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REVIEW

Remote ischaemic conditioning in the 
context of type 2 diabetes and neuropathy: the 
case for repeat application as a novel therapy 
for lower extremity ulceration
J. A. Epps   and N. A. Smart*

Abstract 

An emerging treatment modality for reducing damage caused by ischaemia–reperfusion injury is ischaemic condi-
tioning. This technique induces short periods of ischaemia that have been found to protect against a more significant 
ischaemic insult. Remote ischaemic conditioning (RIC) can be administered more conveniently and safely, by inflation 
of a pneumatic blood pressure cuff to a suprasystolic pressure on a limb. Protection is then transferred to a remote 
organ via humoral and neural pathways. The diabetic state is particularly vulnerable to ischaemia–reperfusion injury, 
and ischaemia is a significant cause of many diabetic complications, including the diabetic foot. Despite this, studies 
utilising ischaemic conditioning and RIC in type 2 diabetes have often been disappointing. A newer strategy, repeat 
RIC, involves the repeated application of short periods of limb ischaemia over days or weeks. It has been demon-
strated that this improves endothelial function, skin microcirculation, and modulates the systemic inflammatory 
response. Repeat RIC was recently shown to be beneficial for healing in lower extremity diabetic ulcers. This article 
summarises the mechanisms of RIC, and the impact that type 2 diabetes may have upon these, with the role of neural 
mechanisms in the context of diabetic neuropathy a focus. Repeat RIC may show more promise than RIC in type 2 
diabetes, and its potential mechanisms and applications will also be explored. Considering the high costs, rates of 
chronicity and serious complications resulting from diabetic lower extremity ulceration, repeat RIC has the potential 
to be an effective novel advanced therapy for this condition.
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Introduction
Diabetes-related foot disease is a frequent complication 
of type 2 diabetes mellitus (T2DM), with up to 25  % of 
diabetic patients eventually developing foot ulceration 
[1–3]. The physical, emotional and financial costs for 
patients, their carers and the community are substan-
tial. The utilisation of health care services and associated 
expenses are high in diabetic patients with ulcers [4]. In 
the US, it has been shown that the costs of foot ulceration 
caused by diabetes and related complications amount to 

between $9 and $13 billion per annum using conserva-
tive measures [1, 5]. Responsible for a large proportion 
of hospital admissions and health care costs in diabetes 
[2], such figures are likely to increase. The prevalence of 
T2DM is escalating worldwide [2, 6]. Although interna-
tional data are scarce, an improved survival rate of dia-
betic patients has been reported in wealthier nations in 
particular [7, 8]. A potential consequence of this may be 
a higher prevalence of diabetic ulcers, especially as dura-
tion of diabetes is a major risk factor for the development 
of lower extremity ulceration [9].

Arguably the most feared complication of diabetic 
foot ulceration is the need for amputation. A UK study 
observed this occurred in 19  % of cases over a 5  year 
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period in patients with a diabetic ulcer present for 
2  weeks [10]. In a 2016 systematic review, amputation 
rates associated with diabetic ulceration ranged from 5 
to 35 % [11]. Rates have improved in some higher income 
countries by 40 to 60 % [12], however data from countries 
of lower income and poorer access to health care (yet a 
higher prevalence of diabetes) are notably lacking [8, 12]. 
Further, some population groups even within wealthy 
nations are clearly at much higher risk of amputation [13–
15]. In Australia, the Indigenous diabetic community is at 
particularly high risk. A 2000–2008 analysis revealed in 
some regions this population experienced up to 27 times 
higher risk of minor amputation and 38 times higher risk 
of major amputation [13]. The benefits of improved access 
to primary health foot care, in addition to multidiscipli-
nary foot clinics, cannot be overemphasised. They are 
highlighted by the impressive 72  % reduction, following 
adjustment of variables, in lower extremity amputation 
rates identified in a 15  year longitudinal observational 
study of a West Australian city [16]. Despite this, from 
2002 to 2012 there was a 30 % overall increase in diabetes-
related amputations in well-resourced Australia [17], with 
one of the highest rates of amputation amongst devel-
oped nations [18]. The need to improve statistics world-
wide for diabetic ulcer prevalence, complication rate and 
cost is undeniable, and new therapeutic options must be 
considered. This article will assess the potential for repeat 
remote ischaemic conditioning (RRIC) as a novel adjuvant 
treatment in diabetic lower extremity ulceration.

Methods
Utilising PubMed and Scopus databases in January 2016, 
publications relating to all forms of local and remote 
ischaemic conditioning were searched. Articles with an 
emphasis on neural mechanisms, diabetes or comorbid-
ity in ischaemic conditioning, RIC or RRIC were identi-
fied in particular. The papers retrieved were examined, 
and further relevant references obtained by reviewing 
cited articles and cross-referencing. Alerts utilising Sco-
pus and PubMed were established in these search areas 
over a 7  month period ending August 2016, enabling 
access to the most current research. Further searches 
were performed as required for other material covered in 
this article, including diabetic lower extremity ulceration, 
diabetic neuropathy and diabetic mobilopathy.

Pathogenesis of lower extremity ulceration 
in diabetes
Sustained hyperglycaemia and associated abnormal 
metabolic pathways in T2DM lead to peripheral neu-
ropathy, micro- and macro- vascular peripheral arterial 
disease, mechanical changes and subsequent foot trauma 
(e.g. Charcot neuroarthropathy), high plantar pressure, 

increased susceptibility to infection, skin changes result-
ing from autonomic neuropathy, increased pro-inflam-
matory cytokines, decreased neovascularisation and 
tissue regeneration, decreased neuropeptides involved in 
angiogenesis, and an altered extracellular matrix [2, 10, 
19–22]. Diabetic neuropathy and bone marrow micro-
angiopathy have been shown to prevent mobilisation of 
haematopoietic stem cells (stem cell “mobilopathy”), cru-
cial in the response to ischaemia [23, 24], and can result 
in abnormal neurovascular regulation [25]. Decreased 
production of stromal cell-derived factor-1α in diabetic 
wounds impairs homing of endothelial progenitor cells 
(EPCs) to the ulcer region [26]. Diabetes also impairs the 
release of vascular endothelial growth factor (VEGF), 
normally upregulated in response to hypoxia, with result-
ant abnormal neovascularisation [27, 28]. All of these 
factors may contribute to the development of lower 
extremity ulceration or prevent healing. Poor foot self-
care, age, and the presence of other microvascular com-
plications are also important risk factors [29].

