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Abstract

Background: Vascular smooth muscular cells (VSMC) express lipogenic genes. Therefore in situ
lipogenesis could provide fatty acids for triglycerides synthesis and cholesterol esterification and
contribute to lipid accumulation in arterial wall with aging and during atheroma.

Methods: We investigated expression of lipogenic genes in human and rat arterial walls, its
regulation in cultured VSMC and determined if it is modified during insulin-resistance and diabetes,
situations with increased risk for atheroma.

Results: Zucker obese (ZO) and diabetic (ZDF) rats accumulated more triglycerides in their
aortas than their respective control rats, and this triglycerides content increased with age in ZDF
and control rats. However the expression in aortas of lipogenic genes, or of genes involved in fatty
acids uptake, was not higher in ZDF and ZO rats and did not increase with age. Expression of
lipogenesis-related genes was not increased in human arterial wall (carotid endarterectomy) of
diabetic compared to non-diabetic patients. In vitro, glucose and adipogenic medium (ADM)
stimulated moderately the expression and activity of lipogenesis in VSMC from control rats. LXR
agonists, but not PXR agonist, stimulated also lipogenesis in VSMC but not in arterial wall in vivo.
Lipogenic genes expression was lower in VSMC from ZO rats and not stimulated by glucose or
ADM.

Conclusion: Lipogenic genes are expressed in arterial wall and VSMC; this expression is
stimulated (VSMC) by glucose, ADM and LXR agonists. During insulin-resistance and diabetes, this
expression is not increased and resists to the actions of glucose and ADM. It is unlikely that this
metabolic pathway contribute to lipid accumulation of arterial wall during insulin-resistance and
diabetes and thus to the increased risk of atheroma observed in these situations.
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Introduction

Excessive accumulation of lipid substrates in non-adipose
tissues has serious adverse effects on cell functions (lipo-
toxicity) [1] and can contribute to the development of
insulin-resistance [2]. Indeed numerous studies have
shown an inverse relationship between tissue lipid accu-
mulation and sensitivity to insulin of glucose metabolism
in liver [3] and skeletal muscle [4]. In such studies tissue
lipid accumulation is usually appreciated by measuring
triglycerides (TG) content although recent studies clearly
show that deleterious effects are not due to the accumula-
tion of TG itself [5] but to other lipid metabolites such as
palmitate, diacylglycerols and ceramide [6-8]. The arterial
wall of obese Zucker rats is insulin-resistant although this
resistance is limited to the PI3-kinase pathway [9]. In
addition, this pathway has also been found insulin-resist-
ant in cultured vascular smooth muscular cells (VSMC) of
diabetic patients [10]. The mechanisms responsible for
this resistance have not been clarified. It could result from
excessive concentration of plasma cytokines such as TNFa.
[11], of raised levels of angiotensin II or local overexpres-
sion of components of the renin-angiotensin system
[10,12]. It could also result of excessive accumulation of
lipid substrates. Actually, arterial wall accumulate TG with
aging [13]. In addition, foam cells of atheroma plaques
accumulate not only cholesterol but also significant
amounts of TG (8-10%of total lipid) [14-16]. These cellu-
lar TG modify the physical state of stored esterified choles-
terol and this could affect the way it is hydrolyzed and
effluxed [17]. Therefore, accumulation of TG could also
play a role in atheroma. TG synthesis, as well as choles-
terol esterification, requires long chain fatty acyl-CoA.
Acyl-CoA can be provided by the uptake of circulating lip-
ids (plasma non esterified fatty acids, NEFA, or TG-fatty
acids of TG rich lipoproteins) but also by in situ synthesis,
the pathway of de novo lipogenesis (DNL). Indeed, arterial
wall, foam cells, macrophages and vascular smooth mus-
cular cells (VSMC) incorporate labeled acetate into phos-
pholipids and TG [18]. More recently, Davies et al [13]
showed that human VSMC express lipogenic genes such as
Srebp-1¢, the transcription factor mediating the lipogenic
action of insulin [19], and fatty acid synthase (FAS) and
that these expressions, and the intracellular accumulation
of TG, are increased by culture in an adipogenic differen-
tiation medium (ADM). Moreover, TO901317, a LXR ago-
nist, also stimulated the expression of Srebp-1c and FAS
suggesting that the lipogenic action of LXR described in
liver, adipose tissue and skeletal muscle [20-23] is also
present in VSMC. Lastly Davies et al found that FAS and
Srebp-1c are expressed in human atherosclerotic lesions
and suggested that enhanced VSMC lipogenesis and lipid
accumulation could be involved in the development of
atheroma [13]. This possibility should be kept in mind
when developing nuclear receptor agonists for treatment
of atherosclerosis.
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Insulin-resistance and type 2 diabetes are risk factors for
atherosclerosis and are characterized by high concentra-
tions of insulin and/or glucose. Lipogenesis is stimulated
in tissues such as liver by insulin and glucose [19,24,25].
If present in arterial wall, this stimulation could result in
increased tissue lipid accumulation, aggravating further
the resistance to insulin of local glucose metabolism, and
possibly contribute to the accelerated atherosclerosis of
insulin-resistance and diabetes. However, the expression
of lipogenic genes is not increased but rather decreased in
skeletal muscle of insulin-resistant and type 2 diabetic
subjects, and is resistant to the action of insulin [26].
Therefore, our aims were to determine i) if TG accumula-
tion is increased in arterial wall in experimental models of
insulin-resistance and diabetes and if an increased expres-
sion of lipogenesis-related genes could contribute to this
increase, ii) if lipogenesis is stimulated by insulin and glu-
cose in VSMC and if this response is modified by insulin-
resistance. In addition, we determined whether lipogene-
sis in VSMC is responsive or not to other hormones (thy-
roid hormones, angiotensin II) known to stimulate it in
other cells such as hepatocytes or adipocytes. Lastly, the
LXR agonist (TO90137) used by Davies et al has been
shown to be actually a dual, LXR and PXR agonist [27].
PXR stimulates lipogenesis in liver [28] and is expressed in
the vasculature [29]. Therefore we verified whether the
effects of TO901317 in VSMC were mediated by activa-
tion of LXR or of PXR.

