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Anti-inflammatory effects of triptolide improve
left ventricular function in a rat model of diabetic
cardiomyopathy
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Abstract

Aims: Given the importance of inflammation in the onset and progression of diabetic cardiomyopathy, we
investigated the potential protective effects of triptolide, an anti-inflammatory agent, in streptozotocin-induced
diabetic rat model and in H9c2 rat cardiac cells exposed to high glucose.

Methods and results: Diabetic rats were treated with triptolide (100, 200, or 400 μg/kg/day respectively) for
6 weeks. At the end of this study, after cardiac function measurements were performed, rats were sacrificed and
their hearts were harvested for further histologic and molecular biologic analysis. Enhanced activity and expression
of nuclear factor-kappaB (NF-κB) p65 in diabetic hearts were associated with increased inflammatory response, as
demonstrated by increased pro-inflammatory cytokines, cell adhesion molecules and invading inflammatory cells, as
well as increased fibrosis, in line with impaired left ventricular function. Triptolide attenuated these morpho-
functional alterations. Furthermore, triptolide (20 ng/ml) also attenuated high glucose-induced inflammation in
H9c2 rat cardiac cells.

Conclusion: Our data demonstrate that anti-inflammatory effects of triptolide involving the NF-κB signaling
pathway can improve left ventricular function under diabetic conditions, suggesting triptolide treatment might be
beneficial in diabetic cardiomyopathy.
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Introduction
Diabetic cardiomyopathy, one of the leading cardiovascu-
lar complications in diabetic patients, has gained much
interest due to its subsequent heart failure and eventually
increased mortality. Over the last decades, accumulating
evidence from both clinical data and animal models shows
that diverse mechanisms are involved in the development
of diabetic cardiomyopathy, including microangiopathy,
alterations in substrate metabolism, oxidative damage, car-
diac inflammation and fibrosis [1-4]. Among these abnor-
malities, the unresolved inflammatory response plays a
key role in the onset and progression of diabetic cardio-
myopathy [5,6]. Chronic inflammation could directly and
indirectly cause cardiac tissue injury such as myocardial fi-
brosis, necrosis and apoptosis, which inevitably leads to
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left ventricular (LV) diastolic and then systolic dysfunc-
tion. The recognition of the inflammatory basis for
diabetic cardiomyopathy may greatly contribute to the
management of this disease.
Tripterygium wilfordii Hook F (TwHF), due to its well-

established cost-effect ratio, has been used in traditional
Chinese medicine to treat autoimmune and inflamma-
tory diseases for centuries [7,8]. Triptolide (TP), a puri-
fied component of TwHF, accounts for its major
bioactive effect. Randomized controlled clinical trails in
the United States have shown the safety and efficacy of
triptolide in treating patients with rheumatoid arthritis
[9-11]. Triptolide has also been used to treat other
immune-mediated inflammatory diseases, such as com-
plex nephritis and systemic lupus erythematosus. In
addition, it has been demonstrated triptolide can effect-
ively prolong the cardiac allograft survival [12,13], so the
clinical applications of triptolide have been extended to
organ transplantation.
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A recent study has shown that triptolide, through sup-
pressing renal inflammation and oxidative stress, pre-
vents diabetic nephropathy progression [14]. Therefore,
on the basis of the above considerations, we hypothe-
sized that triptolide may exert protective effects in a rat
model of diabetic cardiomyopathy and in cultured
cardiomyocytes exposed to high glucose (HG).