Treatment of diabetic lower extremity ulcers
The standard principles of management of diabetic ulcers, 
ideally co-ordinated by a multidisciplinary team, are 
debridement (utilising various methods), infection con-
trol, pressure offloading, optimising glycaemic control, 
application of dressings and surgical intervention (revas-
cularisation or orthopaedic), addressed in recent com-
prehensive reviews of these treatments [2, 22, 30–34]. 
Newer advanced or potential adjunctive therapies include 
hyperbaric oxygen therapy [2, 22, 30–34], bioengineered 
skin [2, 22, 30–32, 34], negative pressure wound therapy 
[2, 22, 30–34], growth factors [2, 22, 30–34], electro-
physical therapy [2, 22, 30–32], and stem cells [22, 30, 33]. 
NorLeu3-angiotensin (1–7), substance P and extracellular 
matrix proteins have also been studied [reviewed in 22]. 
Many of these newer therapies are either expensive, dif-
ficult to implement, lack evidence for substantial benefit, 
or lack consensus on which method of administration is 
most effective for each therapy [31]. Even though exten-
sive research has been undertaken investigating a wide 
range of treatment options and optimal management, 
chronic ulcers are still all too frequent. The average ulcer 
takes approximately 3 months to heal, and at least a half of 
diabetic ulcers recur within 3 years [3]. Further research 
into treatment options is therefore needed.

Potential treatment candidate: ischaemic 
conditioning
Background
It is clear there is a great need to identify novel treatments 
to improve diabetic ulcer healing. One potential candi-
date is ischaemic conditioning. This phenomenon was 
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first discovered in 1986 by Murry, Jennings and Reimer, 
when a study in dogs showed 4 cycles consisting of 5 min 
of complete occlusion of a coronary artery, followed by 
5 min of reperfusion, decreased the size of a subsequent 
induced myocardial infarction by up to 75 % when com-
pared to control [35]. Termed ischaemic preconditioning, 
this intervention protects against myocardial ischae-
mia–reperfusion injury [36]. Ischaemic postcondition-
ing was discovered in 2003, when it was identified that 
the ischaemic stimulus remained cardioprotective even 
when applied after myocardial reperfusion [37]. In 1993, 
it was found that administering cycles of preconditioning 
to a coronary artery supplying a different region of myo-
cardium to the site of a subsequent infarction remained 
cardioprotective [38]. An extension of this concept lead 
to a study in 2002, which demonstrated that applying the 
ischaemic preconditioning more conveniently to skel-
etal muscle also provided cardioprotection [39]. Termed 
remote ischaemic conditioning (RIC), this has been cat-
egorised into several forms: remote ischaemic precon-
ditioning (RIPC), remote ischaemic perconditioning 
and remote ischaemic postconditioning [40]. Yet further 
subcategories exist when the stimulus is applied up to 
24 h before or greater than 15 min after the target organ 
ischaemia: delayed remote ischaemic pre- and post-con-
ditioning respectively [40]. Although a variety of organs 
have been utilised as the source of the ischaemic stimu-
lus in RIC studies [36], skeletal muscle in upper or lower 
limbs have predominantly been used.

Ischaemic preconditioning has been shown to provide 
both an early and late window of protection. The first 
phase lasts for 2–3 h and commences immediately after 
the significant ischaemic episode. The second phase com-
mences between 12 and 24 h after the episode and per-
sists for approximately 3 days of protection [41, 42].

RIC has recently been studied when applied repeat-
edly (RRIC). There has been considerable variation in the 
timeframe of administration, ranging from one bout of 5 
cycles of 5 min of ischaemia and reperfusion applied once 
or twice daily [43], to three 5 min cycles applied once per 
fortnight [44]. The period of intervention has ranged 
from 1  week of application of RRIC [45] to 300  days of 
RRIC [43]. In RIC and RRIC interventions, either single 
or bilateral limbs have been studied, and upper or lower 
limbs, as the effector organ(s). Different systolic pressures 
have been used in RIC to induce limb ischaemia; typically 
a pneumatic blood pressure cuff is inflated to 200 mmHg. 
The optimal protocols for all forms of RIC and RRIC are 
not yet known, and need to be standardised [46, 47].

Despite disappointing results in some translational 
studies in humans [48], mounting evidence points 
towards RIC as a potentially powerful new therapeutic 
tool for an increasingly wider range of conditions. Early 

studies focused upon cardiac [reviewed in 36] and renal 
[reviewed in 49, 50] endpoints. More recently, the use 
of RIC has been studied in subarachnoid haemorrhage 
management, thromboembolic stroke, cardiovascular 
complications following major vascular surgery, cutane-
ous blood flow, transplantation surgery [51, 52], skin and 
lung applications [51], skeletal muscle [53], endothelial 
function [54, 55] (particularly in RRIC) [reviewed in 56, 
57], hypertension [58], and exercise performance [46], 
some showing more promise than others.

Remote ischaemic conditioning mechanisms
Neural mechanisms
The mechanisms of RIC are complex and have been the 
focus of intense study. The exact mechanisms remain 
unknown, but it is evident that both neural and humoral 
pathways are involved and that the two interact [36, 40]. 
It is likely that the ischaemic stimulus causes afferent 
C fibre sensory nerves to be activated by local release 
of autacoids, such as calcitonin gene related peptide 
(CGRP), bradykinin and adenosine [40, 59–63]. Separate 
animal model studies have demonstrated that the cardio-
protective effects of RIPC are lost if the sensory nerve to 
the ischaemic limb [64, 65], spinal cord [66, 67], the dor-
sal motor nucleus of the vagus nerve [68], the vagus nerve 
[67, 69], renal nerves [70, 71], or the posterior gastric 
branch of the vagus nerve [72], are transected or silenced. 
These key studies reveal how crucial neural pathways are, 
from sensory afferent fibres to the efferent autonomic 
reflexes, in transmitting the signal for cardioprotection 
in RIPC. Importantly, it was found by Basalay et al. [73] 
that vagotomy or sectioning nerves of the ischaemic limb 
abolished RIPC cardioprotective effects, although not the 
effects of remote ischaemic postconditioning. This study 
demonstrated that both these forms of remote ischaemic 
conditioning are cardioprotective, but utilise very differ-
ent pathways. The implications in the context of the dia-
betic patient will be discussed below, but it is apparent 
that humoral pathways are more prominent in remote 
ischaemic postconditioning.