Materials and methods

In vivo studies in rats

These studies were conducted in accordance with the
French regulation for experimentation in animals. Male
Zucker obese (ZO, n = 18) and Zucker diabetic (ZDF, n =
15) (fa/fa) rats and their control, normal littermates (con-
trols CO, n = 18, and CZ, n = 15, respectively, +/+)
(Charles River, L'Arbresle, France) were housed at arrival
(six weeks old) in an animal facility with controlled tem-
perature (22 + 1°C) and lightning (light on at 7:00 AM
and off at 7:00 PM). Throughout the study they had free
access to water and food. All ZDF rats and their controls
received the diet (Purina 5008, protein 26.8%, carbohy-
drate 56.4% (91% starch, 9% simples carbohydrates), fat
16.7% of caloric value, IPS, London, UK) recommended
for the development of diabetes in male ZDF rats. ZO rats
and their controls received standard diet. Body weight was
recorded once a week. After one week of acclimatizing
(age of 7 weeks) five rats of the ZDF and CZ groups and
six of the ZO and CO groups were sacrificed for blood col-
lection and tissue sampling. The remaining rats were sac-
rificed at the age of 14 weeks or of 21 weeks (5 rats of the
ZDF and CZ groups and 6 rats of the ZO and CO groups
at each sacrifice)
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The day of sacrifice, food was removed at 08:00 AM and
rats anesthetized at 02:00 PM (pentobarbital IP 60 mg/
kg), in the post-absorptive state. Blood was collected and
plasma stored at -20°C until analysis. Thoracic aorta was
removed, flushed with cold isotonic saline, carefully
cleaned of perivascular adipose tissue and flash frozen in
liquid nitrogen before storage at -80°C until analysis.
Liver samples were also collected from ZO and CO rats,
washed with cold isotonic saline, flash frozen with liquid
nitrogen and stored at -80°C until analysis

Carotid endarterectomy in human subjects

The procedure was approved by local ethical committee
and all subjects gave their informed consent. Human
atheroma plaques were removed during carotid endarter-
ectomy from 12 subjects (8 males, 4 females, aged 65 + 5
years). 6 subjects had overt type 2 diabetes with mild glu-
cose control (plasma glucose: 8.91 + 1.90 mM). The oth-
ers had evidence of insulin resistance with normal plasma
glucose (4.66 + 0.30 mM) and moderate increase in basal
level of plasma insulin concentration (16.8 + 1.7 mU/L,
normal <10 mU/L). 3 diabetic subjects received met-
formin and 3 sulfonylurea treatment. Diabetic and non-
diabetic patients had comparable BMI (26.7 + 2.0 vs 26.5
+ 1.8) but diabetic subjects had higher plasma cholesterol
(546 £0.16 vs 4.40 + 0.41 mM p < 0.05) and TG (2.28 =
0.19vs 1.51 +0.11 mM p < 0.01) levels. Samples collected
directly in the surgery room were immediately divided in
2 parts, atheroma plaque and macroscopically intact tis-
sue (MIT) situated in the vicinity of the plaque, and were
flash frozen in liquid nitrogen [30].

