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Abstract

Background: Pregestational diabetes is a major risk factor of congenital heart defects (CHDs). Glutathione is
depleted and reactive oxygen species (ROS) production is elevated in diabetes. In the present study, we aimed to
examine whether treatment with N-acetylcysteine (NAC), which increases glutathione synthesis and inhibits ROS
production, prevents CHDs induced by pregestational diabetes.

Methods: Female mice were treated with streptozotocin (STZ) to induce pregestational diabetes prior to breeding
with normal males to produce offspring. Some diabetic mice were treated with N-acetylcysteine (NAC) in drinking
water from E0.5 to the end of gestation or harvesting of the embryos. CHDs were identified by histology. ROS levels,
cell proliferation and gene expression in the fetal heart were analyzed.

Results: Our data show that pregestational diabetes resulted in CHDs in 58% of the offspring, including ventricular
septal defect (VSD), atrial septal defect (ASD), atrioventricular septal defects (AVSD), transposition of great arteries (TGA),
double outlet right ventricle (DORV) and tetralogy of Fallot (TOF). Treatment with NAC in drinking water in
pregestational diabetic mice completely eliminated the incidence of AVSD, TGA, TOF and significantly diminished the
incidence of ASD and VSD. Furthermore, pregestational diabetes increased ROS, impaired cell proliferation, and altered
Gata4, Gata5 and Vegf-a expression in the fetal heart of diabetic offspring, which were all prevented by NAC treatment.

Conclusions: Treatment with NAC increases GSH levels, decreases ROS levels in the fetal heart and prevents the
development of CHDs in the offspring of pregestational diabetes. Our study suggests that NAC may have therapeutic
potential in the prevention of CHDs induced by pregestational diabetes.
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Introduction
Congenital heart defects (CHDs) are the most common
birth defects affecting up to 5% of live births in the general
population [1]. Pregestational diabetes mellitus, either type
1 or type 2, increases the risk of CHDs in infants by 3–5
fold compared to non-diabetic pregnancies [2-6]. With an
increase in the number of young adults having diabetes
mellitus [7,8], the incidence of pregestational diabetes and
CHDs caused by maternal diabetes may further increase,
with significant social and economic consequences.
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Although factors responsible for the high incidence of
CHDs in pregestational diabetes are still not fully under-
stood, evidence suggests that oxidative stress may play a
role [9,10]. For example, the antioxidant capacity of the
developing embryo is limited [11,12], and reactive oxygen
species (ROS) production is exacerbated as the expression
and activities of major ROS scavenging enzymes including
superoxide dismutase and glutathione peroxidase are de-
creased during maternal diabetes [13-15]. In addition, ma-
ternal hyperglycemia diminishes the level of an important
intracellular antioxidant, glutathione (GSH) [16,17], which
places the developing embryo in an extremely vulnerable
state to oxidative stress.
N-Acetylcysteine (NAC) is a thiol-containing antioxi-

dant agent and can cross the placenta [18]. The main bio-
logical effect of NAC as a precursor of cysteine is to
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replenishing cellular GSH levels and to preserve the thiol
redox status. Additionally, NAC also reacts with hydroxyl
radical (OH), nitrogen dioxide (NO2) and thiyl radicals to
reduce oxidative stress [19]. Furthermore, NAC treatment
in vitro and in ovo diminishes high glucose-induced devel-
opmental defects in mouse and chicken embryos [10,20].
In the present study, we hypothesized that NAC treatment
in diabetic mice during gestation diminishes ROS produc-
tion and prevents the development of CHDs in their off-
spring. To test this hypothesis, a pregestational diabetes
mouse model was established to closely simulate CHDs in
patients with pregestational diabetes. We demonstrated
that NAC treatment in pregestational diabetic mice de-
creased ROS levels and improved cell proliferation during
embryonic heart development, and prevented CHDs in
the diabetic offspring.

Methods
Animals
C57BL/6 wild type mice were purchased from Jackson
Laboratory (Bar Harbor, Maine). A breeding program
was implemented to generate fetal and postnatal mice.
Animals in this study were handled in accordance with
the Guide for the Care and Use of Laboratory Animals,
published by the U.S. National Institutes of Health (NIH
publ. no. 85–23, revised 1996). Use of animals was ap-
proved by the Animal Use Subcommittee at the Univer-
sity of Western Ontario, Canada.

