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Abstract

Background: Apolipoprotein B100 (ApoB100) determination is superior to low-density lipoprotein cholesterol (LDL-C)
to establish cardiovascular (CV) risk, and does not require prior fasting. ApoB100 is rarely measured alongside
standard lipids, which precludes comprehensive assessment of dyslipidemia.

Objectives: To evaluate two simple algorithms for apoB100 as regards their performance, equivalence and
discrimination with reference apoB100 laboratory measurement.

Methods: Two apoB100-predicting equations were compared in 87 type 2 diabetes mellitus (T2DM) patients using
the Discriminant ratio (DR). Equation 1: apoB100 = 0.65*non-high-density lipoprotein cholesterol + 6.3; and Equation 2:
apoB100 = −33.12 + 0.675*LDL-C + 11.95*ln[triglycerides]. The underlying between-subject standard deviation (SDU)
was defined as SDU = √ (SD2

B - SD
2
W/2); the within-subject variance (Vw) was calculated for m (2) repeat tests as

(Vw) = Σ(xj -xi)2/(m-1)), the within-subject SD (SDw) being its square root; the DR being the ratio SDU/SDW.

Results: All SDu, SDw and DR’s values were nearly similar, and the observed differences in discriminatory power
between all three determinations, i.e. measured and calculated apoB100 levels, did not reach statistical significance.
Measured Pearson’s product-moment correlation coefficients between all apoB100 determinations were very high,
respectively at 0.94 (measured vs. equation 1); 0.92 (measured vs. equation 2); and 0.97 (equation 1 vs. equation 2),
each measurement reaching unity after adjustment for attenuation.

Conclusion: Both apoB100 algorithms showed biometrical equivalence, and were as effective in estimating apoB100
from routine lipids. Their use should contribute to better characterize residual cardiometabolic risk linked to the
number of atherogenic particles, when direct apoB100 determination is not available.
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Introduction
Low-density lipoproteins (LDL) and their very-low density
lipoprotein (VLDL) precursors represent the major
atherogenic particles. Each contains a single apolipopro-
tein B100 (apoB100) molecule, which ensures the structural
integrity of the lipoprotein, and binds to the hepatic recep-
tor for catabolic removal of LDL. The “small-dense” LDL
phenotype confers a higher cardiovascular (CV) risk than
that resulting from their cholesterol load. Therefore
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reproduction in any medium, provided the or
circulating apoB100 level more accurately reflects the num-
ber of atherogenic particles, 90% of apoB100 belonging to
LDL irrespective of their size. The determination of
apoB100 does not require prior fasting, unlike estimation
of LDL-cholesterol (LDL-C) by Friedewald’s formula [1-8].
Numerous studies have demonstrated the superiority of

apoB100 relative to LDL-C to establish CV risk, and im-
provement of outcomes after lipid-lowering drug (LLD)
therapy [2-6,9]. The Adult Treatment Panel III proposed
that in individuals with elevated triglycerides (TG), non-
high-density lipoprotein cholesterol (non-HDL-C) should
be treated as secondary therapy goal, after targeting LDL-
C; moreover non-HDL-C appears a better predictor of CV
risk than LDL-C, especially in statin-treated patients [2,6].
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However, the relationships between LDL-C, non-HDL-C
and apoB100 are often less convergent than expected, and
therefore less predictable in patients at high cardiometabolic
risk, including those with high TG and/or the metabolic
syndrome. In these patients, including those with type 2
diabetes mellitus (T2DM), non-HDL-C and apoB100 are
therefore less interchangeable than the reading of the gen-
eral recommendations for the treatment of hypercholes-
terolemia would suggest.
In the absence of consensual guidelines, the current rec-

ommendation for hypercholesterolemic patients at high
cardiometabolic risk is to bring at target three key modifi-
able variables: (i) LDL-C; (ii) non-HDL-C; and (iii) apoB100
[6,10]. In real life however, apoB100 determination is rarely
performed alongside routine lipids, which precludes such
comprehensive assessment of residual dyslipidemia. Conse-
quently, simple algorithms were proposed to estimate
apoB100 level from routine lipids, based on LDL-C and
non-HDL-C as freely-available biometrical equivalent to
apoB100 [7,8].
The aim of this study was to compare the performance

and true equivalence of two apoB100-predicting algorithms
in T2DM patients considered at high cardiometabolic risk,
with reference to laboratory determination of apoB100 and
against each other. We used the Discriminant Ratio (DR)
methodology, which standardises comparisons between
measurements by taking into account fundamental prop-
erties for assessing imprecision and practical performance
of tests designed to quantify similar variables [7,11-14].
Cross-validation of these algorithms should prompt po-
tential users to increasingly rely on them, to derive un-
biased apoB100 values from landmark epidemiological or
interventional databases, or from current standard lipids
in specific situations where it is desirable to know the
levels of non-HDL-C and that of apoB100.

