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Abstract 

Background:  Angiopoietin-like protein 3 (ANGPTL3) is a major lipoprotein regulator and shows positive correlation 
with high-density lipoprotein-cholesterol (HDL-c) in population studies and ANGPTL3 mutated subjects. However, no 
study has looked its correlation with HDL components nor with HDL function in patients with type 2 diabetes mellitus 
(T2DM).

Methods:  We studied 298 non-diabetic subjects and 300 T2DM patients who were randomly recruited in the tertiary 
referral centre. Plasma levels of ANGPTL3 were quantified by ELISA. Plasma samples were fractionated to obtain 
HDLs. HDL components including apolipoprotein A-I (apoA-I), triglyceride, serum amyloid A (SAA), phospholipid and 
Sphingosine-1-phosphate were measured. HDLs were isolated from female controls and T2DM patients by ultracen‑
trifugation to assess cholesterol efflux against HDLs. A Pearson unadjusted correlation analysis and a linear regression 
analysis adjusting for age, body mass index and lipid lowering drugs were performed in male or female non-diabetic 
participants or diabetic patients, respectively.

Results:  We demonstrated that plasma level of ANGPTL3 was lower in female T2DM patients than female controls 
although no difference of ANGPTL3 levels was detected between male controls and T2DM patients. After adjusting for 
confounding factors, one SD increase of ANGPTL3 (164.6 ng/ml) associated with increase of 2.57 mg/dL cholesterol 
and 1.14 μg/mL apoA-I but decrease of 47.07 μg/L of SAA in HDL particles of non-diabetic females (p < 0.05 for cho‑
lesterol and SAA; p < 0.0001 for apoA-I). By contrast, 1-SD increase of ANGPTL3 (159.9 ng/ml) associated with increase 
of 1.69 mg/dl cholesterol and 1.25 μg/mL apoA-I but decrease of 11.70 μg/L of SAA in HDL particles of female diabetic 
patients (p < 0.05 for cholesterol; p < 0.0001 for apoA-I; p = 0.676 for SAA). Moreover, one SD increase of ANGPTL3 
associated with increase of 2.11 % cholesterol efflux against HDLs in non-diabetic females (p = 0.071) but decrease of 
1.46 % in female T2DM patients (p = 0.13) after adjusting for confounding factors.

Conclusions:  ANGPTL3 is specifically correlated with HDL-c, apoA-I, SAA and HDL function in female non-diabetic 
participants. The decrease of ANGPTL3 level in female T2DM patients might contribute to its weak association to HDL 
components and function. ANGPTL3 could be considered as a novel therapeutic target for HDL metabolism for treat‑
ing diabetes.
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Background
High-density lipoprotein (HDLs) process multiple anti-
atherogenic and anti-diabetic properties including reverse 
cholesterol transport [1], maintenance of endothelium 
integrity [2, 3], suppression of inflammation [4, 5], pro-
moting pancreatic β cell survival [6] and insulin secre-
tion in response to glucose [7, 8]. In peripheral tissues, 
infusion of reconstituted HDL (rHDL) containing apoli-
poprotein A-I (apoA-I), the major component of HDLs, 
stimulates glucose uptake in both insulin dependent and 
independent manners [9, 10]. However, type-2 diabetic 
patients are always accompanied with dyslipidemia, which 
is featured as high plasma triglyceride concentration [11], 
decreased high-density lipoprotein-cholesterol (HDL-c) 
level [12] as well as HDL dysfunction [13].

Accumulated evidence indicates that HDL compo-
sitions are key determinants for the atheroprotective 
functions of HDL. For instance, infusion of reconsti-
tute HDL containing apoA-I restores endothelial cell 
function in hypercholesterolemia men [14], improves 
cholesterol efflux [15], inhibits platelet aggression for 
thrombus formation and reduces neutrophil adhesion to 
a fibrinogen matrix in diabetic subjects [5]. In contrast to 
apoA-I, serum amyloid A (SAA) are major acute-phase 
reactants in inflammation. Upon secretion, SAA are 
found associated with HDL particles and impair HDL-
mediated reverse cholesterol transport [16–19]. Sphingo-
sine-1-phosphate (S1P) is another component in HDLs. 
Glycation decreases S1P content in HDLs of type-2 dia-
betic patients whereas adding S1P to diabetic HDLs 
promotes cardiomyocyte survival when challenged with 
oxidative stress [20].

Angiopoietin-like protein 3 (ANGPTL3) is one of the 
major regulators for lipoprotein metabolism [21]. In 1999, 
ANGPTL3 was identified in human and mice and found 
highly conserved in both species [22–24]. It is specifi-
cally produced by hepatocytes in human [22, 25, 26] and 
then secreted into circulation. Numerous in vitro studies 
reported that the expression of ANGPTL3 is regulated by 
liver X receptor (LXR), insulin, angiopoietin-like protein 
8 (ANGPTL8) [27, 28]. ANGPTL3 can be activated by 
the cleavage at proprotein convertase consensus site to 
release its N-terminal domain [29, 30]. Together with its 
family member angiopoietin-like protein 4 (ANGPTL4), 
they inhibit lipoprotein lipase activity including endothe-
lial lipase activity and therefore, increase serum triglycer-
ide and HDL-c [21, 31, 32]. Studies of Finnish population 
(n = 250) and American population (n = 1770) reported 
positive correlation between ANGPTL3 and HDL-c. 
However, ANGPTL3 level was associated with serum tri-
glyceride in opposing directions in these two populations 
[33, 34]. Accordingly, ANGPTL3 deficient subjects are 

featured as reduced triglyceride, LDL-cholesterol (LDL-
c) and HDL-c in the blood [35, 36].

Whereas all the studies so far relate ANGPTL3 to 
HDL-c in general population studies and in subjects with 
ANGPTL3 mutation, it is entirely unknown whether 
ANGPTL3 could be associated with HDL components 
and function rather than HDL-c. Except in  vitro evi-
dence, up to date, there is only one in vivo study show-
ing insulin injection transiently reduced ANGPTL3 
level in non-diabetic Caucasian women [25]. Thus, it 
remains unclear whether the negative regulation of insu-
lin on ANGPTL3 could also exist in diabetic patients. To 
explore these questions, non-diabetic controls and type-2 
diabetic patients were recruited in the study. Plasma 
levels of ANGPTL3 were quantified. The relationship 
between ANGPTL3 and HDL components or function 
was evaluated by a linear regression analysis adjusting 
for age, body mass index and lipid lowering drugs in male 
or female non-diabetic participants or type-2 diabetic 
patients, separately.

