2.4 ± 0.9 2.8 ± 0.8

hsCRP (mg/L) 1.8 (0.9, 3.1) 1.3 (0.5, 4.0) 2.2 (1.0, 3.0) 1.2 (0.5, 3.0)

SFRP4 (ng/mL) 16.8 ± 3.3 14.5 ± 2.3** 15.7 ± 3.2 13.3 ± 2.4¶

Hypertension (%) 19 (47.5) 9 (30.0) 6 (37.5) 5 (38.5)

T2DM (%) 14 (35.0) 6 (20.0) 7 (43.8) 2 (15.4)

Smoking (%) 16 (40.0) 7 (23.3) 6 (37.5) 2 (15.4)

Aspirin (%) 34 (85.0) 4 (13.3)** 13 (81.3) 3 (23.1)§

Nitrates (%) 38 (95.0) 5 (16.7)** 15 (93.8) 3 (23.1)§

ACEI/ARB (%) 14 (35.0) 5 (16.7) 4 (25.0) 2 (15.4)

Statins (%) 23 (57.5) 5 (16.7)** 7 (43.8) 1 (7.7)¶

β-Blockers (%) 17 (42.5) 6 (20.0) 8 (50.0) 3 (23.1)

Calcium channel blockers (%) 10 (25.0) 2 (6.7) 4 (25.0) 1 (7.7)

Hypoglycemic agents (%) 13 (32.5) 5 (16.7) 7 (43.8) 2 (15.4)
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Fig. 1  Quantitative real-time PCR analysis for SFRP4 in human adipose tissue. a Relative SFRP4 mRNA levels in paired adipose tissue in CAD group 
(n = 16) and non-CAD group (n = 13). b EAT or SAT derived SFRP4 relative mRNA levels in CAD group (n = 16) and non-CAD group (n = 13). 
*P < 0.05, **P < 0.01. CAD coronary artery disease, EAT epicardial adipose tissue, SAT subcutaneous adipose tissue, NS not significant
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paired EAT in both the CAD group (13,874.5 vs 9214.5, 
P  =  0.039) and the non-CAD group (9883 vs 5844, 
P = 0.016). Furthermore, SFRP4 protein levels in EAT 
were significantly higher in CAD patients than in non-
CAD patients (9214.5 vs 5844, P = 0.021), while SFRP4 
protein expression in SAT was not different between 
patients with or without CAD (13,874.5 vs 9883, 
P = 0.105).

Association of SFRP4 levels with coronary atherosclerosis
Table  2 shows that in the univariate analysis, EAT-
derived SFRP4 mRNA levels were positively associated 
with CAD (beta = 0.430, 95% CI 0.074–0.787). Moreover, 
this association was found to be independent of age, BMI 
and fasting glucose in a multivariate linear regression 
model (beta = 0.442, 95% CI 0.030–0.814; P = 0.036). In 

contrast, as seen in Table 3, SAT-derived SFRP4 mRNA 
levels were not associated with CAD (P  =  0.086) but 
were found to be positively associated with fasting insu-
lin in a multivariate linear regression model adjusted for 
age, BMI and CAD (beta =  0.382, 95% CI 0.008–0.756; 
P = 0.045). In addition, SAT-derived SFRP4 mRNA lev-
els were positively correlated with HOMA-IR values 
(r = 0.386, P = 0.038).

Plasma SFRP4 levels were positively correlated with 
the BMI (r  =  0.259, P  =  0.030), fasting insulin levels 
(r = 0.306, P = 0.010) and HOMA-IR values (r = 0.331, 
P  =  0.005). As shown in Table  4, multivariate linear 
regression analysis indicated that plasma SFRP4 lev-
els were independently associated with the presence of 
CAD (beta = 0.300, 95% CI 0.056–0.545; P = 0.017) after 
adjusting for age, BMI, HOMA-IR and triglycerides.
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Fig. 2  Immunohistochemical analysis for SFRP4 in human adipose tissue. A representative slides of adipose tissue from patients in the CAD group 
(A-a, EAT; A-b, SAT) and the non-CAD group (A-c, EAT; A-d, SAT) (magnified × 100). B results of quantitative immunohistochemical analysis for 
SFRP4 in EAT and SAT of the two groups (CAD group, n = 8; non-CAD group, n = 8). *P < 0.05. CAD coronary artery disease, EAT epicardial adipose 
tissue, SAT subcutaneous adipose tissue, IOD integrated optical density, NS not significant