Humoral mechanisms
Despite the importance of neural pathways, overwhelm-
ing evidence also exists for a humoral mechanism in 
RIC. This was demonstrated effectively in a study by 
Shimizu et al. where protection was transferred humor-
ally between animals and even between species, by trans-
fusion of dialysate of plasma, from a preconditioned 
human to a rabbit that received no RIC stimulus. The 
cardioprotection was also not reduced when transferred 
to a denervated rabbit heart [74]. A substantial amount 
of research has been undertaken to try and determine 
the humoral effector(s) of RIC, of which many have been 
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studied, and is beyond the scope of this article. Readers 
are directed to two very detailed recent review articles 
[36, 75] for comprehensive analysis and discussion of the 
latest evidence. To summarise, the most significant or 
likely humoral effector candidates resulting in a reduced 
myocardial infarct size (the most frequently used end-
point for RIC studies [48]) would appear to be adenosine, 
CGRP, bradykinin, nitric oxide (NO) and plasma nitrite, 
hypoxia inducible factor 1-α, erythropoietin, stromal-
derived factor-1α, and microRNAs [reviewed in 36, 40]. 
Apolipotrotein A1 [76, 77] and kynurenic acid [78] are 
also potential effectors. Extracellular vesicles, which can 
transport microRNAs, are likely to be important in con-
veying the cardioprotective signal [79]. Evidence exists 
for the involvement of numerous substances, but none 
appear to act as an effector in isolation and it is likely 
that many pathways are involved [36]. The late phase 
of RIC appears to include nitric oxide synthase, heat 
shock proteins and also cyclooxygenase-2 [reviewed in 
52, 80]. Most investigations of the late phase of ischae-
mic conditioning have assessed the mechanism of local 
(not remote) ischaemic preconditioning [81]. It is felt the 
mechanisms are similar, but that both the early and late 
phase of RIPC are reliant on neural pathways to a greater 
degree than local ischaemic preconditioning [42]. The 
late phase of RIPC has also been shown to result in the 
mobilisation of bone marrow-derived stem cells, includ-
ing CD34+ cells, into both the peripheral blood and 
damaged myocardium, which have the capacity to induce 
angiogenesis and endothelial repair [82, 83].

Neural and humoral mechanisms are closely linked
Shimizu et  al.’s rabbit study proving cardioprotection 
could be transferred to a denervated heart [74] is often 
cited as evidence that neural pathways are less crucial to 
the mechanism of RIC. This had appeared the case for 
the target organ effects, but certainly does not exclude 
neural pathways as being essential for the generation 
of the protective signal, nor for the release of humoral 
factor(s) either locally or via neural pathways to other 
non-target organs [47]. In a very recent study by Pick-
ard et  al.’s research team, an ex  vivo rat heart received 
dialysate from donor rats following RIC administra-
tion to the donor. Cardioprotection from a subsequent 
induced myocardial infarction was abrogated by admin-
istration of either atropine or hexamethonium to the 
recipient, immediately before dialysate treatment [69]. 
Vagotomy prior to the RIC protocol in donor rats also 
abrogated the RIC cardioprotection in the naïve recipi-
ent rat heart [69]. These findings are evidence that both 
neural and humoral pathways are integrally linked, at 
least in the early phase of RIPC for cardioprotection, and 
also confirm that neural pathways are important as far 

downstream as the target organ itself. Pickard et al. sus-
pect the likely involvement of intrinsic cardiac ganglia in 
the mechanism [69]. In addition to neural and humoral 
pathways, there is evidence that an anti-inflammatory 
effect is produced by RIC through alteration of inflam-
matory gene expression [84], neutrophil function [85], 
and interleukin-10 upregulation [86].

End‑organ protection
The end result of cardioprotection occurs via activation 
of the reperfusion injury salvage kinase (RISK) pathways, 
protein kinase C pathways (via adenosine triphosphate-
sensitive potassium channels) and survival activating 
factor enhancement (SAFE) during reperfusion. Mito-
chondrial influx of molecules and cell death during reper-
fusion is then prevented by closure of the mitochondrial 
permeability transitions pore [36, 46, 48, 52, 75]. The 
mechanism of neuroprotection, in contrast, is less well 
studied as an end point of RIC than cardioprotection. 
It is likely to involve similar mitochondrial pro-survival 
pathways preventing apoptosis, the neuroprotective acti-
vation of synaptic N-methyl-d-aspartate receptors and 
increased cerebral blood flow [87, 88]. The mechanism of 
renoprotection in RIC is even less well understood and 
researched, although cell cycle arrest is thought to be 
involved [89].

Nociceptive‑induced conditioning
In a study by Jones et al. [90] using a mouse model, and 
in a study by Gross et  al. [91] in dogs, the intriguing 
phenomenon of remote preconditioning of trauma was 
identified. The animals in both studies were subjected to 
a shallow wound being administered prior to inducing 
myocardial infarction, and this procedure was found to 
be cardioprotective, reducing infarct sizes by 80 and 59 % 
respectively. This protection could be blocked by admin-
istration of local anaesthesia at the wound site [90]. The 
application of topical capsaicin also had a similar effect 
in decreasing myocardial infarction size [90, 92]. These 
findings have been termed nociceptive-induced remote 
conditioning [66]. Redington et al. took the further step 
to demonstrate that electroacupuncture also was cardio-
protective, with many similarities to RIPC and previous 
nociceptive conditioning studies [93].

Considering the impressive findings of the nocice-
ptive-inducing cardioprotection studies, we propose 
that this may also be a substantial confounding factor 
in many translational RIPC studies, resulting in mis-
leading conclusions. An example would be human stud-
ies in RIPC used prior to coronary artery bypass graft 
(CABG) surgery. The control groups do not receive the 
RIPC protocol in these trials, but both groups necessarily 
require a large central sternotomy wound. Applying the 
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conclusions from the nociceptive-induced remote myo-
cardial conditioning studies described above, one could 
argue that the central sternotomy wound in itself could 
provide conditioning, to which RIPC may not contribute 
significant additional benefit. The impact, location and 
timing of any co-administered local, regional and/or gen-
eral anaesthesia could also potentially alter nociceptive-
induced conditioning, varying with the protocol used. 
The same concepts may apply to any medical or surgical 
procedure or treatment involving trauma or nociception. 
Logically, it could therefore be anticipated that study 
groups receiving non-invasive treatment for relatively 
painless conditions would benefit most from RIC, with 
no co-conditioning from pain or trauma. The promising 
early use of RIC for ischaemic stroke is one such example 
[87].

To ignore the potential for nociceptive co-conditioning 
in a study may lead to incorrect conclusions regarding 
the response to RIPC. We suspect it would be important 
to evaluate previous and future study designs carefully, to 
establish whether pain or trauma could be a confound-
ing factor due to co-conditioning. To the authors’ knowl-
edge, the lowest threshold or dose necessary to induce 
nociceptive conditioning has not yet been established. 
If superficial skin wounds [91] and electroacupuncture 
[93] are sufficient, it remains to be seen whether other 
very minor procedures, such as intramuscular injections, 
cannulations and capillary blood sampling, can trigger 
nociceptive conditioning. Should small, minor stimuli be 
sufficient, it is plausible that the earliest recorded thera-
peutic use of nociceptive conditioning in humans was in 
fact 100BC (or earlier) in China, when acupuncture prac-
tice was first clearly documented [94].

