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Abstract

Background: We have previously shown that in hypertensive Dahl salt-sensitive (DS) rats, impaired endothelium-
dependent relaxation to acetylcholine and to insulin is mechanistically linked to up-regulation of angiotensin (Ang) II
actions and the production of reactive oxygen species (ROS) and to activation of the proinflammatory transcription
factor (NF)κB. Here we investigated whether Ang II activation of NFκB contributed to insulin resistance in the skeletal
muscle of this animal model.

Methods: DS rats were fed either a normal (NS, 0.5% NaCl) or high (HS, 4% NaCl) salt diet for 6 weeks. In addition, 3
separate groups of HS rats were given angiotensin receptor 1 blocker candesartan (ARB, 10 mg/kg/day in drinking
water), antioxidant tempol (1 mmol/L in drinking water) or NFκB inhibitor PDTC (150 mg/kg in drinking water).

Results: DS rats manifested an increase in soleus muscle Ang II content, ROS production and phosopho-IκBα/IκBα ratio,
ARB or tempol reduced ROS and phospho-IκBα/IκBα ratio. Hypertensive DS rats also manifested a reduction in glucose
infusion rate, impaired insulin-induced Akt phosphorylation and Glut-4 translocation in the soleus muscle, which were
prevented with treatment of either ARB, tempol, or PDTC. Data from the rat diabetes signaling pathway PCR array
showed that 8 genes among 84 target genes were altered in the muscle of hypertensive rats with the increase in gene
expression of ACE1 and 5 proinflammatory genes, and decrease of 2 glucose metabolic genes. Incubation of the muscle
with NFκB SN50 (a specific peptide inhibitor of NFκB) ex vivo reversed changes in hypertension-induced gene expression.

Conclusion: The current findings strongly suggest that the activation of NFκB inflammatory pathway by Ang II play a
critical role in skeletal muscle insulin resistance in salt-sensitive hypertension.
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Introduction
Hypertension and type 2 diabetic mellitus (T2DM) are
two powerful risk factors for the development of cardio-
vascular diseases (CVD) [1,2]. Salt sensitivity of blood
pressure and insulin resistance have been identified as
key elements underlying the relationship between hyper-
tension and T2DM. Excess dietary salt and caloric in-
take, as commonly found in westernized diets, are linked
not only to increased blood pressure, but also to defect-
ive insulin sensitivity and impaired glucose homeostasis
[3-5]. Insulin resistance is highly prevalent in the patients
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with essential hypertension, particularly those with salt-
sensitivity [6]. However, there are still critical gaps in our
knowledge of the mechanisms that lead to the development
of insulin resistance in salt-sensitive (SS) hypertension.
Abnormal activation of renin-angiotensin system (RAS),

oxidative stress, excessive dietary salt and fat intakes are
factors that contribute to the development of insulin re-
sistance [7-10]. Insulin stimulates glucose transport and
vasodilation through the activation of phosphatidylinositol
3-kinase (PI3K) and nitric oxide (NO) signaling pathway
[11,12]. It has been shown that angiotensin (Ang) II in-
hibits insulin stimulation of PI3K, thereby preventing the
activation of downstream signaling molecules, including
NO production in endothelial cells, and Glut-4 transloca-
tion in skeletal muscle cells [13,14]. We have recently
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shown in hypertensive Dahl SS (DS) rat, a paradigm of hu-
man SS hypertension characterized by cardiovascular in-
jury and insulin resistance, that the upregulation of local
(vasculature) Ang II activates the redox-sensitive transcrip-
tion factor nuclear factor kappa (NFκB), which contributes
to endothelial dysfunction, vascular inflammation, and the
impairment of insulin-mediated vasorelaxation [13,15,16].
There is considerable evidence showing that insulin

