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Abstract 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. Several risk factors promote AF, 
among which diabetes mellitus has emerged as one of the most important. The growing recognition that obesity, 
diabetes and AF are closely intertwined disorders has spurred major interest in uncovering their mechanistic links. In 
this article we provide an update on the growing evidence linking oxidative stress and inflammation to adverse atrial 
structural and electrical remodeling that leads to the onset and maintenance of AF in the diabetic heart. We then 
discuss several therapeutic strategies to improve atrial excitability by targeting pathways that control oxidative stress 
and inflammation.
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Background
Atrial fibrillation (AF) is the most common sustained car-
diac arrhythmia. Several risk factors promote AF, among 
which diabetes mellitus has emerged as one of the most 
important [1, 2]. A meta-analysis by Huxley et  al. [3] 
revealed that diabetic patients exhibit ~ 40% greater risk 
of developing AF than their non-diabetic counterparts. 
In addition, obesity, a major component of the metabolic 
syndrome that promotes diabetes, is also independently 
associated with AF [2, 4, 5].

The growing recognition that obesity, diabetes and 
AF are closely intertwined epidemics has spurred major 
interest in uncovering their mechanistic links. In recent 
years, numerous lines of evidence have implicated oxida-
tive stress and inflammation as central mediators of AF 
in metabolically-stressed hearts [6–8]. For one, mito-
chondria isolated from atrial tissues of diabetic patients 
[9] and animal models [10] exhibit increased emission of 
reactive oxygen species (ROS) due, in part, to impaired 
electron transport and hyperglycemia [11, 12]. Moreover 

glucose fluctuations which are common in diabetes pro-
mote ROS overproduction [13, 14]. The ensuing mito-
chondrial dysfunction and DNA damage are central 
to the progression of a host of cardiovascular diseases, 
including diabetic cardiomyopathy and AF. Other impor-
tant sources of ROS that are altered in the diabetic heart 
include Xanthine oxidase, NADPH oxidase, Monoam-
ine oxidase, Protein Kinase C, Nitric oxide synthase 
(NOS), and Advanced glycation end-products (AGE) 
[15]. In addition to increased ROS generation, antioxi-
dant defense systems such as glutathione are depleted in 
the atria of diabetic hearts [11]. Mismatch between ROS 
scavenging and generation promotes oxidative stress and 
inflammation. In what follows, we review mechanisms by 
which these two key factors cause atrial structural and 
electrical remodeling in the diabetic heart. We then dis-
cuss several therapeutic approaches for diabetes-related 
AF, which have the common feature of ameliorating oxi-
dative stress and reducing inflammation. This article is 
intended as an update on the evolving link between oxi-
dative stress, inflammation, and AF in the diabetic heart 
[16]. For a more comprehensive viewpoint, we refer the 
reader to other excellent reviews on the subject matter [6, 
17–20].
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Oxidative stress in diabetes and obesity 
exacerbates atrial structural remodeling
Structural remodeling (atrial enlargement, increased 
fat depots, interstitial fibrosis) is a major factor by 
which obesity and diabetes mellitus promote AF [21]. 
Clinically, pericardial fat volume which correlates 
with left atrial enlargement [22–24] has been associ-
ated with increased risk of AF [22, 25]. There is strong 
evidence, however, to suggest that this relationship is 
influenced by race. Specifically, in the Multi-Ethnic 
Study of Atherosclerosis and the Jackson Heart Study, 
Hispanics but not African Americans, Whites, or 
Chinese Americans exhibited significant association 
between pericardial fat and AF risk after adjusting for 
body-mass index [26]. Nonetheless, the pathophysi-
ological significance of pericardial fat is illustrated by 
its ability to predict success of AF ablation procedures 
[25]. Finally, reversal of atrial fat by weight loss is asso-
ciated with reduced AF burden and improved cardiac 
performance [27, 28].