Difficulties in clinical translation of remote 
ischaemic conditioning
Clinical studies that show benefits, such as the applica-
tion of RIC in CABG surgery and elective and primary 
percutaneous coronary intervention (PCI), have not 
always been reproducible [36, 48, 95–99]. The most fre-
quent positive findings have been seen in the use of RIC 
intervention in primary PCI [47]. Results from animal 
RIC studies are typically more promising than those in 
humans [98, 100]. Conflicting findings may be due to dif-
ferences between the animal models studied and humans 
[48, 98, 100], or to limitations in study designs [48]. In 
human studies, it is also very likely to be due to co-mor-
bidity [48, 98, 101], co-medication and differing anaes-
thetic protocols [98, 101–105], heterogeneity in study 
designs [48, 62], and other factors that cannot be pre-
dicted due to an incomplete understanding of the mecha-
nisms and interaction of neural and humoral pathways in 
RIC. As a consequence, confounding factors are likely to 

be unwittingly present in studies, which could result in 
misleading conclusions.

Difficulties in clinical translation of ischaemic 
conditioning in diabetes
As ischaemia plays an important role in the pathophysi-
ology of many complications of T2DM, and the diabetic 
state appears particularly vulnerable to ischaemia–reper-
fusion injury [106], it seems intuitive that patients with 
T2DM would benefit from ischaemic conditioning. How-
ever, mixed and neutral findings have been reported in 
preclinical and clinical studies in diabetes [48, 107–110], 
with particularly poor results in preclinical postcondi-
tioning studies [48]. The majority of human studies in 
diabetes have assessed cardioprotection in acute myocar-
dial infarction (AMI) following ischaemic conditioning, 
with disappointing results [98]. Conversely, evidence for 
the preservation of RIPC cardioprotection in human dia-
betics undergoing percutaneous coronary intervention 
was found in a 2014 meta-analysis [111].

The number of human ischaemic conditioning studies 
specifically in T2DM is, however, very small, particularly 
with the gold-standard endpoint of myocardial infarction 
size, and most of these do not assess remote ischaemic 
conditioning efficacy [98, 100, 107]. The first early win-
dow of protection in diabetes has also received consid-
erably more study than the second window. In studies 
performed with favourable cardioprotective outcomes 
for ischaemic (pre- and post-) conditioning in diabetes, a 
common finding is that an increased ischaemic stimulus 
is often required [112–115].

Potential factors in type 2 diabetes limiting efficacy
Cardiomyocyte changes
Complex changes have been detected in diabetic hearts, 
in human and animal model studies (particularly assess-
ing postconditioning [48]), that are likely to result in the 
myocardium being less responsive to ischaemic con-
ditioning and RIC. These include impaired kinase and 
signalling pathways. Specifically, these are altered extra-
cellular signal-regulated kinase (ERK) 1/2 [116, 117], 
decreased phosphorylation of glycogen synthase kinase-3 
beta [117, 118], impaired [112, 113, 117] or chronic [114] 
Akt phosphorylation and Akt activity [119], effects on 
mitochondrial adenosine triphosphate (ATP)-dependent 
potassium channels [106, 120–124], decreased CGRP 
[125], reduced adenosine [108], altered bioavailability 
of NO [126] and abnormalities of other apoptotic path-
ways [127, 128]. In a human RIPC diabetes study, raised 
O-linked β-N-acetylglucosamine was found to be associ-
ated with a state of chronic cardioprotection, with sub-
sequent RIPC providing no additional benefit [129]. 
Perplexingly, the diabetic state has also been found to 
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limit ischaemia–reperfusion injury [110, 130]. This was 
highlighted in a study by Ma et al. using streptozotocin-
induced diabetic rat models, although protection was 
limited to 2  weeks following induction of diabetes. Akt 
activation, increased NO and VEGF formation leading to 
angiogenesis were identified as likely mechanisms [131]. 
A study by Ravingerová et  al. using a similar diabetic 
rat model also concluded that early diabetes conferred 
resistance to myocardial necrosis [132]. In this instance, 
RIC may offer little additional benefit.

Hyperglycaemia
Hyperglycaemia and resultant oxidative stress are likely 
to be involved in the changes of the abovementioned 
pathways in diabetes [108, 133]. Whilst many studies 
have demonstrated the loss of cardioprotection from 
ischaemic conditioning in hyperglycaemia [116, 121, 
134–137], this loss of cardioprotection was identified in 
a Zucker obese rat study before the onset of hypergly-
caemia [123]. This demonstrated that hyperglycaemia is 
not the only underlying mechanism in the loss of cardio-
protection in type 2 diabetes. To further complicate the 
picture, studies of hyperglycaemia in animal models of 
type 1 diabetes demonstrated that acute diabetes is car-
dioprotective, but these benefits were lost after 6 weeks 
of onset of diabetes [reviewed in 109]. In addition to 
hyperglycaemia, insulin is also an important factor in 
cardioprotection. Activation of Akt by administration of 
insulin has an inhibitory effect on ischaemic precondi-
tioning efficacy [138]. The restoration of cardioprotection 
from ischaemic postconditioning with return to normo-
glycaemia, through transplantation of islet cells, has been 
identified in a type 1 diabetic mouse model study [116]. 
In a separate rat study, however, insulin pretreatment had 
very different findings, with no restoration of cardiopro-
tective effects from ischaemic postconditioning [139].

Most research assessing the sensitivity to ischaemia–
reperfusion injury has focused upon type 1 rather than 
type 2 diabetes [109]. Findings have often been conflict-
ing, perhaps due to the differing methods of inducing 
diabetes, duration and severity of hyperglycaemia, animal 
models used, study protocols, and difficulties in compar-
ing ex vivo, in vivo and in vitro scenarios [109].

Impaired endothelial progenitor cell mobilisation
Diabetes has a negative impact on EPC mobilisation in 
response to ischaemia [140], particularly in the context 
of diabetic neuropathy [141, 142]. It has been demon-
strated that EPC mobilisation occurs following RIPC in 
both mice and humans [82, 83], and this appears likely to 
contribute significantly to the late phase cardioprotec-
tive effects of RIPC [82]. We therefore hypothesise that 
this may be another important and under-recognised 

mechanism behind the poorer response to RIPC in 
T2DM, particularly in the rarely-studied late phase of 
protection. Poor EPC mobilisation following AMI is 
known to be associated with adverse outcomes, espe-
cially in diabetes [143], and results in impaired neovas-
cularisation [142]. Interestingly, diabetic mobilopathy has 
improved following administration of dipeptidyl pepti-
dase-4 (DPP-4) inhibition [144].

Comorbidity and co‑medication
Evidence exists that many conditions frequently occur-
ring in T2DM also have a negative effect on cardio-
protection in ischaemic conditioning. These include 
hyperlipidaemia, particularly in ischaemic postcondi-
tioning [98, 100, 145, 146], obesity [123, 147], and hyper-
tension [100, 148]. Ventricular hypertrophy abolished 
cardioprotection in some animal model studies and not 
others [100, 149]. Chronic kidney disease surprisingly 
does not appear to abrogate the protective effects of 
ischaemic conditioning [98] and RIPC shows promise in 
providing renoprotection from acute injury [89], particu-
larly contrast-induced acute kidney injury [50]. Diabetic 
neuropathy is known to abrogate the effect of RIPC [64], 
and is outlined in the section below.