Table 2  Association between  EAT SFRP4 mRNA levels and  variables using univariate analysis and  multivariate linear 
regression analysis

EAT epicardial adipose tissue, CI confidence interval, BMI body mass index, CAD coronary artery disease (presence (1)/not presence (0))

Variables Univariate Multivariate

Beta 95% CI P value Beta 95% CI P value

Age − 0.028 − 0.423 to 0.366 0.884 − 0.053 − 0.422 to 0.316 0.770

BMI 0.187 − 0.201 to 0.575 0.331 0.158 − 0.270 to 0.585 0.454

Fasting glucose − 0.145 − 0.536 to 0.246 0.453 − 0.272 − 0.679 to 0.134 0.180

CAD 0.430 0.074 to 0.787 0.020 0.442 0.030 to 0.814 0.036
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Discussion
Many studies have indicated that adipokines, such as 
adiponectin, leptin, chemerin and omentin, serve as 
biomarkers of CAD [3–6]. The association of adiponec-
tin with CAD has been widely investigated in previous 
studies [4, 18–23]. We demonstrated that both circulat-
ing and EAT adiponectin levels are decreased in CAD 
patients [4, 18]. Additionally, we found that adiponectin 
deficiency in perivascular adipose tissue promoted ath-
erosclerosis [19]. Moreover, Wang et  al. reported that 
over-expression of adiponectin significantly inhibited the 
formation of atherosclerotic plaques in ApoE−/− mice 
[20], suggesting a protective role of adiponectin in ath-
erosclerotic disease. Furthermore, accumulating clinical 
evidence has demonstrated that circulating adiponec-
tin levels are not only associated with the onset of CAD 
but are also independently associated with cardiovas-
cular mortality [18, 20–23]. Recently, we found that the 
levels of circulating and EAT omentin-1 were decreased 
in CAD patients compared to non-CAD patients [4]. 
Furthermore, CAD is an independent predictor of EAT 
and circulating omentin-1 levels. Taken together, these 
findings support a close association of EAT-derived adi-
pokines with the onset of CAD.

In the present study, we found that EAT and circulating 
SFRP4 levels were increased in CAD patients compared 

to non-CAD patients. However, the expression of SAT 
SFRP4 was not different in these groups. Interestingly, 
plasma SFRP4 levels were positively correlated with BMI, 
fasting insulin levels and HOMA-IR values, which were 
not revealed in EAT SFRP4. Additionally, CAD was an 
independent predictor of the increased EAT and plasma 
SFRP4 levels. The results suggest that SFRP4 is a novel 
biomarker of CAD and might play a role in the develop-
ment of CAD.

SFRP4 is a member of the SFRP family that was iden-
tified as a heparin-binding polypeptide in conditioned 
medium from a human embryonic lung fibroblast line 
in 1997 [24]. Immature SFRP4 is a 36  kDa protein that 
contains a signal peptide, an N-terminal cysteine-rich 
domain that is 30–40% identical to a putative Wnt-bind-
ing domain of Frizzled, and a hydrophilic carboxyl termi-
nus. Additionally, the circulating form of mature sFRP4 
is a 48 kDa protein after posttranslational glycosylation. 
The SFRP4 gene is also found in monkeys, mice, pigs and 
toads, but is not detected in fruit flies or yeast. SFRP4 
expression displays temporal and spatial characteristics 
during embryonic development. Additionally, SFRP4 is 
expressed in a tissue-specific manner in adult humans, 
with the highest expression in the heart, followed by 
the kidneys, ovaries, prostate, testis, small intestine and 
colon, while the placenta, brain tissue and pancreas 

Table 3  Association between  SAT SFRP4 mRNA levels and  variables using univariate analysis and  multivariate linear 
regression analysis

SAT subcutaneous adipose tissue, CI confidence interval, BMI body mass index, CAD coronary artery disease (presence (1)/not presence (0))

