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Abstract

Introduction
Diabetes mellitus is a serious medical problem. It is compli-

Background: Activation of the diacylglycerol (DAG)-protein kinase C (PKC) pathway has been
implicated in the pathogenesis of a number of diabetic complications. Diacylglycerol kinase (DGK)
converts DAG to phosphatidic acid and acts as an endogenous regulator of PKC activity. Akt/PKB
is associated with a downstream insulin signaling, and PKCf attenuates insulin-stimulated Akt
phosphorylation.

Methods and Results: We examined transgenic mice with cardiac-specific overexpression of
DGKCE (DGKE-TG) compared to wild type (WT) mice in streptozotocin-induced (STZ, 150 mg/kg)
diabetic and nondiabetic conditions. After 8 weeks, decreases in heart weight and heart weight/
body weight ratio in diabetic WT mice were inhibited in DGKE-TG mice. Echocardiography at 8
weeks after STZ-injection demonstrated that decreases in left ventricular end-diastolic diameter
and fractional shortening observed in WT mice were attenuated in DGKC-TG mice. Thinning of
the interventricular septum and the posterior wall in diabetic WT hearts were blocked in DGKZ-
TG mice. Reduction of transverse diameter of cardiomyocytes isolated from the left ventricle in
diabetic WT mice was attenuated in DGKC-TG mice. Cardiac fibrosis was much less in diabetic
DGKCE-TG than in diabetic WT mice. Western blots showed translocation of PKCf3 and & isoforms
to membrane fraction and decreased Akt/PKB phosphorylation in diabetic WT mouse hearts.
However in diabetic DGKC-TG mice, neither translocation of PKC nor changes Akt/PKB
phosphorylation was observed.

Conclusion: DGK{ modulates intracellular signaling and improves the course of diabetic
cardiomyopathy. These data may suggest that DGK( is a new therapeutic target to prevent or
reverse diabetic cardiomyopathy.

cated by progressive cardiovascular diseases, including arte-
riosclerosis, myocardial infarction, and congestive heart
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failure. Indeed, cardiovascular complications are now the
leading cause of morbidity and mortality in diabetic
patients. The Framingham study has demonstrated the
increased incidence of congestive heart failure in diabetes
mellitus (2.4 fold in male and 5 fold in female) independ-
ent of age, hypertension, obesity, cardiovascular diseases
and hyperlipidemia [1].

Experimental and clinical studies have suggested that dia-
betic state causes a specific diabetic cardiomyopathy inde-
pendent of vascular complications. This cardiomyopathy is
characterized by structural, metabolic and functional dam-
age to the heart and may be responsible for the high inci-
dence of cardiac dysfunction and mortality in both types 1
and 2 diabetes mellitus. Multiple mechanisms have been
implicated in glucose-mediated damage of cardiomyocytes.
Of these, activation of protein kinase C (PKC) through the
de novo synthesis of diacylglycerol (DAG) has been increas-
ingly recognized as an early and common mechanism lead-
ing to cardiac dysfunction and remodeling in diabetes [2-
4]. Diacylglycerol kinase (DGK) is suggested to attenuate
DAG-induced PKC activation through the phosphorylation
of this second messenger and conversion to phosphatidic
acid (PA) [5,6]. A previous study has indicated that three
DGK isoforms (DGKo, €, and () are expressed in the rat
myocardium, and the DGK( isoform is predominant in
rodent [7].

We have previously demonstrated that overexpression of
DGKC, in both cultured rat neonatal cardiomyocytes and in
vivo mouse hearts, prevents pathological activation of PKC
and improves the course of left ventricular remodeling in
infarcted myocardium [8], angiotensin II and phenyle-
phrine-induced cardiac hypertrophy [9], and pressure over-
loaded heart [10]. However, the effects of DGK{ on
diabetes-induced cardiac structural changes and cardiomy-
ocyte signal transduction have not been previously exam-
ined. In the present study, we tested the hypothesis that
DGKC attenuates changes in cardiac structure and function
in response to hyperglycemia. We employed the mouse
model of diabetes mellitus by intraperitoneal injection of
streptozotocin (STZ) and examined whether DGK( inhibits
hyperglycemia-induced activation of signaling pathways
and cardiac dysfunction in STZ-induced diabetes mellitus.