Methods
Human study
Study subjects and sample size
To explore the relationship between plasma level of 
ANGPTL3 with HDL components or function, non-
diabetic participants and type-2 diabetic patients were 
randomly recruited from Lu He hospital in the analysis. 
The sample size was calculated by the standard formula 
(http://powerandsamplesize.com/Calculators/Compare-
2-Means/2-Sample-1-Sided), in which 1-β is equal to 0.80 
and α is equal to 0.01. According to the calculation, the 
sample size was 141. Therefore, 300 non-diabetic controls 
and 300 T2DM patients with clear diagnosis of T2DM 
were recruited from the Department of Endocrinology at 
Lu He hospital in Beijing. The criteria of T2DM diagnosis 
was adapted from that of WHO and ADA as following: 
(1) fasting glucose level ≥7  mmol/l; or (2) 2-h oral glu-
cose tolerance test (OGTT) ≥11.1 mmol/l; or (3) random 
glucose level ≥11.1 mmol/l and accompanied by typical 
DM symptoms such as polydipsia, polyuria, increased 
food intake and loss of body weight. All the participants 
were Han people from the same region. They were free 
of liver and kidney disorders including carcinogenesis. 
General information including age, gender, disease his-
tory and medications was obtained. We excluded one 
non-diabetic male and one non-diabetic female because 
ANGPTL3 level or serum amyloid A value deviated more 
than 3 SDs from the mean.

The study complied with the Helsinki Declaration 
for investigation of human subjects. The entire study 
was obtained ethical approval from the competent 

http://powerandsamplesize.com/Calculators/Compare-2-Means/2-Sample-1-Sided
http://powerandsamplesize.com/Calculators/Compare-2-Means/2-Sample-1-Sided
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Institutional Review Boards of Capital Medical Univer-
sity. All participants provided written informed consent.

Clinical measurement
Blood pressure was recorded by auscultation of the 
Korotkoff sounds, using a standard mercury sphyg-
momanometer. Blood pressure was the average of three 
readings. After overnight fasting, blood samples were 
obtained to measure total cholesterol, triglyceride, HDL-
c, blood glucose, insulin and serum creatinine by the cen-
tral laboratory in the hospital [37]. LDL-c was computed 
from serum total cholesterol and HDL-c and serum tri-
glycerides by the Friedewald equation [38]. Body mass 
index was generated from body weight and height. Pan-
creatic β cell function and insulin resistance were com-
puted by Homeostasis Model Assessment (Homa-β and 
HOMA–IR; http://www.dtu.ox.ac.uk/homacalculator/), 
using fasting insulin and glucose in the subjects. To 
assess kidney function, estimated glomerular filtration 
rate was calculated according to the formula [39].

ELISA for ANGPTL3
Plasma level of ANGPTL3 was quantified by ELISA, 
according to the instruction (IBL International GmBH, 
Japan) [24]. Intra- and interassay coefficients of variation 
were 5.9 and 6.8 % for ANGPTL3, respectively.

HDL isolation
Plasma samples (100 μl) were separated to obtain HDLs 
and LDL/VLDL fractions following the manual instruc-
tion (Biovision, CA, USA).

Quantification of HDL components
The concentrations of apoA-I, phospholipid, S1P and 
serum amyloid A in HDL fraction was measured accord-
ing to the manual instructions, respectively (MLBio, 
Shanghai, China). Triglyceride concentration in HDL 
fractions were determined (BioSino Biotechnology, Bei-
jing, China).

HDL preparation by ultracentrifugation
Plasma from human healthy participants and type-2 dia-
betic patients was separated by density gradient ultracen-
trifugation in a swing-out rotor described by Chapman 
et  al. [40]. HDLs (1.063  g/ml  <  g  <  1.21  g/ml) fractions 
were isolated, pooled and then dialyzed in 1 mM EDTA 
overnight. Cholesterol level was measured as above [41].

Cholesterol efflux assay
Cholesterol efflux assay was performed following the 
manual instruction (Biovision, CA, USA). In brief, 
RAW264.7 macrophages were plated at the density of 
1  ×  105  cells/well in a 96-well plate and maintained 

in DMEM plus 10  % FBS (Sigma-Aldrich) for 2  h. The 
adherent cells were incubated with labeled cholesterol for 
16 h and then exposed to 100 μg/ml HDLs for 4 h. The 
supernatant were transferred to a 96-well plate to meas-
ure the fluorescence (Ex/Em = 482/515 nm). The adher-
ent cells were solubilized by cell lysis buffer to measure 
the fluorescence (Ex/Em  =  482/515  nm). Cholesterol 
efflux % =  fluorescence intensity of the media/(fluores-
cence intensity of the cell lysate + media) × 100 [42].

Mice study
Mice and treatment
C57BL/6 and db/db mice at the age of 12 weeks old were 
used in the study. They were received intraperitoneal 
injection of insulin at 2 U/kg [43] and blood samples were 
collected to determine insulin and ANGPTL3 levels. The 
entire study was obtained ethical approval from the com-
petent Institutional Review Boards of Capital Medical 
University.

Glucose tolerance test (IPGTT)
Mice were fasted for 8 h and then injected with 10 % glu-
cose at 10 μl/g of body weight. Blood glucose was meas-
ured at 0, 15, 30, 60, 90 and 120  min before and after 
glucose administration.

ELISA for murine insulin and ANGPTL3
Plasma level of insulin and ANGPTL3 were measured 
by ELISA (Mercodia AB, Sweden and IBL International 
GmBH, Japan), respectively.