Given its direct apposition to the myocardium, pericar-
dial fat is an active mediator of cardiovascular pathology, 
including increased AF vulnerability [29–31]. Impor-
tantly, pericardial fat is a visceral adipose tissue that pos-
sesses endocrine and paracrine properties. As such, it 
expresses both anti-inflammatory adipokines (e.g. adi-
ponectin, omentin, etc.) and pro-inflammatory cytokines 
(including interleukin (IL)-1β, IL-6, IL-8, TNF-α) that 
readily influence atrial excitability and structure [32]. In 
addition to serving as a pro-inflammatory source, direct 
infiltration of the atrial myocardium by adipocytes dis-
rupts the myocardial architecture causing conduction 
slowing, a critical factor that promotes the maintenance 
of AF circuits [33].

Interstitial fibrosis is another prominent feature of 
atrial structural remodeling in diabetes. It involves the 
formation of collagen-rich myocardial tissue which also 
disrupts cell-to-cell coupling, hinders action potential 
propagation, and promotes reentrant excitation under-
lying fibrillatory activity. Moreover, fibroblast prolif-
eration and differentiation into myofibroblasts results 
in adverse heterocellular (myocyte-myofibroblast) inter-
actions through electrical, mechanical and biochemical 
coupling.

Finally, atrial stretch and enlargement in obese patients 
promote the onset and maintenance of AF by triggering 
stretch-activated channels and increasing the pathlength 
across which multiple reentrant circuits can form. In 
humans and large animal models, chronic AF requires a 
structurally remodeled atrial substrate which arises from 
a multitude of pro-inflammatory processes linked to oxi-
dative stress. Here, we focus on three key pathways that 
are known for their relevance in obesity and diabetes.

AGE–RAGE axis
Cross-talk between advanced glycation end products 
(AGE) and their receptors (RAGE) with the dipeptidyl 
peptidase-4 (DPP-4)-incretin system has been impli-
cated in the pathogenesis of a number of diabetic com-
plications, including retinopathy, nephropathy, and 
atherosclerosis [34, 35]. AGE levels are elevated in states 
of hyperglycemia and oxidative stress that arise in the 
diabetic heart [34]. Kato et al. [36] were among the first 
to highlight the putative role of the AGE–RAGE axis in 
diabetes-induced atrial fibrosis. Indeed, they reported 
markedly elevated levels of atrial fibrosis and RAGE 
expression in the atria of streptozotocin-induced diabetic 
rats, a standard model of type-1 diabetes mellitus [36]. 
Interestingly, fibrosis in this model was partially reversed 
following treatment with an AGE inhibitor suggesting 
a causal relationship between AGE levels, atrial fibro-
sis, and AF [36]. Raposeiras-Roubin et  al. [37] reported 
increased expression of AGE and soluble RAGE in the 
venous blood of patients in permanent AF compared to 
those in sinus rhythm. More recently, Begieneman et al. 
compared AGE levels in the left atrial appendages (a hot-
spot for AF triggers) of AF patients compared to controls, 
and found increased N(ε)-(carboxymethyl)lysine which 
coincided with a marked rise in the number of inflamma-
tory cells [38].

Although the exact mechanism by which the AGE–
RAGE axis promotes atrial fibrosis remains unclear, it 
likely stems from the interaction of AGE with molecules 
in the basement membrane of the extracellular matrix. 
Binding of AGE to their receptors increases the expres-
sion of inflammatory mediators, namely NF-κB, which, 
in turn, causes tissue remodeling and damage [39]. Of 
note, AGE-mediated rise in NF-κB levels increases RAGE 
expression, causing further ROS elevation in a vicious 
cycle that exacerbates oxidative stress and inflammation, 
and therefore promotes disease progression.