Many medications used in the management of diabetes 
and its complications have been shown to have an effect 
upon ischaemic conditioning. Some are inherently car-
dioprotective, providing pharmacological conditioning. 
Examples include insulin [102, 150], metformin [151–
153], sitagliptin [151], exenatide [154], sildenafil [102, 
155], beta blockers [156] and potentially ACE inhibitors 
[102]. It is suspected that ischaemic conditioning may 
offer limited additional benefit when applied concur-
rently with pharmacological conditioning [95]. Other 
medication, such as statins [157], glimepiride [158, 159] 
and losartan or valsartan (angiotensin II receptor type 
1 blockers) [160] have demonstrated augmentation or 
restoration of cardioprotection from ischaemic condi-
tioning in diabetes and/or hyperglycaemia. Yet other 
classes abrogate the effects of ischaemic conditioning 
altogether, including older sulfonylureas such as gliben-
clamide [reviewed in 151]. Despite the knowledge about 
the effects of these medications, study findings of these 
effects are not always consistent, limiting further under-
standing. For example, in a retrospective analysis assess-
ing the impact of likely confounders of RIC in CABG 
surgery outcomes, statins and cardioprotective antihy-
pertensives were reported as not altering RIC cardiopro-
tection [161].

It is essential to note that the majority of studies assess-
ing the impact of comorbidity and co-medication upon 
cardioprotection in T2DM have used a local (not remote) 
ischaemic conditioning protocol [100], and small animal 
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models [48, 151]. Many of the preclinical studies assess-
ing the impact of medication used in human T2DM have 
been conducted utilising non-diabetic animals [151]. 
Most of the diabetic animal models and protocols used 
would not reflect the duration of T2DM and extent of 
diabetic complications seen in humans (including neu-
ropathy), nor the true impact of polypharmacy, drug 
doses used in clinical practice, lifestyle choices and con-
siderable comorbidity frequently encountered in T2DM 
[48, 100, 109]. Although such preclinical studies are 
much needed in T2DM, it is difficult to be certain of the 
degree of translatability and relevance through extrapola-
tion of their key findings to human T2DM, particularly in 
the context of RIC. Thus, it is more than likely that these 
issues contribute to conflicting results from many ischae-
mic conditioning and RIC clinical studies in T2DM.

Readers are referred to comprehensive reviews of the 
impact of diabetes in ischaemic conditioning of the myo-
cardium [98, 107, 108, 145], and medications commonly 
prescribed in T2DM [98, 151], for a more in-depth dis-
cussion of the difficulties in clinical translation of RIC in 
T2DM.

Neural pathways in remote ischaemic conditioning 
and neuropathy of type 2 diabetes
Both the early and late phases of RIPC are dependent 
upon neural pathways, identified in a key human study 
by Loukogeorgakis et al. assessing the effects of RIPC on 
endothelial function as an endpoint [42]. More evidence 
for the requirement of a neural pathway in RIPC, spe-
cifically in the diabetic population, comes from another 
crucial study by Jensen and colleagues, who successfully 
demonstrated that intact peripheral nerves in human 
T2DM subjects were critical for generating the dialys-
able, transferrable cardioprotective factors that reduced 
myocardial infarct size in rabbits [64]. Jensen et al. found 
that the protective effect was the same in both non-dia-
betic subjects and diabetics without peripheral neuropa-
thy, but that there was no protective effect in the dialysate 
obtained from diabetic patients with peripheral neuropa-
thy, even with an intensified RIPC stimulus [64].

Peripheral neuropathy
Of interest is that Jensen et  al.’s study protocol utilised 
the upper arm for the RIPC administration. The exact 
location of the peripheral neuropathy in the T2DM 
neuropathy group is not documented in the article 
[64]. Unless in advanced cases of peripheral sensorimo-
tor neuropathy, sensory deficits occur predominantly 
in the lower limb neural pathways, as the neuropathy is 
nerve length-dependent in its pathophysiology [162]. It 
would be beneficial to establish the site(s) of the bioth-
esiometer readings obtained from those in the peripheral 

neuropathy group of Jensen et  al.’s study; unfortunately, 
the author was not contactable. If lower limb sensory 
neuropathy in one or both limbs abrogated the benefit 
of RIPC applied to an upper limb without any detectable 
sensory deficits, this would raise yet further questions 
about the complex mechanisms of RIPC. It could also 
raise the possibility that the cardioprotective effects of 
RIPC may have been reduced by coexisting neuropathy at 
other sites. Tentolouris et al. found that peripheral neu-
ropathy and autonomic neuropathy, specifically cardio-
vascular autonomic neuropathy (CAN), coexisted in 45 % 
of cases of T2DM [163].

Peripheral neuropathy is prevalent in the T2DM popula-
tion, with distal symmetric polyneuropathy being the most 
common [162]. Diabetic sensorimotor polyneuropathy 
(DSPN) is initially subclinical, and progresses to overt clini-
cal symptoms and increased severity [164]. Research has 
shown that diabetic neuropathy may often be present when 
T2DM is first diagnosed. A study of 39 patients at diagnosis 
of T2DM found 82 % of the patients had electrophysiologi-
cal abnormalities in peripheral nerve conduction studies, 
62 % of these in more than one parameter [165].

Diabetic sensory neuropathy, particularly in relation to 
nociceptive fibres, decreases the release and homing of 
bone marrow-derived haematopoietic stem cells [141]. 
Evidence suggests that this stem cell response is impor-
tant for angiogenesis and vascular regeneration [140, 
166], including wound healing in diabetic model mice 
[167], and could be part of the mechanism for the late 
window of protection in RIPC [80, 82]. The pathogenesis 
of diabetic stem cell mobilopathy is also likely to involve 
diabetic autonomic neuropathy [168–170]. Bone mar-
row receives sympathetic nervous system innervation, 
involved in the mobilisation of stem cells [170, 171], and 
diabetes can lead to autonomic neuropathy of the bone 
marrow [168, 170].