Hepatocyte isolation
Hepatocytes were isolated from age-matched db/db 
mice and age-matched C57BL/6 controls as described 
before [44]. Briefly, mice were anesthetized using 1.5  % 
pentobarbital sodium and a midline incision was made. 
Through the portal vein, the liver was perfused with 
Ca21/Mg21-free Honks’ Balanced Salt Solution con-
taining glucose (10 mM) and HEPES (10 mM) at a flow 
rate of 3  ml/min for 10  min and then switched to liver 
digest medium containing collagenase P (Life Technolo-
gies, Inc) for another 10 min. After dissection, liver was 
minced into pieces and incubated in collagenase medium 
at 37  °C for 4 min for further digestion. The dissociated 
cells were dispersed by shaking followed by filtration 
through 100-mm nylon cell strainers (Becton–Dick-
inson, Franklin Lakes, NJ, USA). The cells were rinsed 
with 15  ml of low glucose Dulbecco’s modified Eagle’s 
medium (Sigma-Aldrich, St. Louis, MO, USA) containing 
1  % bovine serum albumin, 0.8  mM oleate, 0.02  mg/ml 
dexamethasone, and 100 units of penicillin and 100 mg of 
streptomycin/ml and then collected by centrifugation at 
1500 rpm/min for 5 min at 4 °C.

http://www.dtu.ox.ac.uk/homacalculator/
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Cell culture and treatment
After isolation, hepatocytes were plated onto 60-mm 
mouse collagen IV-coated dishes (BioCoat, Becton–
Dickinson) at a density of 1  ×  106 viable cells/dish in 
DMEM medium containing 10  % FBS [44]. They were 
allowed to attach overnight prior to experiment. After 
overnight serum deprivation, hepatocytes isolated from 
wide type mice were stimulated with 100 nM insulin or 
PBS for 10 min and Akt phosphorylation was assessed by 
western blot. To further confirm whether insulin could 
induce Akt phosphorylation in diabetic hepatocytes, 
after overnight serum deprivation, cells were incubated 
with or without 1 μM pAkt inhibitor VIII for 4 h and then 
stimulated with 100 nM insulin for 10 min.

To evaluate the effect of insulin on ANGPTL3 pro-
duction, hepatocytes were serum starved for 24 h and 
then exposed to 100  nM insulin in the presence of 
absence of 1  μM Akt inhibitor VIII (Santa Cruz, CA, 
USA) for another 24  h. Cells were collected for west-
ern blot to study ANGPTL3 expression. In parallel, 
HepG2 were maintained in the same culture medium. 
After they reached 90 % confluency, they were serum 
starved and treated with 100  nM insulin as murine 
hepatocytes.

Western blot
Equal amount of protein lysates (40  μg) were separated 
on 8 % SDS-PAGE gel electrophoresis. After transfer to 
nitrocellulose membrane, the membrane was probed 
to polyclonal anti-mouse ANGPTL3 antibody (Abcam, 
Cambridge, UK), monoclonal rabbit anti-mouse phos-
pho-Akt (Ser473), rabbit anti-mouse total Akt antibod-
ies (Cell Signaling Technology, Beverly, MA, USA), and 
monoclonal anti-mouse GAPDH antibody (Santa Cruz, 
CA, USA). HRP-conjugated IgG secondary antibodies 
were purchased from Amersham Biosciences (Piscata-
way, NJ, USA). Western blot was quantified using the 
NIH image 1.62.

Statistics
Data are expressed as mean  ±  SD. Geometric data 
are expressed as mean with interquartile range or 
mean  ±  SD. For database management and statistical 
analysis in human study, we used the SAS system, ver-
sion 9.3 (SAS Institute Inc., Cary, NC, USA). Serum tri-
glyceride, fasting insulin in blood, Homa-β, Homa-IR and 
triglyceride content in HDL were logarithmically trans-
ferred to achieve normal distribution. Univariate analysis 
was performed between ANGPTL3 and each individual 
HDL component or the percentage of cholesterol efflux. 
Multivariate-adjusted analysis was performing by adjust-
ing for age, body mass index and use of lipid lowering 
drugs as previously described [33, 34].

The covariables of ANGPTL3 in non-diabetic con-
trols and T2DM patients were screened using a step-
wise regression procedure with the p values for variables 
to enter and stay in the models set at 0.15. The covari-
ables considered for non-diabetic controls and diabetic 
patients were age, body mass index, mean arterial pres-
sure, lipid-lowering drugs (statins, niacin and fibrates) 
as one covariable, and classes of antihypertensive drugs 
[diuretics, vasodilators (α blockers and calcium chan-
nel blockers], and inhibitors of renin-angiotensin system 
[β–blockers, angiotensin-converting enzyme inhibitors 
and angiotensin receptor blockers)]. We standardized 
ANGPTL3 to the average in the population (mean or 
ratio) of significant covariables identified by step-
wise regression and then regressed the standardized 
ANGPTL3 on insulin level in the circulation.

In both human and mice studies, unpaired, 2-tailed 
Student’s test and Fisher’s exact test were used to com-
pare the means and the proportions between non-dia-
betic subjects and T2DM patients, respectively. For more 
than two experimental groups, one-way analysis of vari-
ance (ANOVA) with Dunnett Multiple Comparison test 
was applied. Significance was a two-tailed α-level of 0.05 
or less.

Results
General characterisation of the study subjects
Equal amount of males and females were enrolled in non-
diabetic and type-2 diabetic groups in the study. After 
exclusion of the outliers, 298 non-diabetic controls and 
300 diabetic patients were analyzed. Among female sub-
jects, in 149 non-diabetic controls (50.0  % women), age 
averaged (SD) 52.9 (8.2) years, body mass index 26.2 
(3.9)  kg/m2, and blood pressure 131.8 (20.8)  mm  Hg 
systolic and 76.8 (10.6)  mm  Hg diastolic. Mean values 
were 54.6 (12.8) mg/dL for HDL-c and 131.4 (28.6) mL/
min/1.73  m2 for eGFR. In 150 female T2DM patients 
(50.0  % women), age averaged (SD) 56.6 (6.0) years, 
body mass index 26.4 (4.0)  kg/m2, and blood pressure 
138.8 (17.8) mm Hg systolic and 77.1 (11.2) mm Hg dias-
tolic. Mean values were 49.8 (9.7) for HDL-c and 116.8 
(32.9) mL/min/1.73 m2 for eGFR. In male subjects, body 
mass index increased from 25.2 (4.1) kg/m2 in non-dia-
betic participants to 26.5 (3.4) kg/m2 in diabetic patients 
(p  =  0.004). eGFR was 118.1  ml/min/1.73m2 in non-
diabetic males and decreased to 105.6  ml/min/1.73m2 
in male diabetic patients (p =  0.002). HDL-c was 52.9 
(13.8) mg/dL in non-diabetic subjects and 43.8 (13.9) mg/
dL in diabetic patients (p < 0.0001). Table 1 lists general 
characteristics of non-diabetic and T2DM patients by 
gender.