resistance is associated with low-grade inflammation
[10,17-19]. NF κB is a primary regulator for proinflamma-
tory gene expression and inhibition of the NFκB inflam-
matory activation has been shown to improve insulin
sensitivity and cardiovascular injury in metabolic and
hypertensive diseases [17,20]. The skeletal muscle is the
largest insulin sensitive tissue and handles over 75% of the
insulin-mediated glucose disposal in the body [21]. There-
fore, we tested the hypothesis that in SS hypertension, the
activation of NFκB inflammatory pathway by upregulation
of endogenous Ang II/reactive oxygen species (ROS) im-
pairs insulin sensitivity and insulin signaling in the skeletal
muscle.
Methods
Animals and experimental protocols
The animals were housed in facilities accredited by the
American Association for Accreditation of Laboratory
Animal Care. The Institutional Animal Care and Use
Committee at the Miami Veterans Affairs Medical Center
approved the studies. Six-week-old DS male rats were pur-
chased from Harlan Sprague-Dawley (Indianapolis, IN)
and maintained under controlled conditions of light,
temperature, and humidity. After 2 weeks of acclimatizing
to the new environment, the rats were divided into 5
groups and treated for 6 weeks as follow: NS, fed 0.5%
NaCl (normal salt) diet (n = 6); HS, fed 4% NaCl (high salt)
diet (n = 7); HS/ARB: fed HS plus angiotensin receptor 1
blocker candesartan (ARB, 10 mg/kg/day in drinking
water, n = 7); HS/Temp: fed HS diet plus antioxidant tem-
pol (1 mmol/L in drinking water, n = 6); HS/PDTC, fed
HS diet plus pyrrolidine dithiocarbamate (PDTC, 150 mg/
kg in drinking water, n = 6), an inhibitor of NFκB activa-
tion. At the end of the study, the rats were euthanized by
decapitation and the soleus muscles were harvested for
determination of Ang II content, superoxide (O2

-) produc-
tion and PCR array gene expression.
Determination of Ang II level
Ang II content in the soleus muscle was measured using
the method established by Nishiyama et al and quanti-
fied with a competitive single antibody radioimmuno-
assay [22], using rabbit anti-Ang II antibody (Peninsula,
Belmont, CA) and monoiodinated 125I-labeled Ang II
(Amersham, Arlington Heights, IL). All samples were
assayed in duplicates, and mean values were plotted
against a curve generated by the Ang II standard.

Determination of O2
– generation

The soleus muscle was isolated and cut into small pieces.
Generation of O2

– in fresh tissue was determined by the
chemiluminescence of lucigenin (5 μM), as previously de-
scribed [23], and the results were expressed as counts/
min/mg dry tissue. The chemiluminescence of lucigenin
has been validated as a method in our previous studies to
measure O2

- [23].

Hyperinsulinemic-euglycemic clamp study and
determination of intra-arterial pressure
A separate group of rats were used to determine mean ar-
terial blood pressure (MAP) and glucose infusion rate, an
index for metabolic insulin sensitivity, measured by the
hyperinsulinemic-euglycemic clamp. The animals were
fasted overnight before the experiments were conducted.
The rats were anesthetized with pentobarbital sodium
(50 mg/kg I.P.) and maintained at 37°C with a heating
pad. The right femoral vein and left femoral artery were
catheterized and used for monitoring blood pressure. The
arterial catheter was connected to a pressure transducer.
After a 60-min equilibration period, MAP was recorded by
Powerlab (ADInstruments Inc, Colorado Springs CO). The
rats were then used for a hyperinsulinemic-euglycemic
clamp study. The right femoral vein and left femoral artery
were used for glucose and insulin infusion and blood sam-
pling, respectively. Baseline plasma samples were ob-
tained, after which insulin (Sigma) at a constant rate of
30 mU · kg–1 · min–1 and glucose (17.5 g/100 ml saline) at
varying infusion rates were continuously infused for
120 min. The blood glucose concentration, measured with
an automatic blood glucose meter (Accu-Chek Advantage
Blood Glucose Meter), was clamped at 5.5 mmol/L. Fast-
ing plasma levels of insulin at baseline was measured by
ELISA following the manufacture’s instructions (R&D Sys-
tems, Minneapolis, MN). Euglycemia was achieved by
60 min and maintained for 60 min. The glucose infusion
rate was adjusted according to the blood glucose levels at
5-min intervals during the first 60-min period and, once
stable, at 15-min intervals during the second 60-min
period. The samples obtained over the second 60-min
period were averaged and reported as the mean steady-
state glucose infusion rate (mg · kg–1 · min–1) required for
maintaining euglycemic conditions in the setting of hyper-
insulinemia. After the completion of the euglycermic
clamp, the soleus muscles were harvested and used for de-
termination of the insulin signaling molecules.