Induction of diabetes mellitus and N-acetylcysteine
treatment
Eight weeks old C57BL/6 female mice were treated with
streptozotocin (STZ, 80 mg/kg body weight, IP, Sigma,
Canada) for 3 consecutive days. Mice treated with saline
served as controls. Non-fasting blood glucose levels were
determined one week after STZ injection using a glucose
meter (OneTouch Ultra2, LifeScan, Canada, Burnaby,
BC, Canada). Mice with blood glucose levels higher than
11 mmol/L were bred to normal adult males. Mating
was verified by observation of a vaginal plug, which was
counted as day E0.5 of pregnancy. A subset of control and
diabetic mice received 4 mg/ml N-acetylcysteine (NAC,
1 g/kg body weight/day) in drinking water [21] from E0.5
to the end of gestation or harvesting of the embryos. Non-
fasting blood glucose levels were monitored in all groups
during gestation.

Histological analysis
Heart morphology was analyzed in postnatal day 0 (P0)
mice and cell proliferation was analyzed by phospho-
histon H3 (pHH3) staining in E12.5 hearts. Briefly, the
mouse thorax was fixed in 4% paraformaldehyde over-
night, dehydrated in ethanol, embedded in paraffin and
serially sectioned into 5-μm sections. Heart sections were
stained with hematoxylin/eosin (H/E) and images were
captured using a light microscope (Observer D1, Zeiss,
Germany). Images were taken on every 25 μm of the heart
and the three-dimensional visualization of heart structures
was reconstructed using AMIRA® program. To analyze
cell proliferation and apoptosis, heart sections were im-
munostained using anti-pHH3 (phospho S10) antibody
(Abcam) and anti-cleaved claspase-3 antibody (Cell Signal-
ing), respectively, followed by incubation with biotinylated
goat anti-rabbit IgG (Vector Laboratories, Burlingame, CA,
USA). Signals were visualized by 3-3′di-aminobenzidin
tetrahydrochloride (Sigma-Aldrich Chemie, St. Louis, MO,
USA). Counterstaining was performed with modified
Mayer’s hematoxylin (Thermo Scientific, Waltham, MA,
USA). The number of pHH3+ cells from at least 3 indivi-
dual heart sections per sample was quantified and norma-
lized to areas of the myocardium.

Analysis of superoxide levels
Embryonic heart tissues were harvested at E12.5 in all four
groups. Frozen samples were cut into 10-μm sections using
a cryostat (CM1950, Leica, Germany). Superoxide levels
were assessed by incubation of heart sections with 2 μM
dihydroethidium (DHE) (Invitrogen Life Technologies,
Burlington, Canada) for 30 minutes in a humidified and
light protected chamber in room air at 37°C [22]. DHE
fluorescence signals were detected using a fluorescence
microscope (Observer D1, Zeiss, Germany). For analysis
of superoxide levels, 5–8 images of each heart sample
were captured using fixed exposure time for all groups.
The intensity of fluorescence signals per myocardial area
was quantified using AxioVision software. A limitation of
this assay is that the oxygen level was not adjusted to that
of the embryonic hearts in vivo [23].

Real-time RT-PCR analysis
Total RNA was extracted from individual E11.5 fetal
hearts using RNeasy Mini kit (Qiagen, Burlington, ON,
Canada) as per manufacturer’s instructions. One hun-
dred nanograms of total RNA were used to synthesize
cDNA using M-MLV reverse transcriptase. Real-time
PCR was conducted using EvaGreen qPCR MasterMix
(Applied Biological Materials, Vancouver, BC, Canada).
Specific primers were designed for Nkx2.5, Gata4,
Gata5, Tbx5, Tgf-β1, Vegf-a, Mef2c, cyclin D1 and Bmp4
(Table 1). Samples were amplified for 35 cycles using
Eppendorf Realplex (Eppendorf, Hamburg, Germany).
Values were normalized with 28S ribosomal RNA. The
mRNA levels in relation to 28S rRNA were determined
using a comparative CT method [24].