Plasma samples were fractionated to isolate HDLs 
and the concentrations of apoA-I, serum amyloid A, 
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phospholipid, triglyceride and sphingosine-1-phosphate 
in HDLs were determined. Both male and female T2DM 
patients were featured as decrease of apoA-I concentra-
tion but increase of serum amyloid A and phospholipid 
levels in HDLs compared with non-diabetic controls 
(Table 2).

Plasma levels of ANGPTL3 in the entire study subjects
Quantification of ANGPTL3 revealed that plasma 
level of ANGPTL3 did not differ between non-dia-
betic controls and T2DM patients (493.5  ±  162.4 vs. 
482.9 ± 160.1 ng/ml, p = 0.42, n = 298–300). However, 

plasma level of ANGPTL3 was greater in females 
than males in non-diabetic groups (558.6  ±  164.6 vs. 
428.3  ±  131.6  ng/ml, p  <  0.0001) (Fig.  1a). Although 
ANGPTL3 level was similar between male non-diabetic 
and T2DM subjects (428.3 ± 131.6 vs. 467.2 ± 159.3 ng/
ml, p  =  0.10), ANGPTL3 level was significantly 
reduced in female T2DM patients compared with 
female non-diabetic participants (558.6  ±  164.6 vs. 
498.5  ±  159.9  ng/ml, p  <  0.01) (Fig.  1a). Distribution 
and probability plots of ANGPTL3 level in both non-
diabetic controls and diabetic patients are shown in 
Additional file 1: Figure S1.

Table 1  General characteristics of male and female T2DM patients and non-diabetic subjects

eGFR estimated glomerular filtration rate; ACE inhibitors Angiotensin-converting enzyme inhibitors; ARB angiotensin receptor blocker; LDL low-density lipoprotein; 
HDL high-density lipoprotein; Homa-βand Homa-IR were computed by Homeostasis Model Assessment algorithm (http://www.dtu.ox.ac.uk/homacalculator/) using 
fasting insulin and fasting blood glucose; IQR interquartile range

* p ≤ 0.05; ł p ≤ 0.01; ǂ p ≤ 0.001; and § p ≤ 0.0001 when compared with sex-matched controls

Gender/characteristic Female Male

Non-diabetic T2DM Non-diabetic T2DM

Number of females 149 150 149 150

N in category, (%)

 Hypertension 47 (31.5 %) 63 (42.0 %) 36 (24.5 %) 69 (46.0 %)ł

 Cardiovascular disease 6 (4.0 %) 14 (9.3 %) 8 (5.4 %) 22 (14.7 %)ł

 Anti-hypertensive Medications

  Diuretics 2 (1.3 %) 2 (1.3 %) 2 (1.3 %) 7 (4.7 %)

  β blocker 4 (2.7 %) 12 (8.0 %)* 3 (2.0 %) 7 (4.7 %)

  Calcium channel blocker 7 (4.7 %) 24 (16.0 %) 9 (6.0 %) 32 (21.3 %)ǂ

  α blocker 4 (2.7 %) 11 (7.3 %) 0 (0 %) 17 (11.3 %)§

  ACE inhibitors/ARB 3 (2.0 %) 7 (4.7 %) 2 (1.3 %) 14 (9.3 %)ǂ

 Lipid lowering treatment 4 (2.7 %) 2 (1.3 %) 4 (2.7 %) 22 (14.7 %)ǂ

 Anti-diabetic treatment

  Insulin NA 20 (13.3 %) NA 22 (14.7 %)

  Sulfonylureas NA 61 (40.7 %) NA 32 (21.3 %)

  Metformin NA 94 (62.7 %) NA 62 (41.3 %)

  α glycosidase inhibitors NA 70 (46.7 %) NA 42 (28.0 %)

Mean (SD)

 Age (years) 52.9 (8.2) 56.6 (6.0)§ 53.8 (8.3) 54.5 (10.9)

 Body mass index (kg/m2) 26.2 (3.9) 26.4 (4.0) 25.2 (4.1) 26.5 (3.4)ł

 Systolic pressure (mm Hg) 131.8 (20.8) 138.8 (17.8)ł 133.8 (18.9) 135.2 (19.8)

 Diastolic pressure (mm Hg) 76.8 (10.6) 77.1 (11.2) 78.9 (12.1) 82.7 (10.8)ǂ

 eGFR (ml/min/1.73 m2) 131.4 (28.6) 116.8 (32.9)§ 118.1 (28.3) 105.6 (42.5)ł

 Total cholesterol (mg/dL) 195.9 (35.4) 195.1 (35.8) 187.0 (29.3) 176.8 (40.0)*

 LDL cholesterol (mg/dL) 118.3 (35.7) 121.4 (32.2) 111.3 (24.8) 108.5 (34.0)

 HDL cholesterol (mg/dL) 54.6 (12.8) 49.8 (9.7)ǂ 52.9 (13.8) 43.8 (13.9)§

 Fasting blood glucose (mmol/L) 5.0 (0.4) 8.3 (2.4)§ 5.1 (1.5) 8.9 (2.8)§

Geometric mean (IQR)

 Triglyceride (mg/dL) 111.5 (81.4–176.1) 123.7 (117.8–129.8) 106.0 (100.3–112.0) 150.8 (140.4–161.9)§

 Insulin (pmol/L) 50.9 (37.2–71.4) 58.9 (56.2–63.1)* 38.5 (36.4–40.7) 33.6 (30.3–37.2)

 Homa-β 92.0 (76.2–110.8) 41.7 (38.9–43.7)§ 75.5 (71.9–79.4) 24.1 (22.0–26.4)§

 Homa-IR 0.97 (0.69–1.32) 1.25 (0.80–1.91)§ 0.77 (0.47–1.14) 0.78 (0.29–1.50)

http://www.dtu.ox.ac.uk/homacalculator/
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Unadjusted analysis
In line with previous reports [34], univariate analysis 
showed that plasma level of ANGPTL3 was positively 
correlated with total cholesterol, LDL-c and HDL-c in 
non-diabetic controls (Fig.  1b–d). Similarly, positive 
association was found between ANGPTL3 levels and 
total cholesterol, LDL-c and HDL-c in T2DM patients 
(Fig.  1e–g). Nevertheless, no significant association was 
detected between ANGPTL3 and serum triglyceride in 
both groups (non-diabetic: r = 0.035, p = 0.542; T2DM: 
r = −0.058, p = 0.313).