Variables Univariate Multivariate

Beta 95% CI P value Beta 95% CI P value

Age − 0.180 − 0.569 to 0.208 0.350 − 0.234 − 0.587 to 0.120 0.185

BMI 0.251 − 0.131 to 0.633 0.189 0.084 − 0.300 to 0.468 0.656

Fasting insulin 0.452 0.100 to 0.804 0.014 0.382 0.008 to 0.756 0.045

CAD 0.325 − 0.049 to 0.698 0.086 0.214 − 0.171 to 0.600 0.263

Table 4  Association between serum SFRP4 levels and variables using univariate analysis and multivariate linear regres-
sion analysis

CI confidence interval, BMI body mass index, HOMA-IR homeostasis model assessment of insulin resistance, CAD coronary artery disease (presence (1)/not presence 
(0))

Variables Univariate Multivariate

Beta 95% CI P value Beta 95% CI P value

Age 0.158 − 0.081 to 0.397 0.191 0.076 − 0.154 to 0.306 0.513

BMI 0.224 − 0.012 to 0.460 0.062 0.094 − 0.151 to 0.340 0.446

HOMA-IR 0.275 0.043 to 0.508 0.021 0.171 − 0.075 to 0.417 0.170

Triglycerides − 0.116 − 0.356 to 0.125 0.341 − 0.017 − 0.251 to 0.217 0.884

CAD 0.373 0.149 to 0.598 0.001 0.300 0.056 to 0.545 0.017
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exhibit low expression levels [24]. However, SFRP4 was 
not detected in the lung, liver, thyroid or white blood 
cells.

SFRP4 binds directly to Wnt, modulates both canoni-
cal and non-canonical Wnt pathways and is therefore 
involved in the embryonic developmental pathway and 
adult pathological processes. For example, many studies 
have identified a close association of SFRP4 with tumors 
[25–30]. SFRP4 mRNA is over-expressed in primary 
serous ovarian tumors but decreased in prostate can-
cers, endometrial stromal sarcomas, lung squamous cell 
carcinoma and pancreatic tumors [25–29]. Low SFRP4 
expression is associated with an unfavorable prognosis in 
prostate and ovarian cancer [26, 30]. Additionally, some 
studies have shown that SFRP4 participates in apoptosis 
[31, 32], angiogenesis [33, 34], and bone formation [35, 
36]. Notably, Matsushima et al. reported that the expres-
sion of SFRP4 in the heart was increased in a rat infarc-
tion model, while treatment with recombinant SFRP4 
reduced fibrosis scar size and improved impaired heart 
function [37], suggesting a protective role of SFRP4 in 
myocardial infarction, which is a severe form of CAD.

Recently, accumulating evidence has identified SFRP4 
as a novel adipokine [11–17]. Ehrlund et  al. found 
that SFRP4 is secreted from human white adipose tis-
sue (WAT), and SFRP4 expression is up-regulated both 
in human SAT and visceral WAT in obese compared 
to lean subjects [17]. These results are consistent with 
the findings of Garufi [38], who reported that circulat-
ing and abdominal SAT SFRP4 levels were significantly 
increased in obese individuals and abdominal SAT is 
the main source of circulating SFRP4 in obese subjects. 
In the present study, we found that EAT SFRP4 expres-
sion significantly increased in CAD patients compared 
to non-CAD patients, although EAT SFRP4 expression 
was lower than SAT SFRP4 expression both in patients 
with and without CAD, suggesting that the increase in 
circulating SFRP4 can be partially accounted for by the 
high expression of EAT SFRP4 in CAD patients. SFRP4 
plays a critical role in the control of adipogenesis. Park 
et al. found that SFRP4 mRNA was up-regulated gradu-
ally during adipogenic differentiation in human adipose 
tissue-derived mesenchymal stem cells (hAMSCs) [11]. 
Moreover, blocking SFRP4 inhibition with small inter-
fering RNA inhibited differentiation of hAMSCs into 
adipocytes and restored β-catenin levels, suggesting 
that SFRP4 promotes adipocyte differentiation via sup-
pressing the canonical Wnt pathway [11]. Additionally, 
many studies have demonstrated that SFRP4 is involved 
in glucose and lipid metabolism and insulin secretion 
[12, 32]. By analyzing global gene expression in human 
pancreatic islets, Mahdi et  al. found that, accompa-
nied by the expression of inflammatory markers, SFRP4 