In vitro studies

Vascular smooth muscle cells culture

Explants were obtained from thoracic aorta [30] of ZO
and CO rats (14 weeks old); they were prepared after
removing adventitia by collagenase action (0.1%, type IA,
Sigma, L'Isle d'Abeau, France). Small fragments were pre-
pared and placed in 25 cm? culture dishes in VSMC cul-
ture medium (Promocell, Heidelberg, Germany) and
maintained at 37°C under air-CO, (95%-5%) atmos-
phere until they reached confluence. Then, VSMC were
trypsinized (0.08% of trypsin; Gibco, USA) and subcul-
tured. For the experiments, 10 VSMC/ml/well were
seeded in 6 well plates in their usual medium for at least
two days. Twenty four hours before starting the experi-
ments, culture medium was replaced by a basal VSMC
medium without fetal calf serum. On the first day of the
experiments cells were collected in two wells (duplicate)
for basal values (DO0); culture medium was replaced in
other wells and the test substances were added at appro-
priate concentrations. All experiments were done with
cells at passage 3 to 5 or earlier.
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Effects of glucose and adipogenic differentiation factors (ADM)

Cells were cultured for 3, 7 or 21 days [13] in the presence
of basal (1 g/1) or high (5 g/1) glucose concentration and
in the presence or absence of ADM (insulin 1.2 uM, dex-
amethasone 100 nM, tritiodothyronine (T3) 1 nM and 3
isobutyl-1-methyl xanthine (IBMX) 0.25 mM, final con-
centrations in culture medium). This adipogenic differen-
tiation medium is identical to the one shown by Davies et
al to stimulate the expression of lipogenic genes in human
VSMC [13]. Cells remained viable throughout the experi-
ments. We tested also the effects of the addition (during 3
days and 7 days) of insulin or T3 alone (same final con-
centrations). Lastly, since components of the renin-angi-
otensin system are expressed in arterial wall and VSMC
[10] and angiotensin II (Angll) stimulates adipocyte dif-
ferentiation as well as FAS expression and lipogenesis in
adipose cells and liver [31,32], we also tested the effects of
AnglI (100 nM) on the expression of lipogenic genes. In
order to determine if modifications of the expression of
lipogenic genes is accompanied by parallel modifications
of the activity of the lipogenic pathway we measured in
most experiments this activity by determining the incor-
poration of deuterium from deuterated water into the
palmitate of cellular TG [28]. In short deuterated water
(30 pl/ml of culture medium) was added 24 h before the
end of experiments. 24 h later culture medium and VSMC
were collected for measures of deuterium enrichment.

Effects of LXR and PXR agonists

The dual LXR and PXR agonist TO901317 was from Cal-
biochem (Merck, Darmstadt, Germany), others, specific,
LXR agonists (GW3965, paxillin [27,28,33]) and the PXR
agonist (Pregnen-3B-OL-20-ONE-16A-Carbonitrile,
PCN) were from Sigma. Compounds were dissolved in
ethanol (10-30 mM stock solution) and used at the final
concentrations of 10 uM (TO901317 and paxillin) and 30
uM (PCN). Cells obtained from aortas of CO rats were
cultured in the absence (control) or presence of one of the
agonists during three days. Ethanol was added in the con-
trol culture at the same final concentration than in the test
cultures. GW3965 was given by oral gavage to mice (40
mg/kg in 0.5% methylcellulose once a day during three
days, n = 12). Control mice (n = 12) received only meth-
ylcellulose. Thereafter plasma was sampled and mice were
sacrificed for collection of liver and aortas. Six aortas from
each group were used for determination of TG content
and six for mRNA measurements.

Determinations

Blood glucose levels were measured with a glucometer
(One Touch Ultra, Life technology, Issy-Les-Moulineaux,
France), plasma and tissues TG by enzymatic methods
[34] and insulin by ELISA (Cristal Chem, Downers Grove,
II, USA). For measurement of aortic TG concentrations,
parts of the aortas were homogenized in chloroform/
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methanol (1:2, v:v). The chloroform phase was collected,
washed with water and dried under nitrogen. Extracted
lipids were dissolved in propanol for enzymatic determi-
nation of TG concentration [35]. The same procedure was
used for determination of TG concentrations in VSMC.
Measurements of deuterium enrichments in the palmitate
of VSMC TG were performed as previously described
[28,36,37] as well as the calculation of the contribution of
lipogenesis to the cellular TG pool [34,38].