In female controls, the positive association between 
ANGPTL3 level and total cholesterol or HDL-c remained 
but not with LDL-c (total cholesterol: r  =  0.188, 
p = 0.027; LDL-c: r = 0.140, p = 0.088; HDL-c: r = 0.189, 
p  =  0.021). Slightly different from female controls, 
ANGPTL3 levels was correlated only with HDL-c in 
female T2DM patients (total cholesterol: r  =  0.158, 
p = 0.054; LDL-c: r = 0.139, p = 0.091; HDL-c: r = 0.186, 
p = 0.022). Different from females, a positive correlation 
between ANGPTL3 level and HDL-c was observed in 
male diabetic patients (r = 0.307, p = 0.0001) not in male 
controls (r = 0.153, p = 0.089) (Table 3).

When looking at the association between ANGPTL3 
and other HDL components, ANGPTL3 was highly 
positively associated with apoA-I but negatively asso-
ciated with SAA in HDLs of non-diabetic female sub-
jects (apoA-I: r =  0.587, p  <  0.0001; SAA: r = −0.209, 
p = 0.028). Differently, ANGPTL3 stayed positively asso-
ciated with apoA-I and S1P in HDLs of female T2DM 
patients (apoA-I: r =  0.477, p  <  0.0001; S1P: r =  0.163, 
p  =  0.046) but not with SAA (r  =  0.051, p  =  0.539). 
Distinct from female controls, ANGPTL3 levels did not 
correlate with HDL components in non-diabetic male 
subjects. Table  3 summarizes the univariate analysis of 
correlation between ANGPTL3 and lipids or HDL com-
ponents between male and female non-diabetic controls 
and T2DM patients. Univariate analysis of the associa-
tions between ANGPTL3 and HDL-c, apoA-I or serum 

amyloid A in female non-diabetic participants and dia-
betic patients were shown in Fig. 2a–f.

Multivariable‑adjusted analysis
Thereafter, we performed a linear regression analysis 
between ANGPTL3 and individual HDL component 
by adjusting for age, body mass index and use of Statin 
and Niacin. In female non-diabetic patients, ANGPTL3 
level was positively correlated with HDL-c and apoA-I 
but inversely correlated with SAA. Per 1-SD increment 
of ANGPTL3, the changes amounted to +2.57  mg/dL 
HDL-c (p  =  0.017), +1.14  μg/mL apoA-I (p  <  0.0001) 
and −47.07  μg/L SAA (p  =  0.032). In female diabetic 
patients, the corresponding estimates were 1.69  mg/dL 
HDL-c (p = 0.035), +1.25 μg/mL apoA-I (p < 0.0001) and 
−11.71 μg/L SAA (p = 0.676) (Table 4).

Similar as univariate association results, after adjust-
ing for age, body mass index and lipid lowering drugs, 
ANGPTL3 was only associated with HDL-c in male 
controls (Table  4). No significant correlation was 
seen between ANGPTL3 and apoA-I in male controls 
and T2DM patients (non-diabetic: p  =  0.91; T2DM: 
p  =  0.07). Nevertheless, positive associations between 
ANGPTL3 and triglyceride or phospholipid in HDL were 
detected in male T2DM patients (Table 4).

Put together, ANGPTL3 levels were intimately associ-
ated with HDL-c, apoA-I and SAA in females non-dia-
betic controls.

Correlation between ANGPTL3 levels and HDL function
As described earlier, the beneficial atheroprotective 
properties of HDL are exerted by the components in 
HDL particles, in which apoA-I improves but SAA 
adversely impairs HDL function. After we observed 
the diverse association between ANGPTL3 and SAA in 
HDLs in females non-diabetic and diabetic subjects, we 
further dissected the relationship between ANGPTL3 
and HDL function. RAW264.7 macrophages were 
preloaded with fluorescently labeled cholesterol and 

Table 2  Comparison of HDL components in non-diabetic subjects and T2DM patients

§   p < 0.0001;ǂ p < 0.001; ł p < 0.01; * p < 0.05 when compared with non-diabetic controls

Characteristics All Female Male

Non-diabetic T2DM Non-diabetic T2DM Non-diabetic T2DM

N in category 298 300 149 150 149 150

Cholesterol (mg/dL) 53.8 (13.3) 46.8 (12.3)§ 54.6 (12.8) 49.8 (9.7)ǂ 52.9 (13.88) 43.8 (13.9)§

ApoA-I (μg/mL) 7.8 (2.2) 6.8 (2.6)§ 7.5 (2.0) 6.9 (2.6)ł 8.0 (2.4) 6.9 (2.6)ǂ

Serum amyloid A (μg/L) 811.9 (286.8) 928.5 (326.8)§ 924.8 (265.3) 1021.9 (335.2)* 691.6 (244.4) 836.0 (291.0)§

Phospholipid (pg/mL) 963.8 (438.4) 1080.5 (391.1)ǂ 992.4 (413.8) 1045.9 (349.6) 933.6 (462.3) 1115.1 (427.0)ǂ

sphingosine-1-phosphate (nmol/L) 1549.7 (473.3) 1464.3 (699.9) 1465.0 (450.5) 1429.4 (769.2) 1629.3 (480.2) 1499.3 (623.6)*

Triglycerides (log, mg/dl) 13.6 (10.8–16.4) 13.0 (10.6–17.6) 12.3 (9.7–16.0) 15.0 (11.4–19.4)ǂ 14.0 (11.7–16.8) 11.8 (9.4–15.0)
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then exposed to 100 μg/ml HDLs isolated from female 
non-diabetic controls or T2DM patients. The percent-
age of cholesterol efflux was determined 4 h after addi-
tion of HDL.