Methods

Animals and experimental protocols

DGKC-TG mice were created in our institution as previ-
ously reported [9], and DGKC-TG mice and wild type lit-
termates (WT) were used in the present study. Mice were
housed under specific-pathogen-free conditions in a facil-
ity with a 12 hr-12 hr light-dark cycle and were given free
access to water and standard rodent chow. All experimen-
tal procedures were performed according to the animal
welfare regulations of Yamagata University School of
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Medicine, and the study protocol was approved by the
Animal Subjects Committee of Yamagata University
School of Medicine. The investigation conformed to the
Guide for the Care and Use of Laboratory Animals, published
by the National Institutes of Health.

Diabetes was induced in 8-10 weeks old weighing 20-25
g male mice by a single intraperitoneal injection of STZ
(Sigma Aldrich, Tokyo, Japan), dissolved in 10 mM citrate
buffer (pH 4.5). Control mice were treated with the same
volume of citrate buffer. Mice were fasted 5 hours prior to
injection. Diabetes was confirmed at 2 weeks after STZ
injection by measuring the glucose concentration of
peripheral blood obtained from the tail vein using NIPRO
FreeStyle blood glucose monitoring system (Nipro Corpo-
ration, Osaka, Japan). Afterwards the blood glucose levels
and body weight of mice were monitored weekly. The
mice having plasma glucose levels more than 300 mg/dl
were classified as diabetic and used for the present study.

Echocardiography

Transthoracic echocardiography was recorded as
described previously [11-13] with an FFsonic 8900
(Fukuda Denshi Co., Tokyo, Japan) equipped with a 13-
MHz phased-array transducer at baseline and 8 weeks
after STZ injection. Left ventricular internal dimensions at
end-systole and end-diastole (LVESD and LVEDD), poste-
rior wall thickness (PW) and interventricular septal wall
thickness (IVS) were measured digitally on the M-mode
tracings and averaged from at least 3 cardiac cycles [11-
13]. Left ventricular fractional shortening (LVFS) was cal-
culated as [(LVEDD -LVESD)/LVEDD] x 100 (%).

Morphological examinations

After echocardiography, mice were sacrificed, coronary
arteries were retrogradely perfused with saline, and the
heart and lungs were excised and weighed. The heart was
fixed with a 10% solution of formalin in phosphate buff-
ered saline and embedded in paraffin [11,12]. Three
micron sections were evaluated using standard protocols
for hematoxylin eosin staining to determine left ventricular
cross-sectional areas and Masson trichrome staining for
fibrosis as previously described [12]. Transverse sections
were captured digitally, and cardiomyocyte cross-sectional
area was measured using NIH Image] 1.37 V (Bethesda,
MD, USA). Mean cardiomyocyte cross-sectional areas were
calculated by averaging the measurements of 100 cells from
sections [11,12]. To assess the degree of fibrosis, the sec-
tions stained with Masson trichrome were scanned with
computer-assisted videodensitometry, and the images from
at least 10 fields for each heart were analyzed as described
previously [11,12]. The fibrosis fraction was obtained by
calculating the ratio of Masson trichrome stained connec-
tive tissue area (stained blue) to total myocardial area
(stained red) with an image analysis software.
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Table I: General characteristics of DGKC-TG and WT mice at 8 weeks after STZ injection.

WT control DGKC-TG control WT STZ DGKCE-TG STZ
BW, g 32.08 + 0.70 323 £0.65 2237 £ 0.91* 22.8 + 0.54§
BG, mg/dI 155.4 £ 0.47 157.7 £ 0.54 465.8 + 0.6 1* 455.3 + 0.53§
HW, mg 147 £ 0.02 142 £ 0.0l 92 + 0.02* 110 + 0.02§ddag
LVW, mg 107 £ 0.01 105 + 0.0l 69 £ 0.01* 77 £ 001§
HWY/BW ratio, mg/g 4.58 £ 0.13 441 +0.08 4.00 £ 0.14* 444 £ 0.12%
LVWI/BW ratio, mg/g 3.32£0.07 3.24 £ 0.05 3.0 £ 0.09* 3.25 + 0.08%

Data are mean + SEM from |5 mice for each group. BW, body weight; BG, blood glucose; HW, heart weight; LVWV, left ventricular weight. *P <
0.0l vs. WT control, P < 0.05 vs. WT STZ, §P < 0.01 vs. DGKC-TG control.

ww |

control §

Figure |

Representative M-mode echocardiograms of WT and DGK(-
TG mice at 8 weeks after injection of STZ or citrate buffer
solution.