Methods and statistical analysis
We studied 87 consecutive (84% white Caucasians; 6%
North-Africans; 5% sub-Saharan Africans) patients with
T2DM, treated or not with lipid-lowering drug(s) (LLD).
All lipid values were obtained in the fasting state, on two
non-consecutive days. The time-span between sampling,
obtained during regular outpatients’ follow-up visits, was
2–6 months. The following biologic variables were re-
corded: glycated hemoglobin (HbA1c), fasting lipids
(total cholesterol [C], HDL-C, and TG). Fasting duration
was ≥10-hours, with last intake of food allowed at dinner
the day before sampling. No change in LLD(s) was
allowed during the interval that separated the two days
of sampling.
Total C and TG were determined using the SYNCHRON

system (Beckman Coulter Inc., Brea, CA). HDL-C was
determined with the ULTRA-N-geneous reagent (Genzyme
Corporation, Cambridge, MA). ApoB100 was measured
with immunonephelometry on BNII Analyzer (Siemens
Healthcare Products GmbH, Marburg, Germany) from
the same blood samples destined for routine lipids deter-
mination. The within-subject coefficients of variation
were as follows: 5.4% [total C]; 7.1% [HDL-C]; and 6.9%
[apoB100]. LDL-C was computed with Friedewald’s for-
mula [1]; non-HDL-C by subtracting HDL-C from
total C.
Besides direct measurement, ApoB100 level was calcu-

lated from routine lipids using the two following equa-
tions:

apoB100 mg=dLð Þ ¼ 0:65 x non�HDL� C mg=dLð Þ½ �
þ 6:3 mg=dLð Þ ð1Þ

based on fasting or nonfasting lipids [ref. 7]

apoB100 mg=dLð Þ ¼ � 33:12 mg=dLð Þ
þ 0:675 x LDL� C mg=dLð Þ½ �
þ 11:95 x ln TG½ � mg=dLð Þ½ �

ð2Þ

based on fasting lipids only [ref. 8]
The presence of atherogenic dyslipidemia (AD) was

defined as the combined occurrence of decreased HDL-
C (<40 [males] or <50 mg/dL [females]) plus elevated
fasting TG (≥150 mg/dL) using baseline lipid values (ie,
before any LLD(s) in treated patients) [15]. Glomerular
filtration rate was estimated using the Modified Diet in
Renal Disease formula [16].
The Discriminant Ratio (DR) methodology compares

different tests measuring the same underlying physio-
logical variable by determining the ability of a test to dis-
criminate between different subjects, and the comparison
of discrimination between different tests as well as the
underlying correlation between pairs of tests adjusting for
the attenuating effect of within-subject variation [7,11-14].
In a comparison study where duplicates measurements
are performed in each subject, the measured between-
subject standard deviation (SDB) is calculated as the SD of
the subject mean values calculated from the 2 replicates.

� The standard mathematical adjustment to yield the
underlying between-subject SD (SDU) is: SDU = √
(SD2

B - SD2
W/2);

� The within-subject variance (Vw) is calculated for m
repeat tests as (Vw) = Σ(xj -xi)

2/(m-1)), the within-
subject SD (SDw) being its square root;

� The DR represents the ratio SDU/SDW

Confidence limits for DR’s and the testing for equiva-
lence of different DR’s were calculated and differences
were considered significant for p < 0.05. Given sample
size and number of replicates, the minimal detectable
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significant difference in DR for the present study was 0.42.
Coefficients of correlation between pairs of tests used to
estimate apoB100 (measured vs. estimated) were adjusted to
include an estimate of the underlying correlation, as stand-
ard coefficients tend to underestimate the true correlation
between tests, due to within-subject variation [13].
The study was performed in accordance with the insti-

tutional review board of St-Luc Academic Hospital.

Results
The patients’ characteristics are described in Table 1.
Mean age (1 SD) was 65 (10) years, with a male gender
predominance. Mean body mass index was in the over-
weight/obese range, and patients had long-standing dia-
betes (mean duration 15 (8) years), and high prevalence of
metabolic syndrome or of its defining nonglycaemic fea-
tures, as well as macroangiopathies (coronary [25%] and
Table 1 Patients’ characteristics

n 87

age years 65 (10)

diabetes duration years 15 (8)

male : female % 75 : 25

smoking§ 38-47-15

body mass index kg.m-2 29.3 (5.9)

waist circumference cm 104 (15)

metabolic syndrome % 87

hypertension % 91

anti-dyslipidemic drug(s) % 90

statin-fibrate-ezetimibe % 74-43-2

HbA1c mmol.mol-1 62 (11)

glomerular filtration rate mL.min-11.73m2 80 (32)

albuminuria μg.mg creatinine-1 67 (126)

total cholesterol mg.dL-1 161 (35)