Glutathione levels in fetal hearts
Briefly, E14.5 fetal hearts were washed in PBS and snap fro-
zen in liquid nitrogen. Heart samples were homogenized in



Table 1 Primer sequences for real-time PCR analysis

Gene Accession no. Product size Primer sequence (5′→3′)

Nkx2.5 NM_008700.2 162 F: GACAGCGGCAGGACCAGACT

R: CGTTGTAGCCATAGGCATTG

Vegfa NM_001025257.3 194 F: GATTGAGACCCTGGTGGACAT

R: TCTCCTATGTGCTGGCTTTGG

Gata4 NM_008092.3 134 F: GCCTGCGATGTCTGAGTGAC

R: CACTATGGGCACAGCAGCTC

Gata5 NM_008093.2 167 F: ACCCCACAACCTACCCAGCA

R: GCCCTCACCAGGGAACTCCT

Bmp4 NM_007554.2 250 F: GTTATGAAGCCCCCAGCAGA

R: CCCAATCTCCACTCCCTTGA

Tbx5 NM_011537.3 103 F: AGGAGCACAGTGAGGCACAA

R: GGGCCAGAGACACCATTCTC

Tgf-β1 NM_011577.1 120 F: GCCCGAAGCGGACTACTATG

R: CACTGCTTCCCGAATGTCTG

28S NR_003279.1 178 F: GGGCCACTTTTGGTAAGCAG

R: TTGATTCGGCAGGTGAGTTG

Cyclin D1 NM_007631.2 135 F: CTGACACCAATCTCCTCAACG

R: CTCACAGACCTCCAGCATCCA

Mef2c NM_001170537.1 405 F: CACCGAGTACAACGAGCCGCA

R: CTGGTGCCTGCACCGGATGTC

F: forward primer, R: reverse primer.
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6% sulfosalicylic acid and 1 mM EDTA then centrifuged at
8,000 g for 5 minutes at 4°C. Total and reduced glutathione
were assessed using a modified ultra-performance liquid
chromatography (UPLC) method [25,26]. N-isoamyl alco-
hol was added to 50 μL of supernatant fraction of all sam-
ples. To determine total glutathione, thiols were reduced
with NaBH4 followed by the addition of HCl to adjust the
pH to approximately 8.0, and then derivatized by the ad-
dition of 25 mM monobromobimane. To determine re-
duced glutathione, the pH of the sample was raised to
approximately 8.0 with NaOH and the samples were im-
mediately derivatized as described above. Following de-
rivatization, the pH of all samples was decreased to
approximately 4.0 with glacial acetic acid and 5 μL was
injected onto a Kinetex C18 column (50 × 2.1 mm,
1.7 μm particle, Phenomenex, Torrance, CA) which was
maintained at 40°C in a Waters AQUITY UPLC™ H-
Class System. The mobile phase consisted 5% aceto-
nitrile and 95% 5 mM KH2PO4 with 0.1% triethylamine,
pH 4.0. The derivatized glutathione was detected by a
Waters ACQUITY UPLC® fluorescence detector with
the excitation set to 390 nm and the emission set to
480 nm.

Statistical analysis
Data are presented as means ± SEM. Statistical analysis was
performed using two-way analysis of variance (ANOVA)
followed by Bonferroni post test. The incidence of congeni-
tal malformations was analyzed by Chi-square test. P < 0.05
was considered statistically significant.

Results
Effects of NAC on maternal blood glucose levels, litter
size and mortality at birth
One week after STZ injection, female mice with blood
glucose levels higher than 11 mM were set up to breed
with normal males. Diabetic mice had significantly higher
blood glucose levels at the time of vaginal plugging (E0.5)
compared to controls (P < 0.001, Figure 1A). Additionally,
time to vaginal plugging that lead to successful pregnancy
was 10 times longer in the diabetic compared to control
mice (26.7±6.1 vs. 2.7±0.9 days, P < 0.01), indicating de-
creased fertility rate in diabetic females. From E0.5 to
E18.5 of gestation, blood glucose levels of diabetic mice
were progressively increased but not significantly al-
tered by NAC treatment (Figure 1A). Average litter size
of diabetic neonates at P0 was significantly less than
controls (Figure 1B). Additionally, diabetic neonates had
46% mortality rate at birth (P < 0.001, Figure 1C). Ad-
ministration of NAC in diabetic dams improved litter
size of the offspring (P < 0.05) and diminished their
mortality at birth to 11.5% (P < 0.001). The body weight
of neonates born to diabetic mice was significantly
lower compared to controls at P0 (P < 0.001, Figure 1D).
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Figure 1 Blood glucose levels of pregnant mice, litter size, mortality and body weight of neonates at P0. (A) Non-fasting blood glucose
levels before mating (basal), and E0.5 to E18.5 after pregnancy in STZ-treated and control female mice with and without NAC treatment (n = 7-10 mice
per group). (B) The offspring litter size. (C) Mortality of neonates at birth. The numbers in brackets indicate the number of death to total. (D) Body
weight of the offspring at birth (n = 27-29 per group). *P < 0.001 vs. untreated control, †P < 0.001 vs. untreated diabetes. Data are means ± SEM.