Western blotting

The left ventricular tissue for Western blotting was immedi-
ately frozen in liquid nitrogen and stored at -80°C until
use. Total protein was extracted with ice-cold lysis buffer as
discribed previously [14-16]. To examine phosphorylation
activity of Akt/PKB, Western blotting was performed with
an anti-phosphospecific Akt (Ser473) antibody, which
detects Akt only when phosphorylated at Ser473 (Cell Sig-
nalling, Denvers, MA, USA) as reported previously [17].
The same membranes were then reprobed with nonspecific
anti-Akt antibody to quantify the amount of Akt protein.

Translocation of PKC isoforms was examined by quantita-
tive immunoblotting using isoform-specific antibodies
(mouse monoclonal anti-PKC-a, -B, -6, and -¢, Santa Cruz
Biotechnology, Santa Cruz, CA) in membrane and
cytosolic fractions prepared from the left ventricular myo-
cardium as described previously [14-16]. Immunoreactive
bands were detected by an ECL kit (Amersham Bio-
sciences, Piscataway, NJ), and membrane-to-cytosol ratios
of immunoreactivity were used as indices for the extent of
translocation of PKC isoforms [14-16].

Statistical analysis

Continuous variables are reported as mean + SEM. Effects
of STZ injection on morphological parameters, echocardi-
ographic measurements, histological data between WT
and TG mice were analyzed by two-way ANOVA followed
by a Bonferroni test. A value of P < 0.05 indicated statisti-
cal significance.

Results

General features and gravimetric data of animals

The general features of diabetic mice and age-matched
nondiabetic control mice are summarized in Table 1.
Blood glucose concentrations and body weight at baseline
were similar among 4 groups (data not shown). Gravimet-
ric parameters as well as blood glucose concentration were
not significantly different between control WT and con-
trol DGKC-TG mice at 8 weeks after injection of citrate
buffer (Table 1). Intraperitoneal injection of STZ induced
diabetes mellitus in both WT and DGKE-TG mice. At 8
weeks after STZ injection, both diabetic WT and diabetic
DGKCE-TG groups had markedly elevated plasma glucose
levels compared with control mice (P < 0.01, Table 1).
Plasma glucose levels did not differ between diabetic
DGKCE-TG and diabetic WT mice. Both diabetic mice had
less body weight than control mice (P < 0.01). Diabetic
WT and diabetic DGKC-TG mice at 8 weeks after STZ injec-
tion had a remarkably lower absolute heart weight and
left ventricular weight than control animals (P < 0.01).
However, decreases in absolute heart weight, heart
weight/body weight ratio and left ventricular weight/body
weight ratio were attenuated in diabetic DGKZ-TG mice
compared to diabetic WT mice (P < 0.05).

Echocardiographic measurements

Echocardiography was performed at baseline and at 8
weeks after STZ injection. Baseline echocardiography dem-
onstrated that heart rate, cardiac dimensions, wall thick-
ness, and fractional shortening were similar between WT
and DGKC-TG mice (data not shown). Representative M-
mode echocardiograms following 8 weeks of observation
are shown in Figure 1. Thinning of PW and IVS wall thick-
ness in diabetic WT mice were blocked in DGK{-TG mice
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Group data for echocardiographic measurements in WT and DGKCE-TG mice including (A) IVS (interventricular septum) thick-
ness, LVPW (left ventricular posterior wall) thickness, (B) LVEDD (left ventricular end-diastolic dimension), LVESD (left ven-
tricular end-systolic dimension), and (C) FS (fractional shortening). *P < 0.01 vs. WT control, 1P < 0.0l vs. WT STZ, §P < 0.0
vs. DGKE-TG control. Grey bars, WT mice, Black bars, DGKZ-TG mice. (n = |5 for each group).