Western blot
The protein expression of IκBα, phospho (Ser 32)-IκBα,
phospho (Ser 612)-IRS1, or phsopho (Ser 473)-Akt in
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the soleus muscle was determined by Western blot ana-
lysis. Briefly, after homogenization, protein concentra-
tion was determined by Bio-Rad protein assay. Thirty μg
of protein were separated by SDS-PAGE and transferred
to a nitrocellulose membrane. Transferred proteins were
incubated overnight with specific polyclonal antibodies
against IκBα, phospho (Ser 32)-IκBα, phospho (Ser 612)-
IRS1 or phospho (Ser 473)-Akt (Cell Signaling). After
washing, the blots were incubated with a secondary anti-
body and the signal was detected by luminol chemilu-
minescence followed by exposure to an autoradiography
film. The membrane was reblotted for β-actin (Santa
Cruz Biotechnology Inc.), to serve as a loading control.
The data was normalized to β-actin and expressed as
fold increase versus NS group.

Isolation of membrane fraction and determination of
Glut-4 expression
The soleus muscle was homogenized and centrifuged for
10 min. at 1,000 g at 4°C. The supernatant was saved;
the pellet was resuspended in 1/3 of the initial volume,
and centrifuged again at 1,000 g for 10 min. The two
supernatant solutions were mixed and submitted to cen-
trifugation at 41,000 g for one hour. The final pellet was
resuspended in 100 μl of buffer as a total membrane
fraction. Glut-4 expression was determined by Western
blot and normalized by β-actin.

Real-time PCR
Total RNA (2 μg) was extracted from the soleus muscle
and reverse-transcribed using the SuperScript II RT First
Strand Synthesis kit (Gibco, BRL), according to the man-
ufacturer’s directions. Real-time PCR (RTq-PCR) for
p22phox (Assay ID: Rn00577357_m1, Life Technolo-
gies), gp91phox (Assay ID: Rn00576710_m1) of nicotina-
mide adenine dinucleotide phosphate (reduced form,
NADPH) oxidase subunits, suppressors of cytokine sig-
naling 3 (SOCS3, Assay ID: Rn00585674-S1) and inter-
leukin 6 (IL6, Assay ID:Rn00561420-m1) was performed
in 20 μl reaction mixture containing an appropriately di-
luted (80 ng) cDNA solution, 0.1 μmol/L each primer,
0.2 μmol/L probe and PCR Master Mix assay kit (ABI)
as previously described [7]. All PCR primers with fluor-
escence probe were ordered through life technologies
(ABI) online system with assay ID. The relative expres-
sion of each mRNA was normalized by a housekeeping
gene (GADPH), and expressed as fold increase vs. the
NS group.