Autonomic neuropathy
The autonomic nervous system (ANS) is commonly 
abnormal in patients with longstanding diabetes. Human 
and animal studies referred to above have demonstrated 
the integral role of the ANS in RIPC. Despite the fact 
that the ANS and the vagus nerve have been identified 
as being critical for the cardioprotection of RIPC, we are 
not aware of any studies published exploring the impact 
of autonomic neuropathy upon the effectiveness of RIPC 
in a clinical or human context. Decreased parasympa-
thetic tone and dysfunction is mentioned, however, by 
Mastitskaya et al. as being a possible explanation for dis-
appointing results in some studies, when their research 
team discovered that sectioning the posterior gastric 
branch of the vagus nerve in rats abrogated the effects of 
RIPC [72].
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Diabetic autonomic neuropathy (DAN) can occur 
subclinically in T2DM within a year of onset, although 
symptoms typically develop after years [172]. The lengthy 
vagus nerve can be one of the first affected by neuropa-
thy [172, 173]. DAN may occur before diabetic neuropa-
thy involves the peripheral sensory nervous system. The 
commonest form of DAN is CAN, defined as impaired 
autonomic control of the cardiovascular system [164]. 
The prevalence of DAN, using various criteria, has been 
reported to be between 15 and 35  % in T2DM, and is 
commonly undiagnosed [172]. CAN, like DAN, can 
develop subclinically within a year of onset of diabe-
tes [173]. The reported prevalence of CAN in T2DM 
also varies widely, listed as between 20 and 70 % in one 
review, depending on differing diagnostic criteria and 
duration of diabetes [174]. DePace et al. report one-third 
of T2DM patients at diagnosis have CAN [175].

Given knowledge about the essential role of the vagus 
nerve in RIPC and the high prevalence of (often undiag-
nosed) CAN, we suspect that the presence of autonomic 
neuropathy may be an unrealised but significant contrib-
uting factor in the poorer or variable response to RIPC in 
diabetic (and non-diabetic) patients identified in studies, 
and thus a confounding variable. CAN is associated with 
a significantly increased risk of myocardial infarction 
and mortality, and an independent risk factor even in 
those at high cardiovascular risk [174–176]. We propose 
a decreased response to RIPC, and by extension, poten-
tially even to physiological conditioning such as regular 
physical exercise, in patients with CAN.

Another common form of DAN in T2DM is gastro-
intestinal autonomic neuropathy (GAN). The most fre-
quent form of GAN is gastroparesis, which occurs in 
30–50 % of patients with longstanding T2DM [177, 178]. 
Mastitskaya et  al.’s 2016 study indicated the importance 
of the posterior gastric branch of the vagus nerve in the 
RIPC mechanism for cardioprotection in a rat model 
[72]. It remains to be seen whether GAN affects this spe-
cific branch of the vagus nerve, and thus could inhibit 
RIPC cardioprotective pathways.

Bilateral renal denervation has been shown to abrogate 
RIPC cardioprotective effects, concomitantly inhibiting 
erythropoietin production, in a murine model [70]. Eryth-
ropoietin-neutralising antibodies also abrogated the effect 
of RIPC in the absence of renal denervation [70]. The renal 
nerve consists of efferent and afferent sympathetic fibres 
[179], which have been hypothesised to be abnormal in 
severe DAN, resulting in erythropoietin deficiency (inde-
pendent of nephropathy) in these patients [180].

Calcitonin gene related peptide
Decreased secretion of the neurotransmitters CGRP 
and substance P from neurons following noxious stimuli 

is a consequence of diabetic neuropathy [23]. The man-
agement of painful diabetic peripheral neuropathy, and 
neuropathic pain in non-diabetics, has been substan-
tially improved by the use of pregabalin and gabapentin 
(gabapentinoids) [162, 181, 182]. Gabapentinoids are 
believed to inhibit the modulation of neuronal excit-
ability, and also decrease neurotransmitters release in 
the presence of inflammation, including CGRP and sub-
stance P [183, 184]. This prevents nociceptive signal 
transmission [184].

Calcitonin gene related peptide has been identified 
as important in the cardioprotective neurohumoral 
pathways of RIPC [63], and in local pre- and post-con-
ditioning [185]. As discussed earlier, activation of nocice-
ptive-inducing pathways (C fibres, or capsaicin-sensitive) 
is crucial in the neural mechanisms of RIPC [59] as well 
as for the release of haematopoietic stem cells [141]. If 
gabapentinoids block these pathways, they potentially 
could reduce the effectiveness of RIPC and local ischae-
mic conditioning. Further well-designed studies are 
therefore required to clarify if anti-nociceptive phar-
macotherapy may have an impact on different forms of 
ischaemic conditioning.

Implications of abnormal neural pathways
We were unable to identify any articles or studies under-
taken to date primarily addressing DAN, CAN, or DSPN 
in RIC (other than the study by Jensen et  al. [64]) and 
their potential impact upon RIC efficacy. Indeed, despite 
Jensen et  al.’s study findings, the presence, absence or 
degree of peripheral sensory neuropathy is rarely men-
tioned when comparing groups within a RIPC study, 
even when such a study is specifically investigating diabe-
tes, or diabetes as a co-variate. As both DSPN and CAN 
are commonly undiagnosed and may be subclinical, yet 
prevalent in T2DM and even early T2DM (for CAN in 
particular), they have the potential to be significant but 
overlooked confounding variables in many studies of 
RIPC in diabetic participants to date, and further stud-
ies are warranted. Examination is not difficult to perform 
for CAN or DSPN; the screening is straightforward, non-
invasive, safe, inexpensive and can be undertaken in an 
office setting [173, 186, 187].

Repeat remote ischaemic conditioning
A more recent method of ischaemic conditioning is 
repeat ischaemic conditioning, typically administered 
remotely. Although often termed repeat, regular or inter-
mittent remote ischaemic preconditioning, intervention 
studies utilising this method are generally applied to a 
chronic condition (such as heart failure [188], endothe-
lial dysfunction [189], stroke recurrence [43] or chronic 
wounds [44]) or following an acute ischaemic episode 
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(such as in a lower limb [190], post-myocardial infarc-
tion [191] or cerebrovascular accident [43]). Depending 
on the context, the chronicity of pathological ischaemia 
in the cohort, and endpoints studied, this would more 
accurately represent combinations of pre, per and post-
conditioning, reflected in the term repeat remote ischae-
mic conditioning (RRIC). Neural plasticity effects of RRIC 
have also been examined in an intriguing small study 
of healthy adult participants, demonstrating that RRIC 
aided motor learning and retention [192]. Although 
few in number and with a broad variety of endpoints, 
it would appear that both preclinical and clinical RRIC 
studies cited above have more consistently yielded sig-
nificant beneficial results, particularly in comparison to 
clinical single-dose RIC and local ischaemic condition-
ing studies. Importantly, early evidence shows efficacy of 
RRIC in humans is not lost with advanced age. A study 
of 58 patients aged 80–95 years found twice daily RRIC 
for 180 days was effective in preventing stroke recurrence 
compared to sham control, without any safety concerns 
[193]. In contrast, RIC studies examining the impact 
of ageing, most assessing cardioprotection in animals, 
have revealed that efficacy predominantly declines with 
increasing age [48].