Transforming growth factor β1
TGF-β1, a member of the transforming growth factor 
superfamily of cytokines that mediates cell proliferation 
and differentiation, is also elevated in diabetes [40]. This, 
in turn, modulates inflammatory processes in multiple 
organs, including the heart. The relevance of this pathway 
to AF has been demonstrated by multiple groups [41–
43]. For example, Liu et al. [44] demonstrated increased 
atrial interstitial fibrosis, atrial ion channel remodeling, 
and AF vulnerability that were accompanied by elevated 
TGF-β1 levels in alloxan-induced diabetic rabbits. Tar-
geted gene-based reduction of TGF-β1 signaling via con-
stitutive expression of dominant negative TGF-β type II 
receptor in the posterior left atrium decreased the extent 
of replacement fibrosis, and in doing so, improved atrial 
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conduction and decreased AF propensity [43]. A com-
prehensive analysis of the differential regulation of atrial 
versus ventricular remodeling by TGF-β signaling is 
required in future studies.

RhoA–ROCK pathway
Another pathway that promotes atrial fibrosis is medi-
ated by the Ras homolog gene family member A (RhoA), 
a GTPase protein that regulates cell adhesion, smooth 
muscle contraction, and reorganization of the actin 
cytoskeleton [45]. The so-called RhoA/ROCK pathway 
was initially implicated in ventricular fibrosis in a model 
of type-1 diabetes mellitus [46]. More recently, Chen 
et  al. [47] extended this observation to the atria of dia-
betic animals. Specifically, in a rat model of type-2 dia-
betes mellitus that exhibits significant atrial fibrosis, 
they found increased expression levels of RhoA and its 
effectors (ROCK1 and ROCK2) at both the mRNA and 
protein levels. Treatment of these animals with the Rho-
kinase inhibitor fasudil hydrochloride hydrate suppressed 
the pro-fibrotic program by decreasing the expression of 
RhoA and its effectors [47].

Oxidative stress in diabetes exacerbates atrial 
electrical remodeling
Atrial electrical remodeling is a cause and consequence 
of AF. At the tissue level, electrical remodeling comprises 
effective refractory period shortening, conduction veloc-
ity slowing, wavelength reduction, and frequent atrial 
ectopy caused by calcium (Ca2+)-dependent triggered 
activity [48–50]. While Ca2+-mediated triggers serve 
as the critical initiators of AF, an appropriate substrate 
formed through progressive electrical and structural 
remodeling of the atria is required for the long-term per-
petuation of the arrhythmia and its conversion from par-
oxysmal to chronic forms.

At the molecular level, electrical remodeling arises 
from altered expression and function of a host of ion 
channel, Ca2+ cycling, and gap junction proteins. While 
a comprehensive discussion of mechanisms by which 
these proteins are regulated by redox signaling is outside 
the scope of this review article, we focus on three key 
players, namely the ryanodine receptors (RYR2), sodium 
(Na) channels, and gap junction proteins owing to their 
importance to AF initiation and maintenance. In what 
follows, we highlight key studies linking oxidative stress 
to the malfunction of these critical targets.

Oxidative stress in diabetes promotes Ca2+‑mediated 
triggers and the initiation of AF
Triggered activity caused by delayed afterdepolariza-
tions (DADs) is typically required for the initiation 
of AF. DADs arise from increased Ca2+ leak from the 