Table 2 The rate of congenital heart defects in the
offspring of diabetic and control females with and
without N-acetylcysteine (NAC) treatment

Total N/litters Control
30/4

Diabetes
62/15

Control
NAC 30/4

Diabetes
NAC 43/7

n % n % n % n %

Normal 30 100 26 41.9** 27 90 36 83.7††

Abnormal 0 0 36 58.1** 3 10 7 16.3††

ASD 0 0 19 30.6** 2 6.7 6 13.9†

VSD 0 0 25 40.3** 1 3.3 5 11.6††

AVSD 0 0 4 6.5 0 0 0 0

TGA 0 0 4 6.5 0 0 0 0

DORV 0 0 8 12.9* 0 0 3 6.9

TOF 0 0 3 4.8 0 0 0 0

Data were analyzed by Chi-square test. *P < 0.05, **P < 0.001 vs. untreated
control, †P < 0.05, ††P < 0.001 vs. untreated diabetes. ASD, atrial septal defect;
VSD, ventricular septal defect; AVSD, atrioventricular septal defect; TGA,
transposition of great arteries; DORV, double outlet right ventricle; TOF,
Tetralogy of Fallot.
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NAC treatment did not affect body weight of neonates
in control mice, but significantly improved the body
weight of the diabetic offspring (P < 0.001, Figure 1D).

Effects of NAC on incidence of CHDs in diabetic offspring
Pregestational diabetes resulted in 58.1% CHDs in the
offspring (Table 2). The majority of the defects were
malformations of the septum with 30.6% atrial septal de-
fect (ASD, Figure 2B) and 40.3% ventricular septal defect
(VSD, Figure 2C). In addition, 6.5% of diabetic offspring
showed atrioventricular septal defect (AVSD, Figure 2D).
Defects in the outflow tract included 12.9% double outlet
right ventricle (DORV, Figure 2G) and 6.5% transposition
of great arteries (TGA, Figure 2I). Furthermore, 4.8% of
diabetic offspring showed tetralogy of fallot (TOF) with
pulmonary stenosis (Figure 2E), overriding aorta and VSD
associated with right ventricle hypertrophy (Figure 2F).
Treatment with NAC in diabetic mice during gestation
significantly reduced the incidence of CHDs to 16.3%
(Table 2). Specifically, NAC treatment decreased incident
of ASD and VSD to 13.9% and 11.6%, respectively. Also,
outflow tract formation and remodeling were improved as
the rate of DORV was reduced to 6.9% while AVSD, TGA
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and TOF were fully rescued by NAC treatment in the dia-
betic mice (Table 2). Craniofacial defects were also ob-
served in diabetic embryos (4.8%, Figure 2J). However,
none of the controls or NAC treated groups showed any
craniofacial defects.

Effects of NAC on glutathione and ROS levels in the heart
of diabetic offspring
Fetal glutathione levels were measured in E14.5 hearts.
Diabetic offspring demonstrated significant reductions in
total glutathione, GSH and GSSG levels compared to non-
diabetic controls (P < 0.01, Figure 3A-C). The GSH/total
glutathione ratio was decreased while GSSG/total glutathi-
one ratio was increased in diabetic fetal hearts (P < 0.05,
Figure 3D and E). NAC treatment completely restored total
glutathione and GSH levels in the diabetic offspring
(P < 0.001, Figure 3A and B), leading to increased GSH/total
glutathione ratio and decreased GSSG/total glutathione ra-
tio (P < 0.01, Figure 3D-E). NAC treatment in non-diabetic
females during gestation had no effect on total glutathione



Control Diabetes
0

1

2

3

4 -NAC

+NAC

**

†

T
ot

al
 G

lu
ta

th
io

ne
 (

nm
ol

/h
ea

rt
)A

B

Control Diabetes
0

1

2

3

4

* *
*G

S
S

G
 (

nm
ol

e/
he

ar
t)