PCR array for determination of mRNA profile of rat
diabetes signaling pathway in the soleus muscle
The soleus muscles from DS rats fed a NS or HS diet for
6 weeks were dissected and cut into small pieces. The
muscles from HS rats were incubated with SN50 (55 μg/ml,
a cell-permeable peptide specific inhibitor of NFκB nu-
clear translocation) or SM50 (55 μg/ml, a mutated in-
active control peptide, BIOMOL Research Lab. Inc.
(Plymouth Meeting, PA)) in DMEM containing 0.1% BSA
bubbled with 95% oxygen supplement for 120 min. The
muscle was homogenated in 1 ml Trizol reagent (Life
Technologies). One μg of RNA was converted to cDNA
with random primers in a 20-μl reaction volume using a
high capacity cDNA archive kit (C-3, Superarray). The
cDNA was diluted to a volume of 100 μl, one μl cDNA
was used for each primer set in the PCR Array according
to the manufacturer’s protocol. Rat diabetes signaling
pathway (PARN-023, Superarray) PCR array was used to
determine a panel of diabetes gene expression. This PCR
array includes 84 target genes related to obesity, insulin
resistance, early onset of diabetes, complications from
diabetes mellitus, and 12 control genes. Additionally, con-
trol genes are included in each array to control for gen-
omic DNA contamination, RNA quality, housekeeping
and general PCR performance. Data analysis was per-
formed using the manufacturer’s integrated web-based
software package for the PCR Array System using delta-
delta Ct based fold-change calculations and normalized
by a housekeeping control gene. Based on PCR array re-
sults, we further confirmed the expression of SOCS3 and
IL 6 by RTq-PCR.
Data analysis
The results were expressed as mean ± standard error of
the mean (SEM). Statistical analyses were performed by
ANOVA with Bonferonni’s correction for multiple com-
parisons. Significance was assumed at p < 0.05.
Results
MAP and metabolic parameters
High salt intake for 6 weeks significantly increased MAP
(147 ± 6 vs. 103 ± 4 mmHg in NS; P < 0.05), as assessed
by direct intra-arterial measurements. ARB candesartan
(HS/ARB), antioxidant tempol (HS/Temp) or PDTC
(HS/PDTC) treatment slightly but significantly reduced
MAP (20-25% reduction, all p < 0.05). The rats however
remained severely hypertensive (Figure 1A). Hyperten-
sive DS rats manifested a tendency towards decreased
body weight gain as compared with NS rats, but this did
not reach statistical significance (384 ± 13 vs. 405 ± 9 g
in NS, p < 0.1). The ARB, tempol or PDTC treatment
did not affect body weight (data not shown). There were
no significant differences in fasting plasma levels of insu-
lin (3.6 ± 0.9 in HS vs. 3.3 ± 0.7 ng/ml in NS, p > 0.05) or
glucose (95 ± 6 in HS vs. 91 ± 5 mg/dl in NS, p > 0.05)
between HS and NS DS rats. Treatment with ARB, tem-
pol or PDTC did not affect fast plasma levels of insulin
or glucose (data not shown).
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Figure 1 Mean arterial blood pressure (MAP, A) and Ang II content (B) in the soleus muscle of Dahl salt-sensitive (DS) rats. The data was
expressed as mean ± SEM. *P < 0.05 vs. NS. #p < 0.05 vs. HS; N = 6-7.
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Increased endogenous Ang II level in the soleus muscle
of hypertensive DS rats
As shown in Figure 1B, Ang II concentration in the so-
leus muscle from hypertensive DS rats was significantly
higher than in those in the normotensive DS rats (3145 ±
575 vs. 1405 ± 480 fmol/g tissue in NS, p < 0.05). To our
knowledge, this is the first evidence showing an increase
in endogenous Ang II level in the skeletal muscle of gen-
etic SS hypertensive animal model.

Increased O2
- production was linked to upregulation of

Ang II action in the soleus muscle of hypertensive DS rats
We have previously shown that upregulation of Ang II
was linked to increased vascular O2

- production in this
animal model [16,23]. Hypertensive DS rats also had a sig-
nificant increase in O2

- production in the soleus muscle,
determined by lucigenin chemiluminescence, and ARB
candesartan normalized O2

- production (Figure 2A). In
addition, using RTq-PCR, we determined the expression
of NADPH oxidase subunits, including p22phox and
gp91phox in the soleus muscle. The mRNA expression of
p22phox and gp91phox in HS rats was significantly in-
creased by 87% and 125% respectively, compared with NS
rats (all p < 0.05) and ARB treatment in HS-DS rats pre-
vented the increase in the mRNA expression of p22phox
and gp91phox (all p < 0.05, Figure 2B-2C).

The treatment of ARB or tempol inhibited NFκB activation
in the soleus muscle of hypertensive DS rats
NFκB activation is initiated from the phosphorylation of
IκB. Decreased IκB or increased ratio of phospho-IκB/
IκB is an index of NFκB activation [24]. As shown in
Figure 3, hypertensive DS rats exhibited a significant de-
crease in IκBα expression and increase in the ratio of
phospho-IκBα/IkBα compared with normotensive DS
rats (all p < 0.05). Either ARB candesartan or antioxidant
tempol normalized IκBα or the ratio of phsopho-IkBα/
IkBα, suggesting upregulation of endogeous Ang II/ROS
participate in NFκB activation.
The ARB candesartan, antioxidant tempol or inhibition of
NFκB PDTC improved insulin sensitivity in hypertensive
DS rats
To determine the glucose infusion rate, an index of insu-
lin sensitivity, we used the hyperinsulinemic-euglycemic
clamp technique. As shown in Figure 4, the glucose infu-
sion rate necessary to maintain plasma glucose levels at
5.5 mmol/L was significantly lower in HS rats when
compared with NS rats (p < 0.05), indicating the pres-
ence of metabolic insulin resistance in hypertensive DS
rats. The treatment with either ARB, tempol or PDTC sig-
nificantly improved the glucose infusion rate (all p < 0.05).