Methods
Animal model and treatment
Diabetes mellitus (DM) was induced in 8-week-old male
Sprague–Dawley (SD) rats (Central South University
Animal Centre, China) by a single intraperitoneal injection
of streptozocin (STZ, 70 mg/kg, dissolved in 0.1 M so-
dium citrate buffer, pH 4.5; Sigma, USA) after starvation
overnight. Three days and one week after the injection,
random blood glucose level was measured using
Onetouch SureStep glucometer (LifeScan, USA) by tail
vein blood sampling. Only rats with blood glucose level >
16.7 mmol/l in both tests were selected in this study.
These 1-week diabetic rats were randomly divided into
four groups (n = 10 each): three diabetic groups treated
with triptolide (100, 200, or 400 μg/kg/day respectively)
and one diabetic group treated with vehicle. In order to
verify the potential side effects of triptolide, one sex- and
age-matched non-diabetic group (SD rats injected with
sodium citrate buffer only, n = 10) was treated with
high-dose triptolide (400 μg/kg/day). Triptolide (Chinese
National Institute for the Control of Pharmaceutical and
Biological Products, China), dissolved in dimethylsul-
foxide (DMSO; Sigma, USA), was given by daily gastric
gavage for 6 weeks. Another sex- and age-matched non-
diabetic group (n = 10) was referred to as the control
group. Rats were kept in the laminar flow cages on a 12 h/
12 h dark/light cycle with free access to standard chow
and tap water. At the end of this study, after cardiac func-
tion measurements were obtained, rats were sacrificed and
their hearts were harvested for further histologic and mo-
lecular biologic analysis. In addition, blood from the aorta
was collected for the determination of liver and renal
functions, as well as serum marker of cardiac damage. The
investigation was approved by the Institutional Animal
Care and Use Committee of Central South University.

Cardiac function measurement
Echocardiography was performed in all rats using GE
Vivid 7 ultrasound system with a 10-MHz transducer
(General Electric, USA). During the procedure, rats were
anesthetized with intraperitoneal injection of pentobar-
bital (50 mg/kg) and placed in the supine position. LV
end-diastolic dimension (LVEDD) and LV end-systolic
dimension (LVESD) were measured on the parasternal
LV long axis view. These chamber dimensions were
indexed to body weight. LV ejection fraction (LVEF) and
fractional shortening (FS) were calculated by assuming a
spherical LV geometry with the algorithms of ultrasound
system. The parameters above were measured at least
three times and averaged. All measurements were performed
by an experienced investigator who was blinded to the
grouping and treatment information.
Histopathology and immunohistochemistry
Heart samples were fixed in 4% buffered paraformalde-
hyde solution and embedded in paraffin. The 5 μm tis-
sue sections were stained with Sirius red, assessing for
total cardiac collagen content. For immunohistochemis-
try, after blocking endogenous peroxidase activity with
3% hydrogen peroxide, the sections were incubated with
blocking buffer to further block unspecific sites. Staining
was performed with the following primary antibodies at
the given dilution overnight at 4°C: collagen I (Col I, 1:
200; Abcam, USA), collagen III (Col III, 1: 200; Abcam,
USA), CD68 (1: 100; Adb Serotec, Germany) and CD3
(1: 300; Adb Serotec, Germany). After washing, the sec-
tions were incubated with biotin-labeled secondary anti-
body (1: 400; Vector lab, USA) for 1 hour at room
temperature followed by color development with DAB
kit (Vector lab, USA). Immunohistochemical staining
was quantified with Image Pro Plus 6.0 software on 10
fields of the left ventricle.
Quantitative real-time RT-PCR
Quantitative real-time RT-PCR was performed to assess
transcript levels of tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), intercellular adhesion molecule-1
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1)
and nuclear factor-kappaB (NF-κB) p65. After RNA ex-
traction, the concentration and integrity of the RNA was
determined. Total RNA was then reverse-transcribed to
cDNA, and the target genes were amplified using the type
of CFX96 real-time PCR system (Bio-Rad, USA). The
amplification conditions were set as followings: initial hold
steps (50°C for 2 min, then 95°C for 10 min) and 40 cycles
of a two-step PCR (95°C for 15 s and 60°C for 1 min). The
fold change of the target PCR product was calculated after
adjusting for β-actin using the comparative delta-delta Ct