D E

C

Control Diabetes

†

*

*

Control Diabetes
0

20

40

60

80

100

*

†*

G
S

H
/T

ot
al

 G
lu

ta
th

io
ne

0

20

40

60

80

100

G
S

S
G

/T
ot

al
 G

lu
ta

th
io

ne

Control Diabetes
0

1

2

3

4

**

†

G
S

H
 (

nm
ol

e/
he

ar
t)

Figure 3 Measurement of intracellular glutathione levels in fetal hearts at E14.5. (A) Total glutathione levels, (B) Reduced glutathione (GSH)
levels, (C) Oxidized glutathione (GSSG) levels, (D) GSH to total glutathione ratio, and (E) GSSG to total glutathione ratio. Data are means ± SEM, n = 7–9
samples per group. *P < 0.05, **P < 0.01 vs. untreated control, †P < 0.001 vs. untreated diabetes.

Moazzen et al. Cardiovascular Diabetology 2014, 13:46 Page 6 of 13
http://www.cardiab.com/content/13/1/46
levels but decreased GSSG levels, and consequently GSH/
total glutathione ratio was increased (P < 0.05, Figure 3D).
To examine the effects of NAC on ROS levels, dihydroethi-
dium (DHE) was employed as a probe to assess superoxide
generation in fetal hearts at E12.5. Elevated DHE fluor-
escence reading in the fetal heart of diabetic offspring
indicated excess superoxide levels, which was signifi-
cantly inhibited by NAC treatment (P < 0.05, Figure 4).

Effects of NAC on cell proliferation and apoptosis in the
heart of diabetic offspring
Proper cell proliferation and apoptosis are essential for nor-
mal embryonic heart development [27,28]. Using phosphor-
ylated histone H3 (pHH3) as a marker, we analyzed cell
proliferation in fetal hearts at E12.5 and E14.5. The off-
spring of mice with pregestational diabetes showed a sig-
nificant decrease in the number of myocardial proliferating
cells at E12.5 and E14.5 (P < 0.05, Figure 5A-C). NAC treat-
ment during gestation showed a trend but not a statistically
significant increase in cell proliferation at E12.5. Notably,
this effect was significant at E14.5 (P < 0.001, Figure 5C). In
E12.5 endocardial cushion, cell proliferation was decreased
in the diabetic offspring (Figure 6A, B). NAC treatment sig-
nificantly increased cell proliferation in both controls and
diabetic offspring (Figure 6B). We also assessed cell apop-
tosis through immunohistochemical analysis of cleaved
caspase-3 (Figure 6A). Apoptosis in the endocardial cush-
ion at E12.5 was significantly increased in the diabetic off-
spring compared to control embryos (P < 0.05, Figure 6A,
C). NAC treatment had no significant effect on apoptosis in
the diabetic offspring, but increased apoptosis in the endo-
cardial cushion in control embryos (P < 0.05, Figure 6C). As
a result of reduced cell proliferation, myocardial wall thick-
ness was decreased in the diabetic offspring at P0 (P < 0.01,
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Figure 7A-C), which was rescued by NAC treatment
(P < 0.05, Figure 7A-C).

Effects of NAC on transcription factor expression in fetal
hearts of diabetic offspring
Pregestational diabetes alters gene expression levels in the
developing heart [29]. To study the effect of pregestational
diabetes and NAC treatment on genes essential for heart
development, quantitative RT-PCR analysis was per-
formed. Our data showed transcript levels of Gata4 and
Gata5 were decreased in the fetal hearts of diabetic off-
spring at E11.5 (P < 0.05, Figure 8A-B). Since GATA4 and
GATA5 regulate cell proliferation in the fetal heart, we
evaluated expression levels of cyclin D1, an important cell
cycle regulator. Our data showed that pregestational dia-
betes significantly decreased cyclin D1 mRNA levels in the
fetal heart (P < 0.01, Figure 8D). On the contrary, Vegf-a
mRNA levels were increased in the diabetic fetal hearts
(P < 0.05, Figure 8C). These changes were all restored to
control levels after NAC treatment (P < 0.05, Figure 8A-D).
However, other cardiac transcription factors including
Nkx2.5, Mef2c and Tbx5 were not significantly altered by
maternal diabetes or NAC treatment (Figure 8E-G). In
addition, levels of Bmp4 and Tgf-β1, which regulates cardiac
valve formation, were not significantly altered (Figure 8H-I).