Univariate analysis illustrated that plasma levels of 
ANGPTL3 was significantly positively associated with 
the percentage of cholesterol efflux in non-diabetic con-
trols but not in female T2DM patients (non-diabetic: 

g

a

e

f

FEMALE

A
N

G
PT

L3
 (n

g/
m

l)
T2DM T2DMnon-T2DM non-T2DM

MALE

b

c
1200

ANGPTL3 (ng/ml)

to
ta

l c
ho

le
st

er
ol

 (m
g/

dl
)

0 400 800
0

100

200

300

400 r=0.178
p=0.002

non-diabetic

d
0 400 800 1200

0

50

100

150

200

250 r=0.123
p=0.035

ANGPTL3 (ng/ml)

LD
L 

ch
ol

es
te

ro
l (

m
g/

dl
)

non-diabetic

0 400 800 1200
0

30

60

90

120 r=0.173
p=0.003

ANGPTL3 (ng/ml)

H
D

L 
ch

ol
es

te
ro

l (
m

g/
dl

) non-diabetic

ANGPTL3 (ng/ml)

to
ta

l c
ho

le
st

er
ol

 (m
g/

dl
)

0 200 400 600 800 1000
0

100

200

300

400 r=0.174
p=0.003

diabetic

0 200 400 600 800 1000
0

50

100

150

200

250 r=0.151
p=0.009

ANGPTL3 (ng/ml)

LD
L 

ch
ol

es
te

ro
l (

m
g/

dl
) diabetic

0 200 400 600 800 1000
0

30

60

90

120 r=0.268
p<0.001

ANGPTL3 (ng/ml)

H
D

L 
ch

ol
es

te
ro

l (
m

g/
dl

) diabetic

0

400

800

1200 p<0.0001 p <0.01
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Table 3  Univariate analysis of correlation between angptl3 and lipids or HDL components in the study subjects

Controls vs. T2DM Female controls Female T2DM Male controls Male T2DM

r p r p r p r p

N in category 149 150 149 150

Total cholesterol 0.188 0.027 0.158 0.054 0.093 0.273 0.155 0.058

Triglyceride 0.027 0.746 0.011 0.889 −0.056 0.518 −0.084 0.607

LDL cholesterol 0.140 0.088 0.139 0.091 0.040 0.628 0.133 0.106

HDL components

 Cholesterol 0.189 0.021 0.186 0.022 0.153 0.089 0.307 0.0001

 ApoA-I 0.587 <0.0001 0.477 <0.0001 −0.015 0.889 0.119 0.146

 Serum amyloid A −0.209 0.011 0.051 0.539 −0.058 0.471 −0.044 0.594

 Triglyceride (log) 0.018 0.832 0.012 0.881 0.123 0.141 0.185 0.023

 Phospholipid −0.004 0.959 −0.108 0.190 −0.131 0.113 0.179 0.028

 Sphingosine-1-phosphate −0.014 0.869 0.163 0.046 −0.060 0.473 0.009 0.908
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r  =  0.322, p  =  0.037, n  =  42; T2DM: r  =  −0.181, 
p =  0.231, n =  45) (Fig.  3a, b). After adjusting for age, 
body mass index and use of lipid lowering drugs, per 
1-SD increase of ANGPTL3, the estimate was 2.11  % 
in non-diabetic controls but weakened to −1.46  % in 
female T2DM patients (non-diabetic: p =  0.07; T2DM: 
p = 0.13).

Taken together, one SD increase of ANGPTL3 
(161.8  ng/ml) associated with increase of 2.56  mg/dL 
cholesterol (95  % CI 0.48, 4.65; p =  0.017), 1.14  μg/mL 
apoA-I (95 % CI 0.88, 1.40; p < 0.0001) and decrease of 
47.07 μg/L SAA in HDL particles in non-diabetic female 
subjects (95 % CI −89.60, −4.53; p = 0.032) (Fig. 4a–c). 
By contrast, 1-SD increase of ANGPTL3 (136.1  ng/ml) 
associated with increase of 1.69 mg/dl cholesterol (95 % 
CI 0.13, 3.25, p =  0.037), 1.25  μg/mL apoA-I (95  % CI 
0.88, 1.63; p  <  0.0001) and decrease of 11.70  μg/L SAA 
(95  % CI −43.15, 66.57; p =  0.676) in HDLs of female 
T2DM patients (Fig.  4a–c). When translating into 
HDL function, one SD increase of ANGPTL3 related 
to increase of 2.11 % cholesterol efflux against HDLs in 
non-diabetic females (95  % CI −0.11, 4.33, p =  0.071) 
but decrease of 1.46 % in female T2DM patients (95 % CI 
−3.31, 0.39; p = 0.130) (Fig. 4d).

The effect of insulin treatment on ANGPTL3 level 
in diabetic patients and mice
Finally, we screened covariables that could affect 
ANGPTL3 level by stepwise regression in non-diabetic 
participants or T2DM patients. Recent studies showed 
that insulin decreased ANGPTL3 level in HepG2 cells 
in vitro [45] and infusion of insulin to non-diabetic Cau-
casian women (n =  18) transiently reduced ANGPTL3 
level in the blood [25]. Therefore, the covariables that 
were included in the model were age, sex, mean arterial 
pressure, body mass index, plasma insulin level, classes of 
anti-hypertensive medications, and lipid-lowering drugs. 

Additional file 1: Table S1 lists the identified covariables 
that influenced ANGPTL3 levels.

Univariate analysis elucidated that plasma insulin level 
did not relate to ANGPTL3 level in male and female dia-
betic patients (Fig.  5a, b). Next, we performed stepwise 
regression for covariables of ANGPTL3. The identified 
covariables that influenced ANGPTL3 were summarized 
in Additional file 1: Table S1. We standardized ANGPTL3 
to the average (mean or proportion) of the aforemen-
tioned covariables identified by stepwise regression in the 
two study populations. No significant relationship was 
detected between standardized ANGPTL3 and insulin in 
both populations (p > 0.75).

To further testify the effect of insulin on ANGPTL3 
level, hepatocytes from in db/db mice were isolated 
from db/db mice and their age-matched controls. At 
the age of 12-week old, db/db mice developed typical 
impaired glucose tolerance after challenge by intraperi-
toneal injection of glucose (Fig. 5c). After isolation and 
overnight fasting, hepatocytes were stimulated with 
100  nM insulin for 10  min and Akt phosphorylation 
was seen induced 2.5- and 1.7-fold in both normal and 
diabetic hepatocytes, respectively (Fig. 5d, e, n = 3–4). 
Consistent with previous reports [25, 45], western 
blot experiments illustrated that insulin decreased 
ANGPTL3 production in human hepatoma HepG2 cells 
(Fig. 5f ). As numerous studies showed PI3 K/Akt phys-
phorylation are key molecules downstream of hepatic 
insulin signaling pathways [46, 47], hepatocytes of db/
db mice were treated with 100 nM insulin with or with-
out pAkt inhibitor for 24 h to evaluate ANGPTL3 pro-
duction. Different from HepG2 cells, neither insulin 
treatment nor pAkt inhibitor altered ANGPTL3 pro-
duction in diabetic hepatocytes in vitro (Fig. 5g). Like-
wise, injection of insulin to db/db mice did not lead 
to any change of ANGPTL3 level in the circulation 
(Fig. 5h, i).