Protein expression of insulin signaling molecules
It is well known that insulin induces glucose transport
via activation of the IRS-1/PI3K/Akt/Glut-4 pathway
[21]. The expression of phospho (Ser 612)-IRS-1 was
significantly increased in HS group compared with NS
group (p < 0.05) and was normalized by the treatment of
either ARB, tempol or PDTC treatment (Figure 5A).
Downstream molecules of the insulin activation of the
PI3K pathway in the skeletal muscle include the phos-
phorylation of Akt and Glut-4 translocation in the mem-
brane. As shown in Figures 5B&C, the protein expression
of phospho-Akt at Ser473, and Glut-4 in membrane frac-
tion was significantly reduced in the soleus muscle of
hypertensive DS rats (all p < 0.05) and restored in the rats
treated with either ARB, tempol or PDTC (Figure 5B&C).

Effect of NFκB inhibition on gene profile related to onset,
development and progression of diabetes in the soleus
muscle of hypertensive DS rats
NFκB is a primary regulator of inflammatory responses
by increasing transcriptional activity of at least 125
genes, most of which are proinflammatory [25]. Here we
used the rat diabetes signaling pathway PCR array to de-
termine key gene expression changes (84 target genes)
in the soleus muscle. The PCR array includes genes that
contribute to obesity, insulin resistance, the early onset
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of diabetes, and complications from diabetes. As shown in
the Table 1, among the 84 target genes, 8 genes were al-
tered in the soleus muscle of HS-DS rats treated with con-
trol peptide SM-50, compared with NS rats. Of the 8 genes
whose expression was significantly altered, 6 increased
4
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Figure 3 Protein expression of inhibitory kappa Bα(IκBα) and phospho
(Ser32)-Iκbα in the soleus muscle of DS rats. The expression of IκBα
was decreased, the ratio of IκBα/phospho-IκBα (Ser32) was increased in
the muscle of hypertensive DS rats, which were significantly inhibited
by the treatment of either angiotensin receptor 1 blocker (ARB)
candesartan or antioxidant tempol. *P < 0.05 vs. NS, #p < 0.05 vs. HS.
N = 4-5.
including: angiotensin converting enzyme (ACE)1, 5 of
proinflammatory genes including tumor necrosis factor
(TNF)α, SOCS3, IL-6, monocyte chemoattractant protein-1
(MCP-1), and intracellular adhesion molecule-1 (ICAM-1).
Additionally, 2 genes regulating glucose metabolic
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enzyme glycerol-3-phosphate dehydrogenase 1 and peroxi-
some proliferator-activated receptor coactivator (PCG)1
(the gene that regulate mitochondria biogenesis) were
decreased. Pre-incubation with NFκB peptide inhibitor
SN50 (HS-SN50) reversed gene expression changes in
seven of the above mentioned genes, ACE1 was not
significantly affected by SN50 treatment. In addition, we
Table 1 Profile gene by PCR array in skeletal muscle of DS
rats (fold increase)

Gene NS HS/SM50 HS/SN50

ACE1 1 ± 0.1 1.7 ± 0.2* 1.6 ± 0.2*

MCP1 1 ± 0.2 2.5 ± 0.6* 1.5 ± 0.4#

ICAM1 1 ± 0.1 8.2 ± 4.6* 2.9 ± 1.2*#

IL6 1 ± 0.2 10.1 ± 1.3* 1.7 ± 1.1*#

TNFα 1 ± 0.1 1.7 ± 0.4* 0.7 ± 0.2#

SOCS3 1 ± 0.1 7.3 ± 3.6* 1.5 ± 0.7#

GPD1 1 ± 0.1 0.6 ± 0.1* 1.1 ± 0.2#

PGC1 1 ± 0.2 0.4 ± 0.1* 1.2 ± 0.2#

Note: PCR: polymerase chain reaction; DS: Dahl salt-sensitive; ACE1: angiotensin
converting enzyme 1; MCP1: monocyte chemoattract protein 1; ICAM1: intracellular
adhesion molecule 1; IL6: interleukin 6, TNFα; Tumor necrosis factor a; SOCS3:
suppressor of cytokine signaling 3; GPD1: Glycerol-3- phosphate dehydrogenase
1, PCG1: PPARγ coactivated factor 1. *p < 0.05 vs. NS; #p < 0.05 vs. HS-SM50.
N = 4.
further confirmed that individual gene expression of SOCS3
and IL6 was significantly increased in hypertensive rats
(HS-SM50) and reduced in hypertensive rats treated with
NFκB inhibitor SN-50 by real-time PCR (Figure 6). These
data suggest that activation of NFκB may play a role in the
induction of skeletal muscle inflammation and insulin
resistance in hypertension.