Liver, aortas, endarterectomy pieces or VSMC total RNAs
were purified using TRIZOLR protocol (Invitrogen, Cergy-
Pontoise, France) with the addition of a DNase treatment.
Concentrations and purity were verified by measuring
optical density at 230, 260 and 280 nm and integrity by
agarose gel electrophoresis. For measurements of individ-
ual mRNA levels, total RNA was reverse transcripted using
Superscript II (Invitrogen) and random hexamers. Real
time PCR was performed in a MyIQ thermal cycler (Bio-
rad, Marnes La Coquette, France) using iQ SYBR green
Supermix (Biorad). All samples were run in duplicate
along with dilutions of known amounts of target
sequence for quantification of initial ¢cDNA copies.
Results are expressed as the target over 185 RNA concen-
tration ratio (ng/pg). Primer sequences are shown in table
1.

Statistics

Results are shown as mean + sem. For in vivo rat studies
comparisons were performed by two-way ANOVA (fac-
tors: time and genotype) followed by Bonferroni test. BMI
and plasma values of diabetic and non-diabetic subjects
were compared by two tailed t test for unpaired values and
mRNA values were compared by two-way ANOVA (dia-
betic or not, atheroma plaque or MIT) followed by Bon-
ferroni test. For in vitro studies, comparisons of data
obtained from VSMC of ZO and CO rats in the initial
(basal) state and after culture without or with high glu-
cose concentration and/or ADM were performed by two-
tailed Student t test for unpaired values. Data obtained in
the absence or presence of insulin, T3, Angll, of one of the
LXR or PXR agonists, were compared by one way ANOVA
followed by the Dunnett test to locate the differences. Val-
ues obtained in mice having received GW3965 or vehicle
alone were compared by two-tailed Student t test for
unpaired values. P < 0.05 was considered as indicating a
significant difference. Calculations were performed with
GraphPad Prism 4.02 (GraphPad, San Diego, CA, USA).

Results

I. Hormone and metabolites values in rats (Tables 2 and 3)
7 week old ZDF rats had normal glucose concentrations
but high insulin levels (p < 0.01) indicating the presence
of insulin-resistance (table 2). They had overt diabetes at
the age of 14 and 21 weeks, with persistence of some insu-
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lin secretion at 14 weeks, but almost undetectable insulin
level at 21 weeks. Plasma TG concentrations were very
high in ZDF rats (p < 0.001 vs CZ group). TG concentra-
tions in aortas (table 3) increased with age in both CZ and
ZDF rats, with values higher in both groups at 21 than at
7 week (p < 0.05). These concentrations were higher in
ZDF rats at 7 and 14 week (p < 0.01) with a trend for
higher values at 21 weeks.

ZO rats were insulin-resistant at 7 and 14 weeks, with nor-
mal glucose but raised insulin levels, and developed mild
type 2 diabetes at 21 weeks (table 2). Their plasma TG
concentrations increased with age and were always higher
than in CO rats. TG concentrations in aortas were higher
in ZO and CO rats than in ZDF and the CZ rats respec-
tively. There was a non significant trend for higher values
with increasing age in both ZO and CO rats and concen-
trations were higher in ZO than in the corresponding con-
trol group at 14 weeks with a non-significant trend at 7
and 21 weeks (table 3).

2. Expression in arterial wall of genes involved in de novo
lipogenesis and in plasma lipids uptake (figures | and 2)
We next measured in aortas of ZDF (figure 1) and ZO rats
(figure 2) and of their corresponding controls the mRNA
levels for key enzymes of DNL (ACC1, FAS) and for tran-
scription factors mediating the stimulatory effects of insu-
lin (Srebp-1c) and glucose (ChREBP) on the expression of
lipogenic genes. The expression of these genes did not
increase with age in both ZDF and ZO rats, as well as in
their respective controls. Moreover mRNA levels were not
increased either in ZDF or in ZO rats. Concentrations were
comparable to those found in control rats or slightly
decreased as for Srebp-1c. Therefore there was no correla-
tion between the expression of lipogenic genes and TG
content in aortas and no evidence for an overexpression in
aorta of the lipogenic pathway in these models of insulin-
resistance and diabetes. This lack of increased expression
of lipogenic genes in aortas contrast with the increase
found in liver of ZO rats (figure 3) and previously
reported in livers of ZDF rats [35,39,40]. In the present
experiments, the expression of genes involved in the
uptake of plasma NEFA (FAT) or of fatty acids from TG
rich lipoproteins (LPL and VLDLr) also did not increase
with age and was not higher in aortas from ZDF and ZO
rats than from their controls. Taken all together these
results suggest that the increased TG content of aorta in
70 and ZDF rats does not result from an increased expres-
sion of pathways for fatty acids synthesis or uptake but
probably merely of an increased availability for uptake of
plasma lipid substrates.