was up-regulated in patients with type 2 diabetes [12]. 
SFRP4 treatment resulted in a decrease in insulin secre-
tion and glucose intolerance, while silencing of SFRP4 
led to glucose-stimulated insulin release [12]. Further-
more, they found that not only type 2 diabetes patients 
but also patients who later developed type 2 diabetes had 
higher serum SFRP4 levels than the controls, although 
the sample size was small. These clinical results were also 
demonstrated by later studies [13, 14], which found that 
SFRP4 levels were significantly increased in impaired glu-
cose tolerance patients and patients with different types 
of diabetes including type 1 diabetes, type 2 diabetes and 
latent autoimmune diabetes of the adult (LADA). How-
ever, using a diet-induced obesity model, Mastaitis et al. 
found that SFRP4 deficient mice have normal glucose 
and insulin levels [39]. These disparate results may be 
associated with the use of different models. In the pre-
sent study, we found that SAT SFRP4 mRNA levels were 
positively correlated with fasting insulin, and circulating 
SFRP 4 levels were positively correlated with HOMA-IR, 
although no significant correlation between EAT SFRP4 
and fasting insulin was observed. These results may be 
owed to small samples of the present study. Therefore, 
the effect of SFRP4 on insulin-related metabolism should 
be further investigated.

Numerous studies have demonstrated that Wnt path-
way-related proteins are highly expressed in atheroscle-
rotic lesions, participate in cholesterol transportation, 
modulate the inflammatory process and thereby play a 
pivotal role in atherosclerosis [5, 6, 10]. These findings 
also indicated that SFRP4 may participate in atheroscle-
rosis through regulation of the Wnt pathway. Recently, 
circulating SFRP4 levels were detected in 504 patients 
with stable CAD [15]. The results showed that patients 
with metabolic syndrome, insulin therapy, diabetes 
and a history of myocardial infarction or percutaneous 
intervention had higher SFRP4 levels. Correlation analy-
ses have revealed that elevated SFRP4 levels are posi-
tively correlated with HbA1c, fasting insulin, BMI and 
fasting and postprandial triglyceride levels, and these 
results were also found in our study. After 48  months 
of follow-up, the baseline SFRP4 level was not associ-
ated with the onset of the primary cardiovascular end-
point, although patients experiencing a stroke/transitory 
ischemic attack had increased SFRP4 levels. This was the 
first study focusing on SFRP4 in CAD patients. How-
ever, since patients without CAD were not enrolled as 
controls in that study, it is difficult to conclude that the 
changes in circulating SFRP4 levels were associated 
with CAD. Therefore, SFRP4 levels of CAD patients and 
controls were measured in the present study to deter-
mine whether SFRP4 levels increase and are associated 
with the presence of CAD. Although the controls were 
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not healthy subjects and the sample size was small, the 
results showed that EAT SFRP4 expression was signifi-
cantly increased in CAD patients, and CAD is an inde-
pendent predictor of SFRP4 elevation, indicating that 
SFRP4 elevation is attributed to the onset of CAD, and 
participates in the development of CAD via modulation 
of the Wnt pathway. Furthermore, similar results were 
obtained regarding plasma SFRP4 levels in both groups.

There are some limitations to our study. First, the sam-
ple size is small and should be expanded in the future. 
Second, circulating SFRP4 levels should be measured in 
a future study in which patients with different clinical 
types of CAD, including stable angina, unstable angina 
and myocardial infarction, as well as healthy controls, are 
enrolled. Only in this way can the changes in SFRP4 in 
CAD be clearly distinguished.

In conclusion, our study found for the first time that 
EAT and plasma SFRP4 levels were increased in patients 
with CAD. Additionally, both EAT and plasma SFRP4 lev-
els were independently associated with the presence of 
CAD. Therefore, these results indicated that the novel adi-
pokine SFRP4 is involved in CAD. However, the exact role 
of SFRP4 in CAD and atherosclerosis remains unknown 
and should be investigated in prospective studies.
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