method. The primers used in this study were obtained
from Genscript Corp (Nanjing, China), and its sequences
were as follows: for TNF-α 50-TGACCCCCATTACT
CTGACC-30 and 50-GGCCACTACTTCAGCGTCTC-30;
for IL-1β 50-CTCCATGAGCTTTGTACAAGG-30 and 50-
TGCTGATGTACCAGTTGGGG-30; for ICAM-1 50-
GTCTCATGCCCGTGAAATTATG-30 and 50-CATTTT
CTCCCAGGCATTCTCT-30; for VCAM-1 50-GGAGGT
CTACTCATTCCCTGAAGA-30 and 50-ACCGTGCAGT
TGACAGTGACA-30; for NF-κB p65 50-CTCCCGGG
CAGGTCTCAGC-30 and 50-GAAACGCATGCCCCGCT
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GCT-30; for β-actin 50-CATCCTGCGTCTGGACCTGG-
30 and 50-TAATGTCACGCACGATTTCC-30.

Western blot
Western blot was used to quantify protein levels of TNF-α,
IL-1β, ICAM-1, VCAM-1 and NF-κB p65. After the meas-
urement of protein concentration, equal amount of protein
was separated by 10% SDS-PAGE and transferred to
polyvinylidene fluoride membranes. The membranes were
blocked with 5% nonfat milk in TBS buffer. Then different
primary antibodies, including TNF-α (Bioworld, USA), IL-
1β (Proteintech, USA), ICAM-1(Abcam, USA), VCAM-1
(Abcam, USA) and NF-κB p65 (Bioworld, USA), were
added at a dilution of 1:1,000 overnight at 4°C. After wash-
ing, the membranes were incubated with horseradish
peroxidase-conjugated secondary antibody (1: 4,000; Pro-
teintech, USA) for 1 hour at room temperature. The blots
were visualized using ECL kit (Thermo pierce, USA).
β-actin was used as a loading control. The density of bands
was quantified with Image Pro Plus 6.0 software.

TransAM™ NF-κB p65 Elisa
TransAM™ NF-κB p65 Elisa kit (Active Motif, USA) was
tested for the DNA-binding activity of free NF-κB p65 in
nuclear extracts. Nuclear protein extraction and NF-κB
p65 activation assay were performed according to the
manufacturer’s instructions.

Cell culture
H9c2 rat cardiac cell line (ATCC, USA) was cultured in
DMEM in 5% CO2 at 37°C. The cells were divided into
three groups and cultured for 48 hours: (a) D-glucose
(5.5 mmol/l); (b) high D-glucose (33 mmol/l); (c) co-
stimulated with high D-glucose (33 mmol/l) and triptolide
(20 ng/ml). Then, the cells were harvested and processed
for the molecular biologic assay. The mRNA and pro-
tein expressions of TNF-α and NF-κB p65 were analysed
by quantitative real-time RT-PCR and western blot, res-
pectively. The activity of NF-κB p65 was assessed by
TransAM™ NF-κB p65 Elisa.

Statistical analysis
SPSS software version 18.0 was used for statistical ana-
lysis. Continuous variables were presented as mean ±
Table 1 Animal characterization

Con TP DM

Glucose, mmol/l 6.6 ± 1.9 5.9 ± 1.4 32.2 ±

BW, g 464.0 ± 21.2 468.0 ± 19.6 216.3

HW, mg 1183.3 ± 14.2 1202.5 ± 12.4 758.6

HW/BW, mg/g 2.55 ± 0.32 2.56 ± 0.23 3.49 ±

BW body weight, HW heart weight, TP, L low-dose triptolide (100 μg/kg/day), TP, M
day). *P < 0.05 versus Con; #P < 0.05 versus DM.
standard deviation (SD). Comparisons of continuous
data were carried out with one-way ANOVA and post
hoc analysis with Bonferroni test. When heterogeneity of
variance was present, comparisons were performed with
Mann–Whitney test, followed by post hoc analysis with
Kruskal-Wallis test. A value of P < 0.05 was considered
statistically significant.