(Figure 2). Decreases in LVEDD (P < 0.01 vs. control WT)
in diabetic WT mice were not observed in diabetic DGKC-
TG mice (Figure 2). Statistically significant impairment in
left ventricular fractional shortening (P < 0.01) was
observed in diabetic WT mice compared with control WT
mice (Figure 2). However, these functional deteriorations
were attenuated in diabetic DGKC-TG mice (P < 0.01).

Histological findings

Figure 2 shows histological observations of the left ven-
tricular myocardium in WT and DGKC-TG mice following
8 weeks of experiments. A transverse diameter of cardio-
myocytes was reduced in both diabetic DGKE-TG and dia-
betic WT mice (P < 0.01, Figure 3). However, decreases in
cardiomyocyte transverse diameter were attenuated in
diabetic DGKC-TG mice compared to diabetic WT mice (P
< 0.01). Interstitial fibrosis was observed in diabetic WT
mouse hearts as shown in Figure 4, but the degree of fibro-
sis was much less in diabetic DGKC-TG than in diabetic
WT mice (P <0.01).

Translocation of PKC isoforms

As shown in Figure 5, we detected that STZ-induced diabe-
tes caused translocation of PKC B and § isoforms in WT
mouse hearts. However in DGKC-TG mice, translocation
of PKC B and & isoforms was significantly attenuated (P <
0.01). Statistically significant changes in the membrane/
cytosolic ratios of the PKCa and ¢ isoforms were not
observed after STZ in our myocardial preparations.

Changes in Akt/PKB phosphorylation

We examined Akt/PKB phosphorylation in diabetic and
nondiabetic WT and DGKE-TG mice. Akt/PKB regulates
different cellular processes, including cell growth and glu-
cose metabolism, and is associated with a downstream
insulin signaling [ 18-21]. We supposed that heart atrophy
observed in our study may be caused by impairment in
Akt/PKB phosphorylation. Changes in phosphorylation
activity of Akt/PKB in STZ-induced diabetic hearts in WT
and DGKC-TG mice were examined by Western blotting
using anti-phosphospecific Akt/PKB antibody (Figure 6).
We documented decreased serine-473 phosphorylation of
Akt/PKB in diabetic WI' mouse hearts compared to con-
trol WT mouse hearts (P < 0.01). However in DGKC-TG
mice, the inhibition of Akt/PKB phosphorylation was not
observed after STZ injection (P < 0.01).

Discussion

Principal findings

In the present study, using a mouse model STZ-induced
diabetic cardiomyopathy, we demonstrated that left ven-
tricular atrophy and left ventricular systolic dysfunction
were attenuated in genetically engineered mice with cardiac
specific overexpression of DGK(. Prominent cardiac fibro-
sis in diabetic WT mice was not observed in DGKC-TG mice.
In this model of hyperglycemia, we found that these
changes in diabetic WT mice were associated with activa-
tion of PKC in parallel with inhibition of Akt/PKB phos-
phorylation. However in diabetic DGKE-TG mice, neither
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Histological analyses in WT and DGKZE-TG mice at 8 weeks after injection of STZ or citrate buffer solution. Hematoxylin-eosin
micrographs showing transverse sections of left ventricular myocardium (% 400, bar = 50 um). Quantitative analysis of cardio-
myocyte cross-sectional area (left bar graph) in WT (grey bars) and DGKC-TG (black bars) mice. Data were calculated by aver-
aging the measurements at least of 100 cardiomyocytes from each sections. Data were obtained from 8 mice for each group.

translocation of PKC from cytosol to membrane fraction
nor changes in phosphorylation of Akt/PKB was observed.