Lastly we measured the expression of lipogenic genes in
human arterial wall by measuring relevant mRNA levels in
atheroma plaques and nearby macroscopically intact tis-
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Table I: Primers used for the determination by real-time PCR of mMRNA concentrations:

Name Forward primer Reverse primer Size (bp)
In rats

ACCI caacgcaggcatcagaa caagtattccacagtccc 138
ChREBP cgggacatgtttgatgactatgtc aataaaggtcggatgaggatgct 86
FAS ggtgctacccattegtg ggatgtatcattcttggactt 115
Srebp-lc cgctaccgttectctatcaa ttcgcagggtcaggttetec 164
VLDLr tctggagttcctageteat ccagtgaatttattggcacc 108
FAT aggaagtggcaaagaat tgaaggctcaaagatgg 155
LPL cctgaagacacagctgagga cacccaactctcatacattc 141
In mice:

ACCI cgctggtcttagaagttga tccctgeygatgtatttgat 149
ChREBP gtcegatatctcgacacacte cattgccaacataagcatgttctg 91
FAS tgctgecgtgtecttctacca gcacccaagtcctcgecata 128
Srebp-lc ggcactaagtgecctcaacct gccacatagatctctctgecagegt 8l
FATP cctgeggettcaaca tcagtggctccatcgt 84
FAT ggaactgtgggctcattgc catgagaatgcctccaaacac 68
In humans

ACCI acatccctacgctaaaca agaacatcgctgacacta 85
ChREBP tcggcaatgctgacatg gaggcgggagttggtaaa 98
FAS acggcectcatttccag tgaagctcacccagttatcc 87
Srebp-lc tgaagacagacggagcca ggactgttgccaagatggtt 120
18S (mice, Rat, human) tgaggccatgattaagaggg agtcggcatcgtttatggtc 190

sue (MIT) collected during endarterectomy in diabetic
and non diabetic subjects with carotid atheroma (figure
4). In MIT, expressions of FAS, ACC1, Srebp-1c and
ChREBP were not increased but rather decreased in dia-
betic subjects. In non-diabetic subjects there was no differ-
ence in mRNA concentrations between MIT and atheroma
whereas in diabetic patients there was in plaques a clear
trend for higher values with concentrations, for ACC1,
Srebp-1c and ChREBP near to those observed in plaques
of non-diabetic subjects. These variations could merely
reflect differences in cell population, but there is clearly in

diabetic humans compared to non-diabetic subjects no
increased expression of lipogenesis in arterial wall, as in
diabetic rats.

3. Expression in cultured VSMC of genes involved in DNL
and in lipids uptake

We next investigated the expression of lipogenic genes in
cultured VSMC obtained from aortas of Zucker obese and
control rats. mRNA concentrations of ACC1, FAS, Srebp-
1c and ChREBP were measured in basal conditions
(DMEM with 5 mM glucose) (D0) and then during 3, 7
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Table 2: Plasma values in Zucker obese (ZO) and Zucker diabetic (ZDF) rats and in their respective controls (CO and CZ).

(o7 4 ZDF co y Ao
Triglycerides mM
7 weeks 0.53 £ 0.06 4.12 £ 0.48+F 0.49 + 0.09 1.19 £ 0.09**
14 weeks 0.54 £ 0.07 3.78 + 0.39%F* 0.55 + 0.07 2.15 + 0.30%*
21 weeks 0.59 £ 0.05 5.85 + |.03*F* 0.72+0.17 3.73 £ 1.09%%
Glucose mM
7 weeks 7.39 £0.28 7.32+0.31 6.89 £0.13 7.56 +0.53
14 weeks 7.02 +0.39 30.11 & 0.9 1% 7.52£0.58 7.90 + 0.34
21| weeks 7.58 £0.32 30.20 + 0.2%** 6.05 + 0.64 10.59 + 2.45*%$
Insulin pg/L
7 weeks 47+0.7 16.0 + 3.0°%* 0804 4.8 £ |.0%*
14 weeks 68 |.1 45+ 1.0 1.7 £ 0.4 6.7 £ 0.3+
21 weeks 85+05 <0.05%* 12+0.2 6.3 + 0.5%F*

Measurements were made in the post-absorptive state.