Results
Characterization of animal groups
At the end of the study, the untreated and triptolide-
treatment diabetic groups displayed severe hypergly-
cemia and higher heart weight to body weight ratio com-
pared with non-diabetic groups. The increased ratio in
diabetic groups was mainly due to the significantly
smaller body weight of these animals. Triptolide treat-
ment did not affect the above metabolic parameters in
either non-diabetic or diabetic groups (Table 1).

Cardiac performance
Although echocardiography did not show any differ-
ences in LV end diastolic and systolic dimensions among
groups, the LV dimension indices were significantly
higher in diabetic groups, indicating LV dilatation in dia-
betic rats. Importantly, triptolide treatment significantly
improved LV dysfunction in diabetic rats, as shown by
increased LVEF. And FS in triptolide-treatment diabetic
groups also showed the upward trend compared with
the untreated diabetic group, but the difference did not
reach statistical significance (Table 2).

Cardiac fibrosis
Since collagen deposition influences the passive mechan-
ical properties of the myocardium and then affects the car-
diac performance, we observed changes of total collagen,
collagen I and collagen III content in the rat hearts. Total
collagen content, measured by Sirius red staining, was sig-
nificantly increased in both interstitial and perivascular
sites in diabetic rats compared with controls. Accordingly,
collagen I and collagen III, which accounted for 90% of
cardiac collagen, were increased in these rats. Triptolide
treatment attenuated, but did not normalize, diabetic-
induced cardiac fibrosis (Figure 1).
DM+ TP,L DM + TP,M DM+ TP,H

2.5* 32.1 ± 3.5* 30.8 ± 3.0* 32.6 ± 2.6*

± 21.7* 234.8 ± 37.5* 235.7 ± 30.5* 224.3 ± 29.3*

± 13.6* 762.3 ± 15.3* 771.3 ± 14.7* 734.8 ± 13.2*

0.35* 3.24 ± 0.41* 3.25 ± 0.34* 3.28 ± 0.42*

medium-dose triptolide (200 μg/kg/day), TP, H high-dose triptolide (400 μg/kg/



Table 2 Echocardiographic parameters

Con TP DM DM+ TP,L DM + TP,M DM+ TP,H

LVEDD, mm 6.5 ± 0.5 6.6 ± 0.5 5.7 ± 0.8 5.9 ± 0.4 5.5 ± 0.7 5.3 ± 1.1

LVEDD index, um/g 14.3 ± 1.2 14.4 ± 1.1 23.9 ± 3.4* 22.0 ± 2.9* 22.2 ± 2.1* 21.1 ± 4.6*

LVESD, mm 3.8 ± 0.3 3.8 ± 0.4 3.8 ± 0.6 3.7 ± 0.3 3.2 ± 0.3 3.2 ± 0.9

LVESD index, um/g 8.3 ± 0.7 8.2 ± 0.9 16.0 ± 2.5* 13.7 ± 2.2* 13.0 ± 1.1 12.6 ± 3.4

LVEF,% 78.2 ± 2.6 77.5 ± 3.1 67.8 ± 2.6* 73.7 ± 2.5 74.8 ± 3.8# 74.4 ± 3.8#

FS,% 43.2 ± 2.6 42.7 ± 3.3 35.0 ± 1.6* 39.5 ± 2.4 40.8 ± 3.3 40.0 ± 3.7

LVEDD left ventricular end-diastolic dimension, LVESD left ventricular end-systolic dimension, LVEF left ventricular ejection fraction, FS fractional shortening. TP,
L low-dose triptolide (100 μg/kg/day), TP, M medium-dose triptolide (200 μg/kg/day); TP, H high-dose triptolide (400 μg/kg/day). *P < 0.05 versus Con; #P < 0.05
versus DM.