Previous studies have shown that hyperglycemia increases
the PKC content and activity in the hearts and vasculature
of experimental diabetic animals and humans through
accumulation of de novo synthesized DAG [2,22-25]. This
DAG-PKC activation plays a key role in the pathogenesis
of structural, metabolic and functional damage in the
heart and may be responsible for the high incidence of
cardiac dysfunction in diabetes mellitus [2,23]. Previ-
ously, we have reported that DGKC may act as an endog-
enous regulator of the DAG-PKC signaling cascade in
mouse cardiomyocytes by controlling cellular DAG levels
[9,26]. In the present study, diabetic WT mice demon-
strated translocation of PKC B and & isoforms from
cytosol to membrane fraction. This was associated with
the decrease of cardiac pump function and increased
interstitial fibrosis. However in DGKC-TG mice, activation
of PKC f and 6 isoforms (membranous translocation) in
response to hyperglycemia was not observed, and promi-
nent deterioration of left ventricular systolic function as
well as cardiac fibrosis was not present.

Diabetic cardiomyopathy

Clinical studies have demonstrated that diabetic cardio-
myopathy is manifested with left ventricular hypertrophy
associated with systolic/diastolic dysfunction and cardiac
fibrosis in diabetic patients [27,28]. In the present study,
we observed cardiac atrophy in diabetic WT mice which
was determined by decreases of heart weight and heart
weight/body weight ratio, decreases of heart size on
echocardiography, thinning of left ventricular wall thick-
ness, and decreases of cardiomyocyte transverse diameter.
However, most human diabetes belongs to type 2, and a
lot of studies with human type 2 diabetes-induced cardio-
myopathy are associated with hyperglycemia and hyper-
insulinemia [29]. In contrast, STZ-induced diabetes may
serve as a model of the type 1 diabetes of human and is
associated with severe hyperglycemia in combination
with hypoinsulinemia and ketoacidosis [30]. In experi-
mental animal models of STZ-induced diabetic cardiomy-
opathy, multiple studies demonstrated myocardial
atrophy as opposed to hypertrophy with loss of heart
weight, reduced cardiomyocyte transverse diameter, loss
of contractile proteins and cardiomyocyte dropout
[30,31]. Moreover, in recent studies using myocardial
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Masson trichrome staining micrographs showing transverse sections of left ventricular myocardium (% 400, bar = 50 pum).
Comparisons of the fibrosis fraction (left bar graph) between WT (grey bars) and DGKC-TG (black bars) mice. The fibrosis
fraction was obtained by calculating the ratio of Masson trichrome stained connective tissue area (stained blue) to total myo-
cardial area. Data were calculated by averaging the measurements of 10 fields from each sections. Data were obtained from 8
mice for each group. *P < 0.01 vs. WT control, P < 0.0l vs. WT STZ, §P < 0.0 vs. DGK(-TG control.

biopsy materials from patients with diabetes without
hypertension, smaller diameter of cardiomyocytes was
observed than in controls without diabetes and hyperten-
sion [32]. Cellular mechanisms of diabetes-triggered car-
diac atrophy are not clearly understood. Calorie
deprivation associated with metabolic disturbance in dia-
betes and energy production shifted from glucose utiliza-
tion towards B-oxidation of free fatty acids may cause
atrophic alterations in the myocardium [30,33].

Possible mechanisms

In the present study, diabetic WT mice with myocardial
atrophy were associated with decreased phosphorylation
of Akt/PKB, the downstream target of insulin action and
important kinase for cell growth regulation (Figure 6). In
DGKC-TG mice, hyperglycemia did not suppress Akt/PKB
phosphorylation, and cardiac atrophy was not evident
compared to diabetic WT mice. We speculate that
decreased phosphorylation activity of Akt/PKB, which
mediates postnatal heart growth, may account for cardiac
atrophy observed in diabetic WT mice [18]. Naruse at al.
have shown that PKCP inhibits insulin-stimulated Akt

phosphorylation [34]. PKC negatively regulates Akt activ-
ity and reduces both phosphorylation of Akt on Ser-473
and Akt catalytic activity in mouse keratinocyte cell line
[35]. Wen et al. have also reported that PKCp selective
inhibitor increases Akt phosphorylation in A549 cells
[36]. Thus, PKC might be an inhibitory upstream mole-
cule that regulates Akt phosphorylation. In the present
study, hyperglycemia-induced activation of PKCB was
blocked in DGKC-overexpressing hearts (Figure 5). These
data may suggest that PKCp blockade by DGKE enhances
Akt/PKB phosphorylation in diabetic DGKC-TG hearts

(Figure 7).