Discussion
The present study demonstrates that the synthesis of
Ang II is increased in the skeletal muscle of genetic SS
hypertensive DS rats. Increased Ang II stimulation of
NADPH oxidase-derived ROS activates NFκB inflamma-
tory pathway, which in turn impairs insulin signaling
and Glut-4 translocation in the skeletal muscle and in-
duces systemic insulin resistance.

Association of hypertension and insulin resistance: role
of RAS
Diminished tissue sensitivity to insulin is a central feature
of various pathological conditions termed the metabolic
syndrome (MS) [1]. Insulin resistance and hypertension
are key components of MS and often co-exist. Since pa-
tients with MS are commonly afflicted with cardiovascular
morbidities, MS and CVDs share common pathways, such
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as, activated RAS, increased oxidative stress, defective glu-
cose and lipid metabolism, low grade inflammation and
endothelial damage [1,2].
The effects of the systemic RAS on blood pressure and

glucose metabolism have been well demonstrated [9],
and local tissue RAS in the skeletal muscle, vasculature,
adipocytes and pancreas may also play an important role
in the development of insulin resistance and vascular in-
jury in diabetic and hypertensive diseases [14,26]. Ang II
(via AT1R), the predominant component of RAS, in-
duces insulin resistance through variety of mechanisms
including inhibition of insulin signaling and insulin me-
diated glucose uptake in the skeletal muscle, decreased
insulin secretion from pancreatic beta cells and alterna-
tion in adipocyte homeostasis [27,28]. In contrast to the
Ang II/AT1R axis, other components of RAS, such as
Ang (1-7), AT2R or AT4R may have alternate effects on
insulin sensitivity and vascular function [29-31]. For ex-
ample, Ang- (1-7) improves insulin sensitivity and pan-
creatic β cell survival in STZ-induced diabetic mice [31]
and deletion of AT2R may reverse diabetes-induced
endothelial function and vascular injury [30]. We have
previously shown that in SS hypertension upregulation
of local Ang II action (vasculature) induced endothelial
dysfunction and vascular injury [13], here we further
demonstrated that the blockade of Ang II by ARB can-
desartan improved skeletal muscle and systemic insulin
sensitivity in hypertensive DS rats. Our data support the
idea that activation of RAS is a common link between
insulin resistance and vascular injury in SS hypertension.
We have to emphasize although it has been shown that

ARBs are superior to other active antihypertensive agents
for reduced incidence of new onset of TD2M in the pa-
tients with hypertension, the association of ARBs with dia-
betes risk may differ [32,33]. Some ARBs, for example,
olmesartan may be associated with a slightly increased risk
of diabetes mellitus [32]. The different actions of anti-
diabetic effects by ARBs may be related to improvement
of insulin sensitivity and other properties of ARBs such as
activation of peroxisome proliferator-activated receptor
gamma or insulin sensitizing effects [33,34].

RAS/ROS in skeletal muscle insulin resistance
It has been shown that skeletal muscle cells contain
many components of RAS, including angiotensinogen,
Ang I and Ang II, ACE1, AT1R and AT2R [21,35]. The
present study showed that Ang II content was increased
in the skeletal muscle of hypertensive DS rats. As the ex-
pression of ACE1 was also increased in the skeletal
muscle of hypertensive DS rats (Table 1), the increased
Ang II content may mainly be due to an increased rate
of in situ synthesis of Ang II. Therefore, Ang II has pro-
oxidant effects, as the upregulation of Ang II increased
ROS production through stimulation of NADPH oxidase
in the muscle (Figure 2) [36].
An increasing body of evidence supports the role of

Ang II in the multifactorial etiology of skeletal muscle
insulin resistance [36-38]. Acute infusion of Ang II into
the interstitial space of skeletal muscle has been shown
to impair insulin-mediated glucose uptake, which was
independent of alteration in blood flow [39]. Chronic infu-
sion of Ang II in the rat was associated with diminution of
whole body glucose disposal and reduced skeletal muscle
glucose uptake, likely due to increased ROS production
[3,40]. Furthermore, in cultured L6 myotubes, Ang II
stimulated serine-phosphorylation of IRS-1 [36]. Phos-
phorylation of IRS-1 at specific serine residues inhibited
insulin stimulation of tyrosine phosphorylation, subse-
quently inhibiting downstream PI3K signaling [14].
The present study demonstrated that upregulation of