Figure 1 Representative images of Sirius red staining for total collagen and immunohistochemical staining for collagen I and collagen
III in cardiac tissue (200× magnification). Bars represent quantification of expression of total collagen, collagen I and collagen III (% area
fraction). TP, L, low-dose triptolide (100 μg/kg/day); TP, M, medium-dose triptolide (200 μg/kg/day); TP, H, high-dose triptolide (400 μg/kg/day).
*P < 0.05 versus control; #P < 0.05 versus DM, n = 10 per group.
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Cardiac inflammation
Given the importance of inflammation in the progression
of diabetic cardiomyopathy, we analysed the expression of
key pro-inflammatory cytokines and cell adhesion mole-
cules, as well as the infiltration of inflammatory cells, in
the cardiac tissue. The mRNA and protein levels of TNF-
α and IL-1β in diabetic rats revealed a significant increase
compared with controls. Enhanced expression of ICAM-1
and VCAM-1 was also observed in these rats. In agree-
ment with increased inflammatory mediators, immuno-
histological staining demonstrated a higher recruitment of
macrophages and T lymphocytes (CD68+ and CD3+ cells,
respectively) in diabetic rat hearts. Triptolide treatment
significantly attenuated the aforementioned cardiac in-
flammation. It should be noted that, besides its prominent
anti-inflammatory effect, triptolide as an immunoregula-
tory agent also showed the immunosuppressive activity,
thus leading to reduced expression of inflammatory medi-
ators in non-diabetic rats (Figure 2, Figure 3A to 3D, 3F
and 3I).
Figure 2 Representative images of immunohistochemical staining for
tissue (400× magnification). Bars represent quantification of infiltrating CD6
TP, M, medium-dose triptolide (200 μg/kg/day); TP, H, high-dose triptolide (400
per group.
Cardiac activity and expression of NF-κB p65
The transcription factor NF-κB plays a crucial role in
regulating a variety of genes involved in inflammatory
response. Therefore, we further examined the activity
and the expression of NF-κB p65 in cardiac tissue. Con-
sistent with the upregulated inflammatory mediators, the
DNA-binding activity of free NF-κB p65 in nuclear ex-
tracts of diabetic hearts was significantly increased com-
pared with controls. And the mRNA and protein levels
of NF-κB p65 were enhanced in parallel. Triptolide
treatment not only inhibited the activation of NF-κB
p65, but also reduced the mRNA and protein expres-
sions of NF-κB p65 (Figure 3E, 3J and 3K).

Safety of triptolide treatment
To assess the safety of triptolide treatment, we tested
several main indices of liver and renal functions, as well
as serum marker of cardiac damage. The untreated and
triptolide-treatment diabetic groups showed the elevated
serum alanine aminotransferase (ALT) level compared
CD68+ (macrophages) and CD3+ (T lymphocytes) cells in cardiac
8+ and CD3+ cells (cells/mm2). TP, L, low-dose triptolide (100 μg/kg/day);
μg/kg/day). *P < 0.05 versus control; #P < 0.05 versus DM, n = 10



Figure 3 Triptolide attenuated diabetes-induced cardiac inflammation. (A-E) mRNA expressions of TNF-α, IL-1β, ICAM-1, VCAM-1 and NF-κB
p65, as determined by quantitative real-time RT-PCR. (F-J) protein expressions of TNF-α, IL-1β, ICAM-1, VCAM-1 and NF-κB p65, as determined by
western blot. (K) DNA-binding activity of free NF-κB p65 in nuclear extracts, as determined by TransAM™ NF-κB p65 Elisa. TP, L, low-dose triptolide
(100 μg/kg/day); TP, M, medium-dose triptolide (200 μg/kg/day); TP, H, high-dose triptolide (400 μg/kg/day). *P < 0.05 versus control;
#P < 0.05 versus DM, n = 10 per group.
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Table 3 Safety of triptolide treatment