By converting cellular DAG to PA, DGK regulates the bal-
ance between the two signaling lipids, DAG and PA [37-
39]. A previous in vitro study has demonstrated that
increasing levels of PA modulate phosphatidylinositol 4-
phosphate 5-kinase o (PI,PsKa) activity [40]. This
enzyme catalyzes the synthesis of phosphatidylinositol
[4,5]-bisphosphate (PIP,) by phosphorylating phosphati-
dylinositol 4-phosphate (PI,P). Phosphoinositide 3-
kinase (PI;K) converts the plasma membrane lipid PIP, to
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Representative Western blots of PKC-a. (A), -B (B), - (C), and -3 (D) isoforms in membrane and cytosol fractions and densit-
ometric analysis in WT (grey bars) and DGKC-TG (black bars) mice at 8 weeks after injection of STZ or citrate buffer solution.
Membrane/cytosol ratios of immunoreactivity were used as indices of the extent of PKC isoform translocation. We detected
that STZ-induced diabetes caused an increase in the membrane/cytosol ratio of PKC-f3 and -5 isoforms in WT mouse hearts.
However in DGKE-TG mice, translocation of PKC-f3 and -5 isoforms was significantly attenuated. Data were obtained from 6
mice for each group. *P < 0.05, **P < 0.0 vs. WT control, 1P < 0.01 vs. WT STZ.

phosphatidylinositol-3, 4, 5-trisphosphate (PIP;), which
activates Akt/PKB signaling pathway [18,19,41]. Thus,
accumulated PA in DGK overexpressing hearts may acti-
vate Akt/PKB through PIP, and PIP; production (Figure
7). Taken together, DGK{ modulates intracellular signal-
ing and improves the course of diabetic cardiomyopathy.
In the present study, increased Akt/PKB phosphorylation
in DGKE-TG mice was accompanied by improvement in
cardiac function and inhibition of myocardial atrophy.
These data are consistent with a previous report that Akt

induces enhanced myocardial contractility and cell size in
vivo in transgenic mice [42].

Diacylglycerol kinase (DGK)

One of the best known functional roles of DGK is to reg-
ulate PKC activity through DAG metabolism [5,6,37-39].
However, recent reports have suggested that the func-
tional significance of DAG is not restricted to PKC path-
way, and DAG also activates several proteins including
Ras GRP, protein kinase D, and transient receptor poten-
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Representative immunoblots of left ventricular extracts with
anti- phosphospecific Akt/PKB antibody (upper gel) in WT
and DGKE-TG mice at 8 weeks after injection of STZ or cit-
rate buffer solution. The abundance of Akt protein was dem-
onstrated by immunoblots with an antibody to total Akt
(lower gel). Densitometric analyses of Akt phosphorylation
were performed using 8 mice for each group. *P < 0.01 vs.
WT control, 1P < 0.0l vs. WT STZ.

tial proteins. These data suggest that DAG is more widely
implicated in cellular events and cellular DAG level is
strictly controlled to maintain normal physiological con-
ditions. In addition, phosphatidic acid produced by DGK
has signaling functions and serves as a lipid second mes-
senger to regulate a variety of signaling proteins including
PKC{ and phospholipase C y 1. Therefore, DGK is one of
the key enzymes closely involved in lipid-mediated cellu-
lar signaling events by attenuation of DAG and produc-
tion of phosphatidic acid. To date, ten DGK isoforms have
been identified in mammals such as DGKa, B, v, 8, €, {, 1,
0, 1, and k, and DGK isoforms are detected in various tis-
sues and cell types, suggesting the importance of this
kinase in basic cellular functions [5,6,37-39].

Conclusion

In conclusion, we demonstrated that DGK( prevents STZ-
induced diabetic cardiomyopathy in an animal model of
type 1 diabetes. To our knowledge, this is the first report
showing that DGKZ impacts diabetic cardiomyopathy. We
also unveil intracellular signaling pathway resulting in
formation of diabetic cardiomyopathy. This may provide
a novel insight into the prevention and treatment of this
pathological process.
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