*p <0.05 * p <0.0l, **p <0.00] vs the respective control group; $ p < 0.05 vs the value at 7 weeks of the same group

and 21 days (D3, D7, D21) of culture in presence of high
glucose concentrations (25 mM) and/or adipogenic
medium (ADM) compared with 3, 7 and 21 days of cul-
ture in basal conditions (5 mM glucose, no ADM). In the
initial state (DO, DMEM 5 mM glucose) there was a trend
for higher Srebp-1c mRNA concentration in VSMC of
Zucker obese rats, whereas mRNA concentrations of
ChREBP and ACC1 were comparable and those of FAS
decreased (p < 0.05) in cells from Zucker obese rats (figure
5). When culture was continued in basal conditions
(DMEM, 5 mM glucose) there was a progressive decline of
all mRNA concentrations in VSMC of both control and
obese rats (figure 6 and 7). This fall in mRNA values was
for Srebp-1¢, ChREBP and FAS more important in cells of
obese rats and at 21 days, all these values were lower in
cells from obese than from control rats (figure 6 and 7).
The addition of high glucose concentration or of adipo-
genic medium opposed in part the decline of Srebp-1c
and ChREBP mRNA concentrations in VSMC of control
rats, but without significant modifications in the evolu-
tion of ACC1 and FAS mRNA values. Neither high glucose
concentration nor adipogenic medium modified the evo-
lution of mRNA values in cells from Zucker obese rats,
and values attained at 21 days were always lower than in
cells from control rats. In addition, ADM increased largely
at 21 days TG content (233 £ 22 vs 114 + 11 ug/10° cells,
p < 0.001) and the contribution of DNL to this TG pool

(12.1 £ 1.9 vs 7.1 + 0.5 ng/106 cells, p < 0.05) in VSMC
from control rats whereas the increases were only moder-
ate in cells of obese rats (170 + 11 vs 129 + 17 pg/10° cells,
p <0.05and 10.1 £ 0.9 vs 6.6 + 1.3 pg/10°cells p < 0.05,
respectively) (figure 8). Insulin or T3 alone increased
moderately FAS mRNA, always only in cells from control
rats (figure 9), but not other lipogenic mRNA concentra-
tions (data not shown). In addition, neither the cell con-
tent of TG nor the activity of the lipogenic pathway
measured with deuterated water were modified by insulin
or T3 in cells from control or obese rats (figure 8). AngllI
had a marked effect on FAS expression in VSMC of control
rats and a moderate action in cells from obese rats (figure
9). However other lipogenic mRNAs were not signifi-
cantly modified by AnglI and cellular TG content as well
as activity of lipogenesis (figure 8) were unchanged.

Davies et al reported that TO901317 stimulated the
expression of lipogenic genes in VSMC and ascribed it to
a stimulation of LXRa [13]. However TO901317 is a dual
LXR and PXR agonist [27]. PXR stimulates lipogenesis in
liver [28], is expressed in vasculature [29] and we found
that it is expressed at least at the mRNA level in VSMC
(data not shown). Therefore we compared the effects of
TO901317 with those of paxillin (LXR agonist [28,33])
and of PCN (PXR agonist) on VSMC of control rats. Three
days of culture with TO901317 increased largely TG con-

Table 3: TG content in aortas of Zucker obese (ZO) and diabetic (ZDF) rats and in their respective controls (Co and CZ).

TG pg/mg tissue cz ZDF co zZo
7 weeks 0.28 + 0.06 2.10 + 0.42% 278 +58 49.1 % 5.3+
14 weeks 0.50 + 0.09 257 + 0.37%* 264 + 42 66.9 + 7.8%
21 weeks 264+ 1.16% 492+137% 466+ 112 66.6 +7.2