Con TP DM DM+ TP,L DM + TP,M DM+ TP,H

ALT, U/l 44.7 ± 13.3 42.2 ± 12.1 72.4 ± 13.5* 76.5 ± 20.1* 84.5 ± 13.6* 89.6 ± 11.5*

AST, U/l 110.0 ± 41.0 114.0 ± 46.1 144.0 ± 59.0 141.2 ± 43.6 167.7 ± 57.3 167.4 ± 60.2

Cr, μmol/l 53.3 ± 13.8 51.5 ± 11.7 56.4 ± 15.4 41.8 ± 13.1 42.6 ± 8.2 40.2 ± 7.4

CK-MB, U/l 593.2 ± 158.1 538.2 ± 234.7 714.7 ± 132.3 322.0 ± 53.3*# 450.2 ± 90.8# 517.4 ± 79.7

TP, L low-dose triptolide (100 μg/kg/day), TP, M medium-dose triptolide (200 μg/kg/day), TP, H high-dose triptolide (400 μg/kg/day). *P < 0.05 versus Con; #P < 0.05
versus DM.
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with control group. No significant difference in aspartate
aminotransferase (AST) and creatinine (Cr) levels was ob-
served among groups. Serum creatine kinase-myoglobin
(CK-MB) level in triptolide-treatment diabetic groups was
not upregulted, even showed the downward trend com-
pared with the untreated diabetic group (Table 3).

HG-induced inflammation in H9c2 cells
H9c2 cells incubated with HG for 48 hours displayed overt
inflammatory response, as shown by the enhanced activity
of NF-κB p65, as well as increased mRNA and protein ex-
pressions of TNF-α and NF-κB p65. Triptolide markedly
inhibited HG-induced inflammation (Figure 4).

Discussion
To our knowledge, this study is the first to reveal that
chronic treatment with triptolide attenuates cardiac in-
flammation and myocardial fibrosis, resulting in improved
LV function in a rat model of diabetic cardiomyopathy.

Cardiac inflammation in diabetic cardiomyopathy
Consistent with previous study, diabetic rats in our study
displayed overt intramyocardial inflammation 7 weeks
after STZ injection [15], as evidenced by enhanced activ-
ity and expression of NF-κB p65, thus leading to in-
creased levels of cardiac pro-inflammatory cytokines
(TNF-α, IL-1β), enhanced expressions of cell adhesion
molecules (ICAM-1, VCAM-1), and activated invading
immunocompetent cells (macrophages, T lymphocytes).
In addition, cardiac collagen content (total collagen, col-
lagen I and collagen III) was also significantly increased
in these untreated rats. Consequently, these abnormal
structural alterations in diabetic rats led to impaired car-
diac performance, i.e. increased LV dimension indices,
reduced LVEF and FS.
Although some researchers reported myocardial inflam-

mation is not present in long-term experimental diabetic
model [16], the notion that inflammation is an early re-
sponse to diabetic insult is widely accepted. And once the
advanced structural alterations are formed, the prognosis
of diabetic cardiomyopathy is very poor. Therefore, the ra-
tionale supporting anti-inflammatory agents’ early usage in
diabetic cardiomyopathy is 3-fold. First, inflammation char-
acterized by elevated inflammatory cytokine production
exists not only in the myocardium of animal models
[15,17,18], but also in the serum of diabetic patients, even
in those patients with good glycemic control [19]. Second,
it has been demonstrated that inflammatory cytokines
(TNF-α, IL-1β) participate in the development of LV
dysfunction, and negatively correlate with LV contracti-
lity [20,21]. Inflammatory cytokines can attenuate cardio-
myocyte contractility directly through the immediate
reduction of systolic cytosolic calcium and indirectly
through attenuation of myofilament calcium sensitivity
[22], and this detrimental effect may be reversible by clear-
ance of the cytokine exposure. Last but not the least,
though the Framingham study indicated poor glycemic
control was associated with an increased risk of heart fail-
ure [23], the ADVANCE (Action in Diabetes and Vascular
Disease) trail and a meta-analysis unexpectedly showed in-
tensive glycemic control did not reduce the occurrence of
heart failure [24,25]. Furthermore, heart failure progression
is not blocked by optimal therapy with angiotensin-
converting enzyme inhibitors and beta-blockers.
As the most extensively studied cytokine, TNF-α is a