Mechanisms
The mechanisms of RRIC are less well studied than in 
RIC [57]. Although it would seem logical that they may 
be similar to RIC, gene expression studies by Depre et al. 
and Shen et  al. demonstrated this is not correct [194, 
195]. Further, unlike the late phase of protection in RIPC, 
RRIC pathways do not appear to involve cyclooxyge-
nase-2 [196]. A 4 week RRIC study by Yamaguchi et  al. 
assessing cardiac remodelling in rats following myocar-
dial infarction, revealed beneficial effects were associated 
with higher levels of miR-29a expression [188]. Kimura 
et al. also conducted a 4 week study, assessing endothelial 
function in healthy humans, and found RRIC was associ-
ated with improved endothelial function, and raised EPC, 
VEGF and NO levels [197]. Neutrophil function changes 
(including decreased adhesion and suppressed phagocy-
tosis) and cytokine changes, associated with modulation 
of the systemic inflammatory response, have been identi-
fied in a 10 day human RRIC study by Shimizu et al. [85]. 
These changes were significant, and felt to be beneficial 
by the research team since tissue damage in ischaemia–
reperfusion injury is facilitated by neutrophil adhe-
sion [198]. RRIC improves skin perfusion in addition to 
endothelial function, even 8 days beyond RRIC interven-
tion cessation, as demonstrated by Jones et al. [45]. It is 
also suspected that the effects from repeated ischaemia 
may be due in part to shear stress [57], leading to the 

mobilisation of EPCs recorded by Kimura et al. and thus 
neovascularisation and improved vascular function [197].

Effectiveness of repeat remote ischaemic 
conditioning in type 2 diabetes
As we have demonstrated above, many factors poten-
tially limit the benefits from ischaemic conditioning and 
RIC in diabetic patients. It is therefore unexpected that 
a recent study showed diabetic patients with refractory 
lower leg ulcers had significant improvement following 
repeat RIC [44]. In Shaked et  al.’s double-blinded ran-
domised study with sham control, 22 patients received 
3 fortnightly cycles of RRIC to both arms, in addition to 
standard wound care. At the completion of the 6  week 
study, 9/22 (41 %) of the study group had complete heal-
ing of their ulcer compared to 0/12 of the control group 
[44]. Questionably, only one participant in each group 
was reported as having “neuropathy”, even though this 
was not listed in the exclusion criteria for the study. 46 % 
of the study group at commencement were documented 
as having local infection in the ulcer and 69 % in the con-
trol group. There were some further limitations with the 
study due to other important variables being unmatched 
between groups.

Despite the weaknesses and limitations of Shaked et al.’s 
small study, the wound healing rate of 41 % of refractory 
ulcers in just 6  weeks in a cohort of patients with very 
poorly controlled diabetes, after a mere 3 fortnightly 
remote ischaemic conditioning cycles, is not to be dis-
missed. Further, 14/22 patients in the intervention group 
reached 75 % healing at 6 weeks compared with 3/12 in 
the control group. 55  % of patients in the study group 
with ulcer infection at enrolment had completely healed 
wounds, compared to none in the control group with 
infection [44]. The findings could indicate the potential 
for RRIC providing significant benefit in this group, which 
is easily and cost-effectively administered. Should these 
results be reproducible in larger trials with a more satis-
factorily matched control group, RRIC could revolution-
ize treatment of chronic diabetic foot ulcers. If this were 
the case, it may also point to the potential for RRIC to be 
effective in other chronic diabetic complications or causes 
of ulceration. Given the findings of improved endothe-
lial function and increased NO, EPCs and VEGF levels in 
RRIC studies (albeit with predominantly healthy cohorts) 
discussed above, the effects of RRIC in diabetic nephropa-
thy, neuropathy, coronary artery disease, peripheral arte-
rial disease (PAD) and erectile dysfunction would be 
interesting to study. Endothelial progenitor cell therapy is 
being researched with some success as a potential treat-
ment for stroke [199], another frequent complication of 
diabetes where RRIC may prove effective.
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Shaked et al.’s study involved administration of remote 
conditioning. As local ischaemic preconditioning (IPC) 
appears to rely upon humoral and not neural mecha-
nisms, this could mean local IPC may be relatively unaf-
fected by the presence of DAN or DPSN. We propose 
repeat local IPC in the limb affected by the ulcer could 
possibly prove even more effective than remote ischae-
mic conditioning on this basis, assuming it is as safe and 
well tolerated as remote conditioning. Comparative stud-
ies between repeat remote and local conditioning inter-
ventions in diabetic patients with foot ulcers could be 
worth performing to test this theory. It is also interesting 
to consider Shaked et al.’s diabetic ulcer study had a con-
trol group where standard care did not involve significant 
pain or trauma, thus making co-conditioning from nocic-
eption less likely to confound the outcome.

Shaked et  al.’s study excluded those with moderate-
to-severe PAD, where ankle brachial index was <0.7. 
It is important to note that even in the absence of large 
vessel peripheral arterial disease, diabetic patients fre-
quently have small vessel disease and tissue hypoxia in 
the lower limbs. Shaked et al. write that “peripheral neu-
ropathy induces increased pressure points on the diabetic 
foot, which in turn lead to bouts of cutaneous IR injury” 
[44, p 194], from which RRIC appears likely to provide 
protection.

Diabetes suppresses angiogenesis in wound healing 
[200]. Injection of CD34+  cells into diabetic wounds 
has been found to improve diabetic ulcer wound heal-
ing and significantly enhanced wound revascularisation 
within 7  days [167]. In addition, serum CD34+/CD45-
dim levels measured soon after the development of neu-
ropathic diabetic ulcers have shown to be predictive of 
subsequent wound healing [201]. It is unfortunate EPCs/
CD34+  cells and other factors such as VEGF were not 
measured in Shaked et al.’s study, but it is plausible that 
RRIC may have increased VEGF and/or NO, and thus 
EPCs (potentially overcoming mobilopathy), in the inter-
vention group, consequently improving the impaired 
neovascularisation and wound healing. Both study 
cohorts were likely to have a high prevalence of CAN 
and (potentially undetected) DPSN. Neural mechanisms 
have not been identified nor studied in RRIC. Should the 
findings of Shaked et al. be replicated with more appro-
priately matched control and intervention groups, this 
may suggest that RRIC mechanisms are not as inhibited 
by DPSN as RIPC in diabetes. The issues regarding the 
beneficial effects of local ischaemic conditioning and 
RIC being decreased in the diabetic state, particularly 
relevant to the cardiomyocyte, may be less problematic 
with a different endpoint or target organ, such as wound 
healing. Similarly, it appears likely that the mechanisms 
in RRIC are significantly different to RIC, and coexisting 

neuropathy or co-medication may not result in such neg-
ative effects. Considering the evidence suggesting that 
RRIC leads to a state favouring neovascularisation, raised 
NO and EPCs, and improved microcirculatory function, 
one is tempted to postulate that RRIC may even slightly 
reverse the effects of diabetic neuropathy [202], or micro-
angiopathy- and neuropathy-linked mobilopathy [23], 
hence simultaneously improving the response to each 
subsequently applied dose of RIC. Intermittent hypoxia is 
known to induce neuroplasticity and improve recovery of 
neurological function, including in motoneurons [192].