Table 4  Multivariate analysis of correlation between angptl3 and HDL components in the study subjects

All associations were adjusted for age, body mass index and lipid lowering drugs (Statins and Niacin). Estimates given with 95 % CI express the difference in HDL 
components associated with 1-SD increase of ANGPTL3

Significance: § p < 0.0001; ł p < 0.01; * p < 0.05

Controls vs. T2DM Female controls Female T2DM Male controls Male T2DM
Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI)p

N in category 149 150 149 150

HDL components

 Cholesterol (mg/dL) 2.57 (0.48 to 4.65)* 1.69 (0.13 to 3.25)* 2.07 (0.14 to 4.00)* 4.36 (2.08 to 6.64)ł

 ApoA-I (μg/mL) 1.14 (0.88 to 1.40)§ 1.25 (0.87 to 1.63)§ −0.03 (−0.42, 0.36) 0.38 (−0.02 to 0.78)

 Serum amyloid A(μg/L) −47.07 (−89.60 to −4.53)* −11.7 (−43.15 to 66.57) −14.19 (−53.93 to 25.56) −6.16 (−50.99 to 38.66)

 Triglyceride (log, mg/dL) 1.00 (0.93 to 1.08) 1.00 (0.93 to 1.07) 1.03 (0.97 to 1.09) 1.12 (1.04 to 1.20)*

 Phospholipid (pg/mL) −5.96 (−74.81 to 62.89) −37.24 (−91.14 to 16.66) −54.71 (−127.59 to 18.18) 83.09 (15.18 to 151.00)*

 Sphingosine-1-phosphate (nmol/L) −14.33 (−88.89 to 60.24) −124.3 (−0.64 to 249.30) −28.02 (−106.40 to 50.37) 16.94 (−84.79 to 118.67)
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Discussion
The key findings in the study include: (1) ANGPTL3 
level was reduced in female T2DM patients compared 
with female non-diabetic subjects whereas ANGPTL3 
level was similar between male non-diabetic and T2DM 
subjects; (2) after adjusting for the confounding factors, 
ANGPTL3 levels were positively correlated with the 
concentrations of cholesterol and apoA-I but negatively 
correlated with SAA in HDLs in non-diabetic female 

subjects. However, ANGPTL3 was positively associated 
with HDL-c and apoA-I but not with SAA in HDLs in 
female diabetic patients. (3) ANGPTL3 level was posi-
tively correlated with HDL function in the aspect of 
cholesterol efflux against HDLs in female controls but 
weakened in female T2DM patients; (4) plasma insulin 
level had no correlation with ANGPTL3 levels in diabetic 
patients.

ANGPTL3, HDL components and HDL function
Accumulating evidence has documented the positive 
correlation between ANGPTL3 and total cholesterol or 
HDL-c in different populations [33, 34], our findings in 
the entire non-diabetic participants are consistent with 
these findings. However, when we further dissected the 
relationship by genders, we found that ANGPTL3 lev-
els were positively correlated with HDL-c but not with 
total cholesterol in female non-diabetic subjects. Sur-
prisingly, ANGPTL3 was positively associated with total 
cholesterol but not with HDL-c in male non-diabetic 
subjects. Further investigation is needed to explore the 
mechanisms underlying the diverse relationship between 
ANGPTL3 and HDL-c in males and females. Nonethe-
less, these data strongly pointed out the specific relation-
ship between ANGPTL3 and HDLs in females.

After adjusting for cofounding factors, ANGPTL3 was 
highly positively associated with HDL-c and apoA-I in 
female non-diabetic participants and diabetic patients. 
On top of that, negative correlation between ANGPTL3 
and SAA in HDL was observed in non-diabetic females 
but it was abrogated in female patients. To be noted, the 
regression coefficient between ANGPTL3 and SAA was 
significantly higher in female non-diabetic controls than 
female T2DM patients (−0.286 vs. 0.073, p  =  0.002). 
Consequently, ANGPTL3 levels were found positively 
associated with the percentage of cholesterol efflux 
towards HDLs. These findings suggest the substantial 
relationship of ANGPTL3 on HDL components mainly 
HDL-c, apoA-I, and SAA and HDL function in female 
non-diabetic subjects.

Previous studies have shown that ANGPTL3 regulates 
HDL cholesterol through suppression of endothelial 
lipase (EL) [31, 32], which is an enzyme to hydrolyze HDL 
cholesterol and accelerate its catabolism. In EL-deficient 
mice, plasma level of HDL cholesterol and apoA-I were 
both increased, resulting in enhanced cholesterol efflux 
[48]. The increased apoA-I expression in EL-deficient 
mice could come from post-transcriptional regulatory 
mechanism because apoA-I production in hepatocytes 
was comparable between EL-deficient mice and con-
trols [49]. In line with these findings, inhibition of pro-
protein convertases by profurin increases EL activity. In 
Ad-profurin-treated mice, reduced HDL-cholesterol and 

ch
ol

es
te

ro
l  

ef
flu

x 
(%

)

b

ANGPTL3 (ng/ml)

ANGPTL3 (ng/ml)

a non-diabetic

type-2 diabetic 

ch
ol

es
te

ro
l  

ef
flu

x 
(%

)

0 200 400 600 800 1000
0

10

20

30

40 r=0.322
p=0.037

0 200 400 600 800 1000
0

10

20

30

40 r=-0.181
p=0.231

Fig. 3  Association between ANGPTL3 levels and HDL function 
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apoA-I level were observed which was accompanied with 
reduced cholesterol efflux. Although profurin expression 
had no effect on apoA-I excretion, the mature form of 
apoA-I was seen largely reduced in hepatocytes of Ad-
profurin-treated mice [31]. These data suggest the effect 
of endothelial lipase on posttranslational modification of 
apoA-I.