noteworthy pro-inflammatory cytokine with various
pathogenic effects. On one side, TNF-α is a valuable
biomarker, for its correlation with enhanced brain natri-
uretic peptide and adverse clinical outcome in patients
with heart failure [26,27]. On the other side, TNF-α is a
strong mediator in the progression of heart failure.
TNF-α not only exacerbates inflammatory response
through acting as a signal amplifier to induce other in-
flammatory cytokines production, but also contributes
to myocardial hypertrophy and fibrosis, leading to LV
remodeling and dysfunction [28]. Thus, TNF-α may
serve as a potential target in preventing LV dysfunction
therapy. Although the result of anti-TNF therapy is en-
couraging in animal models, the anti-TNF therapy in
clinical trials does not show benefits in preventing LV
dysfunction [29,30]. One explanation for the negative
result is that targeting a single cytokine is not an effect-
ive approach under a complex network of inflammatory
signaling pathways, as other redundant cytokines may
continue to propagate the inflammatory response. A
more robust and comprehensive strategy would be to
target a more central locus, such as NF-κB, which inte-
grates signals from multiple inflammatory mediators [2,5].



Figure 4 Triptolide attenuated HG-induced inflammation in H9c2 cells. (A, B) mRNA expressions of TNF-α and NF-κB p65, as determined by
quantitative real-time RT-PCR. (C, D) protein expressions of TNF-α and NF-κB p65, as determined by western blot. (E) DNA-binding activity of free
NF-κB p65 in nuclear extracts, as determined by TransAM™ NF-κB p65 Elisa. *P < 0.05 versus control; #P < 0.05 versus HG, n = 6 per group.
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Therapeutic effect of triptolide
In the current study, we observed treatment with triptolide
significantly attenuated cardiac inflammation and fibrosis
through suppressing the activity and the expression of
NF-κB in a rat model of diabetic cardiomyopathy. It is rea-
sonable to suggest these morpho-functional changes im-
proved, although not completely normalized, LV systolic
function. In H9c2 cells exposed to HG, triptolide also
markedly inhibited NF-κB activation and attenuated HG-
induced inflammation. The cardioprotective effects of
triptolide may be mediated, at least in part, through NF-κB
signaling pathway.
As shown in the present and in previous studies,

triptolide inhibited the activation and the expression of
NF-κB in vitro and in vivo [31-34]. NF-κB is a pleio-
tropic transcription factor that controls the expression
of several target genes, mainly of them involved in in-
flammation. Under hyperglycemic condition, the DNA-
binding activity of NF-κB p65 was enhanced, and its
mRNA and protein expressions were also upregulated.
The NF-κB activation led to the increased expression
of inflammatory mediators, including pro-inflammatory
cytokines (TNF-α, IL-1β) and cell adhesion molecules
(ICAM-1, VCAM-1), which contributed to the recruit-
ment and activation of inflammatory cells (macrophages,
T lymphocytes) in cardiac tissue. And some of these cy-
tokines, such as TNF-α and IL-1β, could further sti-
mulate NF-κB activation as a positive feedback loop.
Collectively, these inflammatory mediators cooperated
closely to initiate and maintain cardiac inflammation in
diabetic rats. However, 6 weeks of triptolide treatment
significantly inhibited the activation and the expression
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of NF-κB, as well as the expression of NF-κB-dependent
inflammatory mediators in diabetic hearts.
In our study, increased cardiac fibrosis was noticed in