Raising levels of EPCs in diabetic patients is highly 
desirable; lower levels being associated with adverse car-
diovascular outcomes [143, 203]. Current methods to 
increase EPCs include administration of granulocyte-col-
ony stimulating factor, which has serious cardiovascular 
side effects and is often ineffective in diabetics [23, 169], 
or by culturing and re-administering EPCs [83]. RRIC 
would offer a safer, more cost-effective and easily-admin-
istered alternative, with automated RRIC devices already 
designed and manufactured for self-administration at 
home.

It is interesting to note that smoking [204] and hyper-
lipidaemia [205] are associated with poor bone marrow 
release of EPCs, in addition to a poorer response to RIPC 
[98, 206]. Statins [207], independent of effects on serum 
lipid levels, and sitagliptin [151, 159, 208] have cardio-
protective properties in diabetes, and statins enhance 
cardioprotection in RIC [157, 206]. Studies have demon-
strated that statins [209, 210] and sitagliptin [211] aug-
ment mobilisation of EPCs from bone marrow. Many of 
these facts may be interlinked, particularly in relation to 
the late phase of RIC and possibly RRIC. The effects of 
statins, smoking and anti-diabetic medication on RRIC 
are yet to be determined.

The potential use of ischaemic conditioning in PAD has 
received some attention. A crossover study by Delagarde 
et al. examined claudication distance in 20 patients with 
intermittent claudication after administering 3 intermit-
tent cuff inflations and deflations [212]. A treadmill test 
was undertaken 5  min after completing both the RIPC 
and the control sham procedure, which were 7  days 
apart. Results did not show any alteration in claudication 
distance. It was surmised by Delagarde et al. that patients 
with PAD suffer from chronic ischaemia and reperfu-
sion, and thus are already maximally conditioned. Conse-
quently, they proposed that this may be why RIPC offered 
no additional benefit [212]. It is important to consider 
that performing a treadmill test 5 min after one cycle of 
RIPC would not allow for second window of protection 
(nor RRIC) effects to be assessed other than, to some 
extent, in those participants who performed the RIPC 
protocol first and then control 7  days later. In addition, 
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only 25 % of the participants in the study were recorded 
as being diabetic, and presence of neuropathy was not 
documented. Karakoyun et  al. recently undertook a key 
study of leg ischaemia, with a comparison between repeat 
local ischaemic conditioning, repeat remote ischaemic 
conditioning, no conditioning (ischaemic group) and 
sham control groups in non-diabetic rats [190]. The right 
iliac artery and vein were ligated to create critical limb 
ischaemia in all except the sham group. In the repeat 
local ischaemic conditioning group, the ischaemic stimu-
lus was applied to the right leg and in the RRIC group, 
to the left leg. Both the RRIC and repeat local ischaemic 
conditioning group received 3 cycles of 10 min of ischae-
mia followed by 10  minutes of reperfusion daily until 
sacrificed at days 1,7,14 and 30. The ischaemic group and 
sham group received no further intervention. The find-
ings of Karakoyun et al.’s study were that RRIC resulted 
in increased angiogenesis in the ischaemic right limb, 
although with no improvement in blood flow. The repeat 
local ischaemic conditioning group demonstrated both 
improved angiogenesis and blood flow. These positive 
findings were significant when compared to the ischae-
mic and sham control groups. EPCs were also measured, 
and were particularly higher in the RRIC group [190].

Potential concerns for repeat remote ischaemic 
conditioning in type 2 diabetes
The optimum dose and limb/s used for RRIC are not 
known [56, 87, 213]; considerable variation in study pro-
tocols exists without losing beneficial effects [57]. It is 
unknown if hyperconditioning may be problematic [213]. 
No adverse effects from administration of either RIC [95] 
or RRIC, other than transient minor bruising, have been 
reported, even with frequent and extended administra-
tion of RRIC to two limbs concurrently in a cohort with 
known vascular disease [43].

Despite RIC and RRIC being reported as very safe and 
well tolerated in virtually all studies to date [87], a con-
cern of ours, shared by Heyman et  al. is the potential 
for worsening or increased risk of proliferative diabetic 
retinopathy [214]. Diabetic foot ulcers occur particularly 
in patients with longstanding and/or poorly controlled 
diabetes, which are in turn both highly significant risk 
factors for diabetic retinopathy [215]. VEGF is a key fac-
tor in diabetic retinopathy progression [216]. Kimura 
et al. found VEGF levels to be increased after one month 
of 6 times daily RRIC [197]. In contrast, Czeiger et  al. 
did not identify raised VEGF levels, despite increased 
EPC numbers following RIPC [83]. Further, increased 
EPC levels are associated with a decreased incidence 
of diabetic complications, including retinopathy [142, 
143, 170, 217]. We recommend that future studies of 

ischaemic conditioning in diabetes should assess VEGF 
and EPC levels, particularly if studying repeat ischaemic 
conditioning over long periods in diabetic patients. It is 
possible that the presence or high risk of diabetic retin-
opathy may be found to be a future contraindication to 
RRIC, although we are not aware of any evidence proving 
such a link. Further information from studies is required 
to establish the relationship between frequency, dose 
and form of ischaemic conditioning, VEGF and EPC lev-
els, and any progression of diabetic retinopathy, to guide 
recommendations.

Conclusions
The mechanisms associated with different forms of 
ischaemic conditioning have been discussed in the con-
text of T2DM and diabetic lower extremity ulceration. 
Neural pathways may frequently be affected in diabetic 
cohorts with known or undiagnosed peripheral sensory 
neuropathy, CAN and/or GAN. Ischaemic condition-
ing studies performed on diabetic patients have shown 
varying and mixed results. Conclusions drawn from ear-
lier studies with diabetic patients should be re-evaluated 
carefully, particularly in research protocols where such 
neuropathies were not screened for, disclosed or matched 
between study and control groups. We feel detailed 
investigation is required to assess the impact of diabetic 
neuropathies upon RIPC and repeat RIC in particular. 
Although so far there have been no reported concerns 
with safety in studies, further research and considera-
tion are required to assess the levels of VEGF, and all 
alterations of humoral effectors as they become known 
in RRIC, and establish that these are not harmful in the 
longer term. Repeat RIC may be an effective new method 
to consider in the treatment of diabetic lower extremity 
ulceration and peripheral arterial disease that is inex-
pensive, easy to administer in any location, and well 
tolerated.
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