Discussion
Pregestational diabetes is a major risk factor for CHDs in
humans. However, the molecular mechanisms that lead to
the development of CHDs and possible therapeutic ap-
proaches to prevent those defects are still not fully under-
stood. It is generally believed that oxidative stress plays a
major role in the induction of birth defects in diabetic
fetus [12,16,30]. Here, we employed a mouse model of
pregestational diabetes induced by STZ and studied the
effects of NAC treatment on CHDs in the offspring of dia-
betic mice. Our data showed that pregestational diabetes
resulted in a high incidence of CHDs and decreased cell
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proliferation associated with altered expression levels of
Gata4, Gata5 and Vegf-a. Importantly, GSH levels were
decreased while ROS levels were increased in the fetal
heart of pregestational diabetes. Notably, these abnormal-
ities in the fetal heart were rescued by maternal treatment
with NAC. Our study provides new evidence on the crit-
ical role of glutathione in embryonic heart development
and suggests that NAC may have therapeutic potential in
preventing CHDs in patients with pregestational diabetes.
To simulate congenital malformations induced by ma-

ternal diabetes without genetic modifications, several
experimental approaches have been used, which include
STZ- or alloxan-induced diabetes, and infusion of glu-
cose to induce hyperglycemia. When diabetes or hyper-
glycemia is induced at the time of mating or within a
few days after gestation, congenital defects in the central
nervous system and skeletal malformation are observed
in the offspring [31,32]. While congenital heart malfor-
mations have been observed in animal studies of diabetic
pregnancy, a spectrum of defects that can arise has
been less well characterized [33-35]. In the present
study, diabetes was induced by STZ in female mice for
at least one week before gestation. Our results show
that pregestational diabetes induces embryopathy with
a wide range of cardiovascular malformations including
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ASD, VSD, AVSD, TGA, DORV and TOF. These malfor-
mations of the cardiovascular system mirror congenital
defects of neonates born to females with pregestational
diabetes [6]. Thus, our model represents an appropriate
animal model to study CHDs induced by pregestational
diabetes.
Diabetes increases ROS production through increased

activity of ROS generating enzymes and decreased activity



Control Diabetes
0.00

0.01

0.02

0.03 †

*

-NAC
+NAC

G
at

a4
/ 2

8S

Control Diabetes
0.00

0.02

0.04

0.06

0.08
-NAC
+NAC

N
kx

2.
5/

28
S

Control Diabetes
0.00

0.01

0.02

0.03

0.04 -NAC
+NAC

T
bx

5/
28

S

A B C

D E F

G H I

Control Diabetes
0.000

0.002

0.004

0.006

0.008
-NAC
+NAC

B
M

P
4/

28
S

Control Diabetes
0.00

0.02

0.04

0.06 -NAC
+NAC

*

†

G
at

a5
/ 2

8S

Control Diabetes
0.00

0.01

0.02

0.03

0.04

0.05 -NAC
+NAC

*

†

C
yc

lin
 D

1/
28

S

Control Diabetes
0.00

0.01

0.02

0.03

0.04

0.05 -NAC
+NAC

M
ef

2C
/ 2

8S

Control Diabetes
0.000

0.005

0.010

0.015

0.020

0.025
-NAC
+NAC

*

†

V
eg

fa
 / 

28
S

Control Diabetes
0.00

0.01

0.02

0.03

-NAC
+NAC

T
gf

-β
1 

/ 2
8S

Figure 8 Gene expression levels in fetal hearts at E11.5. (A-D) The mRNA levels of Gata4, Gata5, Vegf-a and cyclin D1 were significantly
altered in diabetic fetal hearts, which were restored to normal levels by NAC. (E-I) Neither pregestational maternal diabetes nor NAC treatment
affected the mRNA levels of Tbx5, Nkx2.5, Tgf-β1, Mef2c and Bmp4 in the embryonic hearts. Data are means ± SEM, n = 6-8 hearts per group.
*P < 0.05 vs. untreated control, †P < 0.05 vs. untreated diabetes.