STZ diabetic rats and effectively ameliorated by triptolide
treatment. In addition to suppress the pro-fibrotic action
of NF-κB [5], the attenuation of cardiac inflammation may
be another mechanism of triptolide’s anti-fibrotic effects,
since cardiac fibrosis is also partly mediated by some pro-
fibrotic inflammatory cytokine, such as TNF-α and IL-1β.
Furthermore, hyperglycemia induced oxidative stress is an
important pathogenic factor in the development of cardiac
fibrosis. There is an increasing interest in suppressing oxi-
dative stress as an effective strategy for reducing cardiac
fibrosis [35,36]. And it has been demonstrated that trip-
tolide can significantly reduce oxidative stress [33,34].
Thus, we may speculate that the anti-fibrotic effects of
triptolide are also related to its inhibitory effect on oxi-
dative stress. However, further investigation must be per-
formed to elucidate the exact anti-fibrotic mechanism of
triptolide under diabetic conditions.
Although several researchers have reported that

triptolide does not affect NF-κB DNA-binding activity
[37], our findings demonstrated triptolide could inhibit
hyperglycemic-induced NF-κB activation both in vitro
and in vivo, confirmed by TransAM™ NF-κB p65 Elisa
assay. And our results are consistent with the prevailing
view regarding the effect of triptolide on NF-κB activity
[8]. One plausible explanation for this discrepancy is dif-
ferences in cell types, animal models, or experimental
methodologies.
The dosage of triptolide was selected based on our

pilot study and other studies [31,32]. It should be noted
that the cardioprotective effects of triptolide under dia-
betic condition was not exactly dose-dependent. One
possibility is that the anti-inflammatory potency of
triptolide at the dosage of 200–400 μg/kg/day reaches a
plateau. The safety of triptolide treatment was confirmed
by serum ALT, AST, Cr and CK-MB level assay. Al-
though the untreated and triptolide-treatment diabetic
groups showed the increased ALT level compared with
control group, triptolide-treatment in non-diabetic rats
did not upregulate ALT level. And no significant differ-
ence in AST and Cr levels was observed among groups.
Moreover, triptolide treatment did not upregulate CK-
MB level. Therefore, we infer that the increased ALT
level in diabetic rats was due to diabetic-induced liver
damage, while triptolide itself in our study did not show
liver, kidney or cardiac toxicity.

Study limitations
Although STZ is widely used to induce diabetic animal
model, a few reports have indicated that STZ itself may
cause cardiac morpho-functional abnormalities [38]. And
the STZ-model is associated with severe hyperglycemia
and hypoinsulinemia, which is not encountered in patients
with type 1 diabetes receiving exogenous insulin. However,
in clinical setting diabetic patients are always accompanied
with comorbidities such as hypertension and atheroscler-
osis, the classical STZ-model is considered as an ideal
model for experimental diabetic cardiomyopathy due to
its relative resistance to develop hypertension and athero-
sclerosis [39-41]. Therefore, this model is particular useful
in exploring the effect of hyperglycemia alone on cardiac
tissue, that is, the underlying mechanism of diabetic car-
diomyopathy. Caution should be taken when extrapolating
our findings in STZ-animal models to diabetic patients.
Although triptolide treatment in non-diabetic rats did not
affect cardiac performance and other metabolic parame-
ters, the longterm consequences of its potential immuno-
suppressive property should be further examined with
care. In addition, further study is required to evaluate the
therapeutic effect of triptolide post-treatment after the es-
tablishment of diabetic cardiomyopathy.

Conclusion
In conclusion, triptolide treatment significantly attenu-
ates cardiac inflammation and fibrosis through suppress-
ing the activity and the expression of NF-κB, resulting in
improved LV function in experimental diabetic cardio-
myopathy. Our data demonstrate that triptolide might
be potentially used in conjunction with current glycemic
and heart failure therapies.
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