*p <0.05, * p <0.0l vs the respective control group; $ p < 0.05 vs the value at 7 weeks of the same group
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mRNA concentrations for genes involved in fatty acid synthesis (FAS, ACCI, Srebp-1c, ChREBP) and in
uptake of fatty acids from plasma lipids (FAT, LPL, VLDLY) in aortas of control (CO) and ZO rats studied at
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tent (from 113 + 12 to 277 + 23 pg/106 cells, p < 0.01).
Figure 10 shows that TO901317 increased indeed the
mRNA concentrations of Srebp-1¢, FAS and ACC1 while
PCN had no effects. Paxillin stimulated the expression of
Srebp-1c and FAS but had no effect on ACC1. In addition,
TO90137 increased largely the contribution of de novo
lipogenesis to cell TG content, expressed as percent (6.8
0.8 vs 2.7 + 0.7%, p < 0.01) or absolute value (18.9 + 3.0
vs 2.8 + 0.5 pg/10¢cells, p < 0.01, figure 8) while PCN had
no effect (absolute lipogenesis: 4.0 + 1.1 pg/10° cells).
Taken all together these results show that the effects of
TO901317 on lipogenesis are indeed mediated through
activation of LXR while PXR activation has no stimulatory
effect on lipogenic genes expression or on lipogenic activ-
ity in VSMC. In addition, TO901317 and paxillin had a
moderate effect on the expression of FAT while PCN had
no consistent action (data not shown). Since these in vitro
results confirmed that LXR agonists stimulate the expres-
sion of lipogenic genes in VSMC we tested whether this
action was detectable in arterial walls in vivo. Administra-
tion to mice of GW3965, a LXR agonist without action on
PXR [27], increased as expected hepatic TG content (7.35
+1.31vs2.34 + 0.56 pg/mg liver p < 0.01) and the expres-
sion of FAS and ACC1 in liver (figure 11). However
SREBP-1c expression was unchanged and the increase in

the mRNA level of ChREBP, considered as a target of LXR
[41] was of borderline significance (p = 0.09). Liver FAT
and FATP mRNA levels were not increased (data not
shown). Plasma TG levels were not increased by GW3965,
in agreement with previous data [27,42,43] showing that
this specific LXR agonist has no significant or only a weak
hypertriglyceridemic action. TG content in aortas was
indeed increased by GW3965 (34.7 + 7.5 vs 16.7 + 2.4 pg/
mg tissue p < 0.05) but without increase in the expression
of lipogenic genes (figure 11). FAT mRNA was not
increased either but FATP expression was stimulated (p <
0.01) suggesting that the rise in TG content could be
related to an increased uptake of fatty acids.

Discussion

The present results confirm that the TG content of aortas
increases with age [13]. They show that this content is also
increased in two experimental models of insulin-resist-
ance and diabetes. The presence in these pathological sit-
uations of excessive TG accumulation in non-adipose
tissues, previously reported in liver [35,44], skeletal mus-
cle [45,46], endocrine pancreas [47] and heart [48,49], is
thus extended to arterial wall. Our data also extend the
previous finding that lipogenic genes are expressed in arte-
rial wall and VSMC [13] by showing that ACC1 and
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Figure 6

Srebp-1c and ChREBP mRNA concentrations in cultured VSMC of Zucker obese (ZO) and control (CO) rats.
Concentrations were measured in the basal state (DO, glucose 5 mM) and after 3, 7 and 21 days of culture (D3, D7, D21) in
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p <0.05, ££ p <0.0l, £££ p <0.001 vs the corresponding value of VSMC of control rats.
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Figure 7

FAS and ACCI mRNA concentrations in cultured VSMC of Zucker obese (ZO) and control (CO) rats. Concen-
trations were measured in the basal state (DO, glucose 5 mM) and after 3, 7 and 21 days of culture (D3, D7, D21) in basal con-
ditions (glucose 5 mM), in presence of raised glucose concentration (25 mM) or in the presence of adipogenic differentiation
medium (ADM) without or with raised glucose concentrations. * p < 0.05, ** p < 0.01 vs the value observed at TO; £ p < 0.05,
££p <0.0l, £££ p <0.001 vs the corresponding value of VSMC of control rats.
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ChREBP, the transcription factor mediating the stimula-
tory effects of glucose on lipogenic genes expression, are
also expressed in this tissue and these cells.

Our first aim was to determine whether modifications of
the in situ expression of lipogenic genes could contribute
to physiological (aging) or pathological (insulin-resist-
ance and diabetes) increases in arterial wall TG content.
We found no increase with age or insulin-resistance in any
of the lipogenic mRNA measured. Although we deter-
mined only mRNA concentrations, it is thus unlikely that
enhanced lipogenesis contributed to the increased TG
content. We also found no increase with age or insulin-
resistance in the expression of genes involved in the
uptake of plasma NEFA or of fatty acids of TG-rich lipo-
proteins. Altogether, these results suggest that the
increased TG content of arterial wall observed in insulin-
resistance and diabetes result mainly from the increased
concentration and availability of circulating lipid sub-
strates for uptake by cells of the arterial wall.