endogenous Ang II-induced ROS impaired insulin sig-
naling and Glut-4 translocation in the skeletal muscle of
hypertensive rats and resulted in systemic insulin resist-
ance. Since Ang II/ROS (via NADPH oxidase) is present
in both skeletal myocytes and the vascular tissue of arte-
rioles that supply blood to these myocytes [26,35], a
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large number of studies have shown a relationship be-
tween microvascular dysfunction and skeletal muscle in-
sulin resistance [41-43]. The present study has some
limitations that we did not investigate the effects of insulin
on microvascular function in the skeletal muscle. How-
ever, based on our previous findings that ARB or anti-
oxidant tempol improved endothelium function and
insulin-induced vasorelaxation in the aorta of this animal
model [13,15], it is reasonable to speculate that improve-
ment of skeletal muscle insulin resistance by the ARB or
antioxidant tempol may be, at least in part, attributed to
their hemodynamic action in skeletal muscle [26,36,40].

Ang II and ROS converge on NFκB to inhibit insulin
signaling
It is increasingly recognized that chronic inflammation
plays a critical role in the pathogenesis of hypertension,
insulin resistance and atherosclerotic diseases [44,45].
NFκB is a redox-sensitive transcript factor that regulates
the transcription of a large number of proinflammatory
genes. Ang II, oxidative stress and proinflammatory cy-
tokines are the factors that induce NFκB activation [25].
Ang II binding to AT1R activates NFκB in a ROS-
dependent manner. ROS activates IκB kinase (IKK) to
induce IκB phosphorylation, resulting in the activation
of NFκB [25,46]. Here we showed that hypertensive DS
rats exhibited a decreased IκB and increased the ratio of
phospho-IκBα/IκBα, which was prevented by either ARB
candesartan or antioxidant tempol, suggesting involve-
ment of Ang II/ROS in activation of NFκB in skeletal
muscle of this animal model. Furthermore, inhibition of
NFκB using SN50 reversed gene profile related to devel-
opment of insulin resistance and diabetes and improved
skeletal muscle insulin signaling. Moreover, a number of
the genes such as proinflammatory genes of TNFα, IL6
and COCS3, which were increased in the muscle of
hypertensive DS rats (Table 1), have been shown to play
a fundamental role in the pathogenesis of insulin resist-
ance and T2DM [47,48]. Therefore, our data support the
idea that in SS hypertension, Ang II and ROS converge
on NFκB signaling, which in turn induces skeletal muscle
inflammation and insulin resistance.
In summary, clinical and experimental studies have

shown that the inhibition of Ang II by ACE inhibitors or
ARBs or antioxidants improve insulin sensitivity and gly-
cemic control in diabetic patients and animals and re-
duce the incidence of new onset type 2 diabetes [33,39].
The present study demonstrated that increased en-
dogenous Ang II/ROS activation of NFκB inflammatory
pathway impairs insulin signaling and Glut-4 transolca-
tion in the skeletal muscle of SS hypertension. The
current finding, in conjunction with our recent studies
[13,15] in the effects of ARB, antioxidant or NFκB inhib-
ition on endothelial function, vascular inflammation and
CV injury strongly suggest that Ang II/ROS activation of
NFκB is an important link among hypertension, vascular
injury and insulin resistance.

Abbreviation
Ang II: Angiotensin II; ACE: Angiotensin converting enzyme; ARB: Angiotensin
receptor 1 blocker; CVD: Cardiovascular disease; DS: Dahl salt-sensitive;
IRS1: Insulin receptor substance 1; IL6: Interleukin 6; ICAM1: Intracellular
adhesion molecule-1; MAP: Mean arterial blood pressure; MCP-1: Monocyte
chemoattractant protein-1; NADPH: Nicotinamide adenine dinucleotide
phosphate (reduced form); NO: Nitric oxide; NFκB: Nuclear factor kappa B;
PI3K: Phosphatidylinositol 3-kinase; PDTC: Pyrrolidine dithiocarbamate;
ROS: Reactive oxygen species; RAS: Renin-angiotensin system; SS: Salt-
sensitive; O2

-: Superoxide anion; SOCS3: Suppressors of cytokine signaling 3;
TNFα: Tumor necrosis factor α; T2DM: Type 2 diabetic mellitus.
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