sarcoplasmic reticulum (SR) via RYR2. This, in turn, 
causes diastolic SR Ca2+ release events, which activate 
the Na+/Ca2+ exchanger (NCX), producing a transient-
inward current that causes membrane depolarization. If 
large enough, these depolarizations trigger propagated 
wavefronts forming premature atrial beats that can ini-
tiate AF. Numerous studies have implicated hyperphos-
phorylation of RYR2 via calmodulin-dependent protein 
kinase II (CaMKII) in arrhythmogenic SR Ca2+ leak 
in ventricular and atrial myocytes of diseased hearts. 
CAMKII, which typically requires the binding of Ca2+ to 
calmodulin for its activation, is also triggered by oxida-
tion. Multiple groups have highlighted the role of mito-
chondria-derived ROS in the oxidation and therefore 
activation of CAMKII leading to the arrhythmogenic 
hyperphosphorylation of RYR2. Indeed, mitochondria-
derived ROS have been shown to cause AF in multiple 
transgenic mouse models harboring leaky RYR2 channels 
[51]. With regards to diabetes, Joseph et al. [52] demon-
strated that cardiac lipid overload secondary to peroxi-
some proliferator-activated receptor gamma (PPAR-γ) 
overexpression was associated with mitochondrial oxida-
tive stress and increased SR Ca2+ leak via oxidized RyR2 
channels. These defects likely resulted in frequent ven-
tricular ectopy, which was reversed by treatment with a 
mitochondria targeted anti-oxidant [52]. Whether a simi-
lar mechanism promotes atrial ectopy and AF in diabetes 
awaits further study.

Abnormal atrial conduction and the maintenance of AF
In large animals and humans, AF is maintained by reen-
trant excitation forming stable or meandering rotors, 
leading circle reentry, or multiple circulating wavelets. 
Unidirectional conduction block is a prerequisite for 
reentrant excitation and conduction slowing is a key 
predisposing factor for conduction block. Conduction 
slowing causes wavelength shortening, which in turn, 
promotes the stability of AF circuits. Studies by multi-
ple groups have demonstrated substantial conduction 
slowing and reduced conduction reserve in the atria of 
diabetic animals. In general, these changes arise as a con-
sequence of structural remodeling (covered in the pre-
vious section), decreased Na channel activity, or altered 
expression, phosphorylation, and localization of gap 
junction proteins.

Atrial gap junctions are formed by the assembly of 
connexin (Cx) proteins, namely Cx40 and Cx43. Down-
regulation of Cx40 as well as hyperphosphorylation and 
downregulation of Cx43 have been implicated in the 
electrical remodeling of the diabetic heart that culmi-
nates in conduction slowing and AF [53]. However, these 
molecular changes have not been corroborated in all 
studies. For example, Mitasikova et al. [54] demonstrated 
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paradoxical upregulation (not downregulation) of Cx43 
with a decrease (not increase) in Cx43 phosphorylation. 
These seemingly conflicting results may be attributed to 
the specific sites of phosphorylation on Cx43 or the stage 
of diabetes. As case in point, we reported stage-depend-
ent discrepancies in Cx43 phosphorylation in ventricular 
myocardium of rats with pressure overload hypertro-
phy [55]. Specifically, we found hyperphosphorylation 
and increased expression of Cx43 at the early (compen-
sated) stage of hypertrophy that were followed by marked 
downregulation and dephosphorylation of the protein at 
late stages of remodeling [55]. Notably, conduction slow-
ing was observed at both early and late stages of remode-
ling but was more severe during the latter [55]. While the 
molecular mechanisms underlying gap junction remod-
eling leading to AF are largely unknown, there is sub-
stantial evidence that oxidative stress plays a major role. 
For one, oxidative stress alters the atrial expression of 
Cx40 and Cx43 as well as the size of atrial gap junctions 
in a model of intermittent hypoxia mimicking obstruc-
tive sleep apnea [56]. Moreover, oxidative modification 
of tyrosine-mediated signaling plays a key role in Cx43 
remodeling during the progression of streptozotocin-
induced diabetes [57]. Finally, oxidative stress disrupts 
Cx43 forward trafficking to the intercalated disk resulting 
in abnormal gap junction coupling [58].

Na channel activity plays a major role in mediating 
proper action potential conduction across the heart. In 
alloxan-induced diabetic rabbits that are prone to AF, 
Liu et  al. [44] demonstrated decreased INa density that 
was likely caused by the pro-inflammatory rise in NF-κB 
levels. In addition to its regulation by inflammatory 
cytokines, INa in ventricular myocytes is highly sensitive 
to oxidative stress, elevated NADH levels and protein 
kinase C activation [59]. Remarkably, treatment with a 
mitochondria-targeted antioxidant reversed this defect in 
murine models and in ventricular samples from patients 
with non-ischemic heart failure [59]. Although the role 
of NADPH-ROS signaling in the modulation of atrial Na 
channel expression and gating will require direct inves-
tigation in models of diabetes, elegant findings by the 
Dudley group highlight the importance of metabolic 
pathways in the regulation of impulse formation and con-
duction via direct effects on INa activity [60].