The lack of increase of lipogenic mRNA levels in aortas of
insulin-resistant or diabetic Zucker rats strongly suggests
in addition that in these situations lipogenesis is resistant

to the actions of insulin and glucose. Interestingly, when
measuring lipogenic mRNA concentrations in carotid
endarterectomy samples from diabetic and non-diabetic
patients, we found that theses concentrations were
decreased in macroscopically intact arterial tissue of dia-
betic patients and comparable in atheroma plaques of
diabetic and non-diabetic patients, supporting also the
presence of resistance to insulin of arterial lipogenesis in
human diabetes. Data obtained in cultured VSMC of ZO
rats also support this resistance. In basal conditions, FAS
expression was decreased. More importantly, only cells of
control rats had a moderate response of lipogenic genes to
glucose and adipogenic factors in combination or alone.
VSMC from ZO rats did not respond and had mRNA val-
ues largely lower than cells from control rats. Lastly the
stimulatory action of ADM on the activity of the lipogenic
pathway was decreased in VSMC from ZO rats. Taken alto-
gether, theses results obtained in human beings, in rats
and in cultured VSMC strongly support the idea that the
insulin-resistance of arterial wall previously described [9]
involves the lipogenic pathway. This resistance could be
more general since the stimulatory effects of T3 and AnglI
on FAS expression were also reduced or abolished in cells
from ZO rats.
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The status of arterial wall lipogenesis in situations of insu-
lin-resistance is thus comparable to the one observed in
skeletal muscle [26] and adipose tissue [50]: decreased
basal expression and resistance to the action of insulin.
This repression of lipogenesis contrasts sharply with its
hepatic overexpression in both experimental models of
insulin-resistance [35,44] and human subjects with obes-
ity and insulin-resistance [38,50]. In addition, this overex-
pression of liver lipogenic genes contributes to the
excessive hepatic accumulation of TG found in these situ-
ations [25,38,51,52]. The reasons behind this discrepancy
in the status of lipogenesis between liver on one hand and
adipose tissue, skeletal muscle and VSMC on the other
remain unclear. Whatever the reasons for this discrepancy,
the increased lipid accumulation found in arterial wall of
insulin-resistant and diabetic rats could contribute to its
insulin-resistance [9]

Lastly, we confirm the previously described stimulatory
effect of TO901317 on expression of lipogenic genes [13]
in VSMC. We show in addition that this is accompanied
by a clear increase in the activity of the lipogenic pathway
and is mediated though activation of the nuclear receptor
LXR since this effect is reproduced by a specific LXR ago-
nist but not by a selective PXR agonist. LXR agonists have
been proposed as a possible treatment of atheroma.
Indeed they reduce the development of atheroma in mice
model [53] through stimulation of cellular cholesterol
efflux and reverse transport [54], and possibly also
through some anti-inflammatory action [55]. A drawback
with compounds such as TO931317 is the rise in plasma
TG concentrations. This could be solved by using other,
more specific, LXR agonists such as GW3965. Indeed, in
agreement with previous reports [27,42,43], GW3965 did
not increase plasma TG levels in mice. However, despite
the lack of significant increase of the expression of lipo-
genic genes in arterial wall, GW3965 increased in the
present report arterial TG content. The possible deleteri-
ous effects on a long term basis of this increase in arterial
lipids accumulation should be kept in mind. Clarifying
the consequences of such direct actions of LXR agonists on
arterial wall on the development of atheroma will require
further studies.

In summary, we found that arterial wall TG content
increases with age and in situations of insulino-resistance
and type 2 diabetes. Lipogenic genes are expressed in nor-
mal and pathological (atheroma plaques) arterial wall as
well as in VSMC. Their expression is stimulated in vitro by
glucose, ADM and LXR agonists. However, these expres-
sions are not increased during insulin-resistance and dia-
betes and resist to the in vitro actions of glucose and ADM.
Therefore, it is unlikely that in situ (arterial wall) lipogen-
esis contributes to lipid accumulation in arterial wall dur-

http://www.cardiab.com/content/8/1/64

ing insulin-resistance and diabetes and thus to the
increased risk of atheroma observed in these situations.
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