LDL-cholesterol mg.dL-1 80 (30)

non-HDL-cholesterol mg.dL-1 113 (36)

HDL-cholesterol mg.dL-1 49 (15)

apoB100 mg.dL-1 81 (23)

estimated apoB100 (equation 1)* mg.dL-1 80 (23)

estimated apoB100 (equation 2)** mg.dL-1 80 (22)

triglycerides mg.dL-1 169 (105)

atherogenic dyslipidemia % 49

coronary artery disease % 25

peripheral artery disease % 11

transient ischemic attack/stroke % 5

Results are expressed as means (1 standard deviation) or proportions; apo,
apolipoprotein; HbA1c, glycated haemoglobin; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; §: never-former-current; * : equation 1: apoB100
(mg/dL) = [0.65 × non - HDL-cholesterol (mg/dL)] + 6.3 (mg/dL); * *: equation
2: apoB100(mg/dL) = − 33.12 (mg/dL) + [0.675 × LDL-cholesterol (mg/dL)] +
[11.95 × ln[triglycerides] (mg/dL)].
peripheral [11%] artery disease and/or cerebrovascular dis-
ease [5%]). LLDs were widely prescribed, mostly as statins
(74%) and/or fibrates (43%). Mean glycaemic control, as
reflected by HbA1c, was suboptimal at 62 (11) mmol/mol.
The current lipid profile was typical of that of patients
with the usual form of T2DM, i.e. associated with features
of the metabolic syndrome and insulin resistance: low
HDL-C, raised non-HDL-C, apoB100, TG, and high fre-
quency (49%) of AD.
Figure 1 illustrates the plots of untransformed values of

measured apoB100 vs. estimated apoB100 from equations 1
and 2, the values representing the means of the two esti-
mates obtained on different days. The linear regression
formula for equation 1 was: calculated apoB100 = 0.871 ×
measured apoB100 + 9.64 mg/dL (R2 = 0.8756); whereas
that of equation 2 was: calculated apoB100 = 0.812 x mea-
sured apoB100 + 16.0 mg/dL (R2 = 0.8451). The figure also
shows the homoscedastic behaviour on repeat testing of
the data spread. The alignment of the regression lines was
not affected by mean baseline TG levels obtained on day 1
and 2.
The precision and discrimination of the three apoB100

estimates, expressed as underlying between-subject
Standard Deviation (SDu), global within-subject Stand-
ard Deviation (SDw), and Discriminant Ratio (DR) are
shown in Table 2. All SDu, SDw and DR’s values were al-
most similar, and the observed differences in discrimin-
atory power between all three determinations did not
reach statistical significance.
The measured Pearson’s product–moment correlation

coefficients between the three apoB100 determinations
methods were very high, respectively 0.94 (measured vs.
equation 1 apoB100); 0.92 (measured vs. equation 2
apoB100); and 0.97 (equation 1 vs. equation 2 apoB100),
each reaching unity (1.00) once values were correlated
after adjustment for attenuation (Table 3).

Discussion
This study demonstrates that in patients with T2DM,
two simple equations published to date were as effective
to calculate apoB100 concentration from routine lipids
[7,8]. In addition, as the underlying correlation between
apoB100 levels estimated by the two formulas reached
unity, once preanalytical and analytical attenuation was
taken into account, these two algorithms may be used
interchangeably to assess an equivalent underlying bio-
logical variable. Even though the two algorithms were
developed from lipid values obtained in different popula-
tions and conditions, each formula can substitute for
each other, being as precise and interchangeable.
Although equation 1 was computed using lipid values

from a small cohort (n = 45) of Caucasian T2DM pa-
tients, and equation 2 used fasting lipids from an exten-
sive cohort (n = 73047) of healthy Koreans representative
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Figure 1 Plots of untransformed values of measured apolipoprotein B100 (apoB100; X axis) vs. estimated apoB100 from equation 1
(Y axis; left panel) and equation 2 (Y axis; right panel) in n =87 patients with type 2 diabetes mellitus. Equation 1: apoB100 (mg/dL) =
[0.65 x non-high - density lipoprotein cholesterol (mg/dL)] + 6.3 (mg/dL). Equation 2: apoB100 (mg/dL) = − 33.12 (mg/dL) + [0.675 x low-
density lipoprotein cholesterol (mg/dL)] + [11.95 x ln [triglycerides] (mg/dL)]. All values obtained from the means of different estimates performed
on separate days. The open squares represent patients with mean fasting triglycerides (TG) <150 mg/dL; the solid squares represent patients with
elevated fasting TG (150 - 400 mg/dL).
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of a general Asian population, the two means of estimat-
ing apoB100 were perfectly correlated, and as effective
and precise. This illustrates the performance of the com-
parison of measurements methods based on the DR
methodology, which requires only limited samples
(n ≥20 for 2 replicates), as long as the sample represents
a meaningful clinical range for the variable under study
[see appendix of [13] for a detailed discussion on sam-
ple size requirements for estimating DRs].
ApoB100 metabolism and physiology are comparable in