A master metabolic pathway which is highly relevant 
in the setting of diabetes is mediated by liver kinase 
B1 (LKB1), an upstream kinase with multiple down-
stream effectors. One of those effectors is 5′ adenosine 
monophosphate-activated protein kinase (AMPK), a 
critical component of the metabolic stress response of 
the heart to injury and a target of the anti-diabetic agent 
Metformin. The relevance of this metabolic pathway in 
diabetes is underscored by studies demonstrating the 

cardioprotective efficacy of AMPK activation in Goto 
Kakizaki type-2 diabetic rats [61] and streptozotocin-
induced type-1 diabetic mice [62]. While LKB1 knock-
down was shown by multiple groups to cause adverse 
ventricular remodeling, hypertrophy and AF, the under-
lying mechanisms by which defective LKB1 signaling 
promotes atrial arrhythmias remained unclear. Specifi-
cally, whether loss of LKB1 per se causes primary atrial 
electrical remodeling and AF independently of ventricu-
lar dysfunction and heart failure remained unknown. 
Using LKB1 knockout mice, we showed early remodeling 
of atrial gap junctions and ion channels that preceded 
ventricular remodeling or the spontaneous onset of per-
manent AF [63]. Specifically, knockdown of LKB1 led to 
significant downregulation of atrial Cx40 and INa peak 
density, causing prolonged intra-atrial depolarization and 
inter-atrial conduction block [63]. Future studies aimed 
at investigating the role of this metabolic pathway to dia-
betes-related AF are needed.

Therapies targeting oxidative stress 
and Inflammation for treatment of AF in diabetes
Standard pharmacotherapies targeting sarcolemmal ion 
channels for AF treatment or prevention are associated 
with limited efficacy and potential toxicity, including risk 
of pro-arrhythmia. This is largely due to the fact that ion 
channel ligands typically modulate the activities of atrial 
and ventricular ion channels alike. As a result, they often 
disrupt ventricular electrophysiological properties, espe-
cially in the context of a chronic disease such as diabetes 
that causes adverse ventricular remodeling and fibrosis. 
In light of this major challenge, there is growing inter-
est in developing non-ion channel targeting agents that 
have the potential to alter the underlying atrial substrate 
without provoking pro-arrhythmic effects [64–68]. Since 
oxidative stress and inflammation are critical upstream 
mediators of adverse atrial structural and electrical 
remodeling, targeting pro-oxidant and pro-inflamma-
tory factors may hold substantial promise for anti-AF 
therapies. In what follows, we provide several notable 
examples. This, however, is by no means intended as a 
comprehensive listing of promising therapies.