Moazzen et al. Cardiovascular Diabetology 2014, 13:46 Page 10 of 13
http://www.cardiab.com/content/13/1/46
of antioxidant enzymes [36,37]. Extensive evidence have
shown the involvement of oxidative stress in diabetic
embryopathy [38] and the importance of glutathione in
regulating ROS levels and redox signaling [26]. In the
present study, we demonstrated that ROS levels were
significantly increased in the fetal heart of diabetic off-
spring. Furthermore, total glutathione, GSH and GSSG
levels were decreased in the embryonic heart of diabetic
offspring. To replenish GSH levels in the diabetic fetal
heart, female mice with pregestational diabetes were
treated with NAC, a precursor of cysteine essential for
the production of GSH [18,39,40]. Notably, treatment
with NAC increased GSH levels and decreased ROS
levels in the diabetic fetal heart. Importantly, NAC
treatment also significantly decreased CHDs induced by
pregestational diabetes. These data suggest an import-
ant role of GSH depletion and excessive ROS produc-
tion in the development of CHDs. Previous studies have
shown that treatment with NAC in vitro or GSH ethyl
ester in vivo reduces gross embryonic malformation in-
duced by high glucose or maternal diabetes [10,16].
However, the beneficial effect of glutathione on cardiac
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development was limited to outflow tract defects in-
duced by high glucose [20,34]. The present study further
demonstrated the beneficial effects of NAC on a wide
spectrum of cardiovascular malformations induced by
pregestational diabetes in vivo. It should be noted that
NAC treatment did not alter total glutathione levels in
the fetal hearts of control mice. This is not surprising
because intracellular GSH levels are regulated by a feed-
back inhibition to glutamate-cysteine ligase (GCL), a
rate limiting enzyme in the production of GSH [41]. As
such, the exogenous NAC participates in GSH synthesis
only during oxidative stress conditions [39]. In addition,
NAC also protects GSH from oxidation through its anti-
oxidant properties independent of GSH synthesis [42],
leading to an increased GSH/total glutathione ratio in
both diabetic or control mice in the present study.
It is well documented that ROS regulates gene expres-

sion, cell proliferation and apoptosis [43]. In the present
study, transcription factors that are critical to embryonic
heart development including Gata4, Gata5 [44,45] were
downregulated in diabetic fetal hearts at E11.5. However
similar to previous studies, Vegf-a mRNA levels were in-
creased in diabetic fetal hearts [35]. Elevated expression
levels of VEGF-A are associated with congenital heart de-
fects [46,47]. High VEGF-A levels in fetal hearts inhibit
epithelial-to-mesenchymal transition (EMT) in the endo-
cardial cushion, which contributes to formation of atrio-
ventricular septum [48,49]. Although a causal relationship
between altered expression of Gata4, Gata5,Vegf-a and the
development of CHDs in our study cannot be established,
the fact that treatment with NAC restored their expression,
improved cell proliferation via restoring cyclin D1 expres-
sion and prevented CHDs in diabetic offspring suggests
that these transcription factors are sensitive to redox regu-
lation and their alteration may contribute at least in part to
cardiac malformation in pregestational diabetes.
Apoptosis is a highly regulated process and aberrant

apoptosis may result in cardiovascular defects [50,51].
The present study showed that apoptosis in the endocar-
dial cushion was increased in diabetic embryos. Add-
itionally, treatment with NAC increased apoptosis and
induced 10% septal defects in control embryos. These
data are consistent with a role of apoptosis in cardiac
malformation [51,52]. Cell proliferation was assessed
using pHH3 staining, which marks cells undergoing mi-
tosis. Notably, the number of pHH3+ cells in the endo-
cardial cushion and myocardium was decreased in
diabetic embryos, which was rescued by NAC treatment.
Cell proliferation in endocardial cushion was also in-
creased by NAC treatment in the control embryos.
Since NAC treatment did not inhibit apoptosis in dia-
betic embryos in our study, increases in cell prolifera-
tion may represent a major effect of NAC in preventing
CHDs in diabetes.
In conclusion, the present study demonstrated that
pregestational diabetes induces a wide spectrum of CHDs
similar to humans. Treatment with NAC increases GSH
levels, decreases ROS levels in the fetal heart and prevents
the development of CHDs in the offspring of pregesta-
tional diabetes. In women with pregestational diabetes, in-
sulin is the primary treatment to achieve good glycemic
control [53]. However, insulin treatment is not sufficient
to decrease the risk of CHDs in the diabetic offspring to
normal levels [38,54]. Even with optimal care and plan-
ning of diabetic pregnancies, the risk of CHDs in the off-
spring of diabetic mothers is not as low as in the offspring
of nondiabetic mothers. Further studies are required to in-
vestigate whether NAC, an FDA approved drug either
alone or in combination with insulin prevents CHDs in in-
fants of women with pregestational diabetes.
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