diabetic and nondiabetic subjects, as well as in different
ethnic groups. The equations appear applicable across
the two major ethnic groups that provided the source
data, and uninfluenced by baseline TG values. An inher-
ent advantage of equation 1 is the inclusion of lipid
values that do not require sampling in the fasting state,
whereas equation 2 requires a fasting lipid panel [7,8].
Another limitation of equation 2, in terms of routine
clinical practice, is that LDL-C is usually calculated from
Friedewald’s formula, which induces systematic and linear
underestimation once fasting TG rise above 200 mg/dl,
confining the applicability of equation 2 to patients with
fasting TG <400 mg/dL, unless direct LDL-C measure-
ment is available [2].
Table 2 Precision and discrimination of three apoB100 estima
Deviation (SDu), global within subject Standard Deviation (SD

measured apoB100 (mg/dL)

equation 1:apoB100(mg/dL) = [0. 65 × non −HDL − C (mg/dL)] + 6. 3 (mg/dL)

equation 2:apoB100 (mg/dL) = − 33. 12 (mg/dL) + [0. 675 × LDL − C (mg/dL) +

Values from results of individual tests and means of their duplicates in 87 patients
brackets. apo, apolipoprotein; HDL-C, high-density lipoprotein cholesterol; LDL, low-
significant (p > 0.05).
For use in equation 1, non-HDL-C offers the added ad-
vantage of being derived from the compute of two robust,
well-established measurements methods, namely total
cholesterol and HDL-C [7]. Although Cho et al. used dir-
ect, and hence more expensive measurements of LDL-C,
contributing to enhance accuracy of their algorithm [8],
there is an intrinsic rationale to opt for equation 1 in pop-
ulations with high prevalence of hypertriglyceridemia,
such as patients with AD [6,10,15,17-19]. They belong to
the highest cardiometabolic risk category, for which it is
recommended to assess (and bring to target), both non-
HDL-C and apoB100, on top of LDL-C [6,10,20].
There is still no consensus among the various players on

the ultimate relevance to measure apoB100, non-HDL-C, or
both, for baseline or residual CV risk classification, One
might wonder what is the advantage of being able to dis-
pose of apoB100 from an equation that incorporates non-
HDL-C, since the latter is considered by ATPIII as ad-
equate and sufficient. Notwithstanding the ongoing debate,
the apoB100 concept is intrinsically easier to apprehend
than non-HDL-C, which contains in itself a ferment of
educational failure because it represents a state of other-
ness defined by a non-number, instead of a single athero-
genic lipid variable [21].
tes, expressed as underlying between-subject Standard
w), and Discriminant Ratio (DR)

SDu SDw DR Cls

17.8 19.9 0.90 0.63-1.19

15.8 19.7 0.80 0.53-1.10

[11. 95 × ln[TG] (mg/dL)] 14.5 19.4 0.75 0.47-1.04

with type 2 diabetes. Confidence intervals [Cls] for DR’s [2.5-97.5%] in square
density lipoprotein; TG, triglycerides. All differences between DR’s were non



Table 3 Measured pearson correlation coefficients
between measured and estimated apoB100 levels with
values adjusted for attenuation (between brackets)

equation 1 apoB100* equation 2 apoB100**

measured apoB100 0.94 [1.00] 0.92 [1.00]

equation 1 apoB100* 0.97 [1.00]

All correlations were calculated from means of values of tests duplicates in
n = 87 patients with type 2 diabetes mellitus. apo, apolipoprotein; * equation
1: apoB100 (mg/dL) = [0.65 × non-high - density lipoprotein cholesterol (mg/dL)]
+ 6.3 (mg/dL); ** equation 2: apoB100(mg/dL) = − 33.12 (mg/dL) + [0.675 × low-
density lipoprotein cholesterol (mg/dL)] + [11.95 × ln[triglycerides] (mg/dL)].
For correlation between estimates, values were obtained from the mean of
different estimated performed on separate days.
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In conclusion, this study demonstrates the biometrical
equivalence of two original apoB100 algorithms, which are
as effective in estimating the concentration of apoB100
from routine lipids, and may be used interchangeably.
One approach requires fasting blood lipids, while the
other is not influenced by fasting status, and therefore in-
dependent of food intake prior to sampling. These algo-
rithms should contribute to better characterize residual
cardiometabolic risk linked to the number of atherogenic
particles in patients with available standard lipids, but in
whom apoB100 assay was not performed for various rea-
sons. The practical implications of these findings are dir-
ectly relevant to routine clinical practice.
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