Pioglitazone
Thiazolidinediones (TZDs) are a class of PPAR-γ activa-
tors that exhibit potent glucose lowering efficacy, and 
hence are widely used in patients with insulin resist-
ance and diabetes mellitus. In addition, TZDs which 
exert a number of pleiotropic effects including decreased 
inflammation and adiposity, are attractive agents for 
chronic cardiovascular disorders. A recent meta-analysis 
by Zhang et  al. [69] highlighted the potential for TZDs 
in conferring protection against AF in patients with 
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diabetes mellitus. Experimentally, pioglitazone, a promi-
nent member of this class of agents, has been shown to 
inhibit AF by modulating pro-inflammatory and hyper-
trophic signaling pathways via suppression of TGF-β1, 
tumor necrosis factor alpha (TNF-α), and phospho-ERK 
levels [70–73]. Moreover, administration of pioglitazone 
results in the depolarization of the inner mitochondrial 
membrane with a reduction in maximal ROS produc-
tion [74]. The dual antioxidant and anti-inflammatory 
effects of pioglitazone are therefore thought to amelio-
rate atrial electrical and structural remodeling [19, 70, 
75–77]. PPAR-γ agonists, including pioglitazone, inhibit 
inducible NOS (iNOS) activity, enhance endothelial NOS 
bioavailability and reduce NADPH oxidase-depend-
ent superoxide production [19]. Finally, pioglitazone 
increases soluble RAGE levels while decreasing over-
all RAGE expression, effects that are consistent with 
improved structural remodeling and anti-fibrotic action 
[75, 78, 79]. In light of these encouraging findings, more 
studies are needed to determine the electrophysiological 
effects of pioglitazone, and its efficacy in the prevention 
and treatment of AF in animal models of diabetes.

Polyunsaturated and nitrated fatty acids
Omega-3 polyunsaturated fatty acids (PUFAs) provide 
beneficial effects in insulin resistance and type-2 diabe-
tes mellitus by enhancing anti-oxidant defense mecha-
nisms. They do so by reducing the accumulation of fatty 
acid metabolites, providing cytoprotection for pancreatic 
β-cells, decreasing inhibitor of NF-κB and c-Jun N-ter-
minal kinase (JNK) pathways, activating AMPK stress 
response signaling, and modulating PPAR-γ activity [80]. 
With regards to AF, supplementation with PUFAs and 
antioxidant vitamins decreases NF-κB activation likely 
due to the attenuation of the inflammatory and pro-oxi-
dant state [81].

Increasing lines of evidence support the notion that 
PUFA supplementation is cardioprotective and likely to 
exert anti-arrhythmic effects in the setting of diabetes 
[82–85]. Acute administration of eicosapentaenoic acid 
(EPA) inhibits the formation of noradrenalin-induced 
DADs and triggered activity [86, 87]. In addition, EPA 
reduces pulmonary vein firing, an established AF driver, 
through NO-dependent mechanoelectrical feedback 
[87]. Finally, Rudolph et  al. [88] demonstrated a potent 
protective effect of nitrated fatty acids against angioten-
sin II mediated atrial fibrosis and AF. This protection 
was mediated by suppressing Smad2-dependent myofi-
broblast differentiation and xanthine oxidase-dependent 
atrial superoxide levels [88]. Further studies are needed 
to comprehensively define the electrophysiological effects 
of fatty acids on atrial excitability and ion channel func-
tion in models of diabetes.

Vitamins and anti‑oxidants
Since oxidative stress plays a critical role in the patho-
genesis of AF, the use of vitamins C and E holds promise 
as an adjunctive therapeutic strategy. Besides their ROS 
scavenging capacity, these vitamins exert other modula-
tory actions including downregulation of NADPH oxi-
dase and up-regulation of endothelial NOS activities. 
This, in turn, increases NO synthesis, decreases ROS for-
mation and improves overall vascular tone [89]. Studies 
testing the anti-AF effects of vitamin C have suggested 
modest benefits [90–94]. Although Carnes et  al. [95] 
found a substantial reduction in the incidence of post-
operative AF in patients supplemented with Ascorbate, 
double-blind, placebo-controlled multi-center clini-
cal trials based on these early studies ultimately showed 
mixed results [96–98]. Development of targeted anti-
oxidant approaches that interfere selectively at the level 
of the defective protein or organelle are likely to produce 
more favorable outcomes.