In our study, we demonstrated that ANGPTL3 level was 
significantly lower in female diabetic patients than non-
diabetic controls (558.6 ± 164.6 vs. 428.3 ± 159.3 ng/mL, 
p < 0.0001). HDL-c and apoA-I concentration were both 

reduced in female diabetic patients compared to female 
controls (7.8 ± 2.2 vs. 6.8 ± 2.6 μg/dL, p < 0.0001). We 
observed negative correlation between ANGPTL3 and 
SAA in HDL in non-diabetic females but not in female 
patients. In addition, the regression coefficient between 
ANGPTL3 and SAA was significantly higher in female 
non-diabetic controls than female T2DM patients 
(−0.286 vs. 0.073, p  =  0.002). It has been shown that 
SAA affects the composition of HDL via releasing apoA-
I from HDL [50, 51]. Taken together, in the context of 
diabetes, we speculate that reduced ANGPTL3 in female 
diabetic patients might jeopardize its inhibitory effect on 
EL, weaken its association with SAA and adversely affect 
apoA-I stability, all of which would contribute to reduced 
apoA-I level and HDL dysfunction. Consequently, the 
association between ANGPTL3 and cholesterol efflux 
became weaker in female diabetic patients. Neverthe-
less, how ANGPTL3 interplays with apoA-1 and SAA 
for HDL metabolism and function needs to be further 
investigated.

Insulin and ANGPTL3
Consistent with previous report, we found that 
ANGPTL3 levels were much lower in male non-diabetic 
participants than female controls in the study [33]. When 
we screened covariables by stepwise regression, differ-
ent covariables were identified in males or females in the 
presence or absence of T2DM. These data implicated 
different regulatory mechanisms of ANGPTL3 levels in 
males and females.

Insulin therapy is a crucial tool in treating diabetic 
patients. It is not only beneficial for glycemic control 
but also improve complications that are secondary to 
hyperglycemia especially in elder patients [52]. Previ-
ous studies revealed the down-regulation of ANGPTL3 
production in immortalized human hepatocytes by insu-
lin [25, 45, 53]. Likewise, insulin injection transiently 
decreased ANGPTL3 level in the blood of non-diabetic 
Caucasian women with small sample size. In contrast to 
these findings, the data of our study clarified no effect of 
insulin on ANGPTL3 levels by several lines of evidence: 
(1) neither univariate nor multivariate analysis showed a 
significant correlation between plasma insulin level and 
ANGPTL3 in the study subjects; (2) insulin treatment did 
not change ANGPTL3 production in hepatocytes iso-
lated from diabetic db/db mice; and (3) ANGPTL3 level 
did not alter after 6 and 24 h injection of insulin. These 
data collectively suggested the complicated regulation 
of ANGPTL3 in the setting of diabetes. Giving that the 
previous in vivo study was small (n =  18) and confined 
to selected healthy volunteers, the effect of insulin on 
ANGPTL3 level needs further confirmation from larger 
sample sizes with different ethnic groups.

-47.07*

11.70

0-100 100

non-diabetic participants

T2DM patients

non-diabetic participants

non-diabetic participants

T2DM patients

T2DM patients

d

a

b
1.14§

1.25§

0-2 2
apoA-I (change in µg/ml)

serum amyloid A (change in µmol/L)

2.56*

1.69*

0 8-8
HDL-c (change in mg/dl)

2.11

-1.46

0 5-5
cholesterol efflux (change in %)

non-diabetic participants

T2DM patients

c

Fig. 4  Plasma level of ANGPTL3 in relationship to HDL components 
and function in non-diabetic female subjects and female T2DM 
patients. Regression was performed between standardized ANGPTL3 
and cholesterol (a), apoA-I (b), Serum Amyloid A (c) and the percent‑
age of cholesterol efflux (d) in HDLs in non-diabetic female subjects 
and female T2DM patients. Estimates express as change in unit 
with 1-SD increase of ANGPTL3 in non-diabetic subjects and T2DM 
patients, respectively. §p < 0.0001; ǂp < 0.001; łp < 0.01; * p < 0.05



Page 12 of 15Zhao et al. Cardiovasc Diabetol  (2016) 15:132 

Study limitations
There are limitations in the study. First, ANGPTL3 
level could be also influenced by other factors. Recently, 
another family member, ANGPTL8 was identified, which 
might regulate ANGPTL3 activity [28]. ANGPTL8, also 

named as Betatrophin, was originally identified to induce 
β cell proliferation in mice. A recent study has reported a 
strong association between angptl8 and C-peptide level 
in non-diabetic subjects, highlighting the likelihood that 
this increase of ANGPTL8 driven by insulin resistance 
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serves to compensate for the increased insulin demand in 
obese subjects [54]. Except its role in C-peptide produc-
tion, ANGPTL8 also regulates lipid metabolism. GWAS 
studies in humans show ANGPTL8 SNPs affect HDL-c 
or LDL-c but the effect of ANGPTL8 on triglyceride is 
modest. Microarray analysis reveals that ANGPTL8 
ANGPTL3, ANGPTL4 coordinates with ANGPTL3 and 
ANGPTL4 in the regulation of lipids [55]. Thus, it would 
be interesting to dissect whether ANGPTL8 acts as a 
novel independent variable in the association between 
ANGPTL3 and HDL components. Second, due to tech-
nical limitations, it is not feasible to evaluate ANGPTL3 
activity in  vivo. Third, we investigated the relationship 
between ANGPTL3 and major HDL components. As 
the progress of high-through proteomics, new molecules 
would be identified in HDL particles. Further evaluation 
of ANGPTL3 on HDL particles will be continued.

Conclusion
ANGPTL3 is highly positively correlated with cholesterol 
and apoA-I but negatively correlated with SAA in HDL 
in non-diabetic female subjects. Paradoxically, plasma 
levels ANGPTL3 was reduced in female T2DM patients 
and its negative association with SAA was diminished. 
In line with that, plasma levels of ANGPTL3 were posi-
tively correlated with the percentage of cholesterol efflux 
towards HDL in non-diabetic females but not in female 
T2DM patients. Therefore, ANGPTL3 could be specifi-
cally associated with HDL metabolism and function in 
females. The decrease of ANGPTL3 level in female dia-
betes patients might be involved in the impaired HDL 
metabolism and function.
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