One such approach is the use of mitochondria-targeted 
coenzyme Q (MitoQ), an antioxidant enzyme acting spe-
cifically on mitochondria to ameliorate ROS-induced 
injury. Administration of MitoQ to rodents was found to 
be safe [99] and effective against oxidative stress caused 
by ischemia–reperfusion (IR) injury [100], hypertension 
[101], and kidney damage in type-1 diabetes mellitus [100, 
102, 103]. MitoQ also elicited protective effects against 
doxorubicin-induced cardiotoxicity [104]. Findings by 
Escribano-Lopez et al. [105] support the notion that the 
dual antioxidant and anti-inflammatory action of MitoQ 
is mediated, in large part, by decreased ROS production 
in the leukocytes of type-2 diabetic patients. In recogni-
tion of the ability of MitoQ to improve oxidative stress 
and inflammation, human trials have been undertaken, 
primarily for Parkinson’s disease [106] and chronic hepati-
tis C [107]. Testing of mitochondria-targeted antioxidants 
in patients with diabetes mellitus is warranted considering 
the disappointing outcome of trials examining the efficacy 
of vitamins as vehicles for anti-oxidant treatment [105].

Statins
Antioxidant and anti-inflammatory effects of statins have 
been extensively described in animal models and humans. 
Statins (such as Atorvastatin) reduce the risk of myocar-
dial infarction, stroke, and death, by primarily inhibiting 
ROS levels and inflammation [108]. Underlying mecha-
nisms include enhancement of eNOS activity and NO 
bioavailability. This, in turn, inhibits the overexpression 
of adhesion molecules and preserves mitochondrial mem-
brane potential in response to oxidative stress [109, 110].

At the cellular level, Atorvastatin inhibits angioten-
sin-mediated cell injury by suppressing ROS produc-
tion in neonatal rat ventricular myocytes [111]. More 
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importantly, Atorvastatin treatment prevents atrial elec-
trical remodeling, including effective refractory period 
shortening and reduction of the L-type calcium cur-
rent in a rabbit model of tachycardia-pacing induced AF 
[112]. Clinically, statins confer their greatest benefit in 
the prevention of post-operative AF [94, 113, 114]. On 
the other hand, statins seem to offer limited benefits in 
the primary prevention of AF. Further studies are needed 
to determine the efficacy of statins in the prevention or 
management of obesity and diabetes related AF.

Dipeptidyl peptidase inhibitors
Emerging evidence supports a role for DPP-4 inhibitors 
in the treatment of AF. DPP-4 is a transmembrane glyco-
protein that has two key substrates, namely glucagon like 
peptide-1(GLP-1) and glucose-dependent insulinotropic 
peptide (GIP) [115]. The mechanism by which DPP-4 
modulates glucose metabolism involves the inhibition 
of GLP-1 degradation and glucagon secretion, as well 
as enhancement of beta-cell function, which stimulates 
insulin secretion [116, 117].

DPP-4 inhibition mediates anti-inflammatory, anti-
oxidant, and anti-fibrotic effects which are critical for 
the prevention of AF in diabetes and obesity [118–120]. 
Zhang et al. [10] found that Alogliptin, a DPP-4 inhibitor, 
improved atrial remodeling by decreasing mitochondrial 
ROS, preventing mitochondrial membrane depolariza-
tion, enhancing mitochondrial biogenesis, and alleviat-
ing mitochondrial swelling in diabetic rabbits. The safety 
of this approach was highlighted by Wu et al. [121] who 
found that multiple DPP-4 inhibitors (alogliptin, linaglip-
tin, saxaglipton, sitagliptin, teneligliptin, and vildagliptin) 
were associated with less adverse gastrointestinal side-
effects compared to GLP-1 receptor agonists, metformin, 
and α-glucosidase inhibitors.

Summary
Atrial fibrillation, obesity, and diabetes mellitus are inter-
twined disorders that are linked through oxidative stress 
and inflammation. Both factors exacerbate atrial electrical 
and structural remodeling leading to the formation of an 
adverse substrate that facilitates AF initiation and mainte-
nance. Developing mechanism-based strategies targeting 
oxidative stress and inflammation will likely generate new, 
safe, and effective therapeutic opportunities for combat-
ting the growing epidemic of diabetes-related AF.
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