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Abstract

mortality in individuals with type 2 diabetes (T2DM).

genotyped.

Background: Haptoglobin (HP) is an acute phase protein that binds to freely circulating hemoglobin. HP exists as
two distinct forms, HP1 and HP2. The longer HP2 form has been associated with cardiovascular (CVD) events and

Methods: This study examined the association of HP genotypes with subclinical CVD, T2DM risk, and associated risk
factors in a T2DM-enriched sample. Haptoglobin genotypes were determined in 1208 European Americans (EA)
from 473 Diabetes Heart Study (DHS) families via PCR. Three promoter SNPs (rs5467, 15470, and rs5471) were also

Results: Analyses revealed association between HP2-2 duplication and increased carotid intima-media thickness
(IMT; p=10.001). No association between HP and measures of calcified arterial plaque were observed, but the HP

polymorphism was associated with triglyceride concentrations (p =0.005) and CVD mortality (p =0.04). We found
that the HP2-2 genotype was associated with increased T2DM risk with an odds ratio (OR) of 1.49 (95% Cl 1.18-1.86,
p= 6.59x10™%. Promoter SNPs were not associated with any ftraits.

Conclusions: This study suggests association between the HP duplication and IMT, triglycerides, CVD mortality, and
T2DM in an EA population enriched for T2DM. Lack of association with atherosclerotic calcified plaque likely reflect
differences in the pathogenesis of these CVD phenotypes. HP variation may contribute to the heritable risk for CVD

complications in T2DM.
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Introduction

Cardiovascular disease (CVD) is one of the major compli-
cations associated with type 2 diabetes mellitus (T2DM).
As of 2011, 25.8 million Americans had diagnosed T2DM
[1]. More than 50% of individuals with T2DM had coron-
ary heart disease, stroke, or cardiac disease [2]. T2DM is
an independent risk factor for development of CVD with
the relative risk of CVD mortality of 2.1 in men and 4.9 in
women, relative to non-T2DM affected individuals [3,4].
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There is increasing evidence that genetic and environmen-
tal factors contribute to this risk.

Haptoglobin (HP) is a 54 kDa protein, found abundantly
in the serum [5,6]. The HP gene has two major alleles:
HP1, (containing five exons) and HP2, (containing seven
exons) which likely arose from a duplication event involv-
ing exons 3 and 4, producing a 61 kDa protein [6]. In its
ancestral form, HP is a dimer, however, the HP -2
encoded protein exists as linear polymers containing 2—8
monomers, while the HP 2-2 encoded protein exists as cir-
cular polymers of 3—-10 Hp monomers [6]. The expanded
polymerization in the HP I-2 and HP 2-2 genotypes is
due to the duplication of the multimerization domain in
exon 3 [6]. Genotype frequencies vary in different
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ethnicities. In European Americans (EA) they have been
reported as 16% HP 1-1, 48% HP 1-2, and 36% HP 2-2 [5].

HP may prevent oxidative damage through mechanisms
including stabilization of the heme iron within hemoglobin
(Hb) [7]. The HP-Hb complex is rapidly removed from cir-
culation via CD163 mediated endocytosis by hepatic Kup-
fer cells [8]. The HP 1-1 protein is both more efficient
than HP 2-2 at preventing oxidation caused by the heme
iron [9] and is internalized and cleared from circulation
more rapidly; with half lives of approximately 20 minutes
and 50 minutes for HP 1-1-Hb and HP 2-2-Hb respectively
[10,11]. Binding of the HP-Hb complex to CD163 induces
the production of several cytokines and anti-inflammatory
mediators [9,12] with a much larger production of anti-
inflammatory mediators induced by HP 1-1 compared to
HP 2-2 [13,14].

HP has been implicated in both T2DM and T2DM-
associated CVD [15,16]. In the latter context the binding
of HP to apolipoprotein Al (ApoAl) has also been
reported [17]. HP binds to ApoAl in the same location as
lecithin-cholesterol acyltransferase (LCAT), subsequently
decreasing LCAT activity and therefore limiting high dens-
ity lipoprotein (HDL) maturation. This inhibits reverse
cholesterol transport causing HDL to become proathero-
genic [17]. In addition, the tethering of Hb to HDL via the
HP-ApoAl allows the oxidation of HDL and its acquisi-
tion of proatherogenic and proinflammatory properties
[18]. Due to the multimerization of the Hp 2 protein, indi-
viduals with the HP 2-2 genotype have significantly more
HP attached to HDL via ApoAl increasing these proper-
ties [11].

Due to the striking differences in properties of the HP
1 and HP 2 proteins, several studies have investigated
the impact of the HP phenotype on CVD risk. There
have been differing results when examining different
populations and different outcomes. Studies investigat-
ing incident CVD in individuals affected by T2DM show
an increased risk with the HP 2—-2. One study [19] found
that individuals with T2DM and the HP2-2 genotype
had increased risk for CVD events. In addition, Suleiman
et al. in 2005 [20] found that individuals with T2DM
and the HP 1-1 phenotype had decreased 30-day mor-
tality and heart failure after acute myocardial infarction
compared to individuals with the HP 2-2 phenotype,
again suggesting the HP 2-2 phenotype as the risk
phenotype. This association was not seen in individuals
without T2DM. Indeed similar observations have been
made in type 1 diabetes; Simpson et al. [21] found that in
individuals with type 1 diabetes the HP 2—2 genotype pre-
dicted coronary artery calcification progression, a measure
of subclinical CVD. In contrast, in cohorts where rates of
T2DM are low or individuals with T2DM excluded, the
HPI-1 genotype has been shown to be associated with an
increased risk for mortality due to coronary heart disease
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[22]. Similarly, in the Framingham offspring study the HP
1-2 or HP 2-2 phenotypes were associated with
decreased rates of prevalent CHD [23].

The HP duplication has also been examined for associ-
ation with T2DM. The role of HP in regulation of inflam-
mation suggests a potential role in T2DM pathogenesis.
There are several studies showing that the HP duplication
was associated with T2DM risk in different populations
[24,25].

Thus, the relationship between HP polymorphism and
CVD in T2DM-affected individuals is likely complex
and association with T2D risk has been documented to a
limited degree. Based on these prior studies we hypothe-
sized that if the HP 2-2 genotype is associated with
CVD events in people with T2DM, then a similar associ-
ation would likely be observed with measures of subclin-
ical CVD in predominately T2DM-affected populations.
We have taken advantage of the richly phenotyped Dia-
betes Heart Study [26] (DHS) sample with measures of
coronary artery calcification (CAC; or calcified plaque),
carotid wall intima-medial thickness (IMT), and blood
lipid traits to investigate this hypothesis. Further, the
DHS provides a base from which to investigate whether
the HP locus is directly associated with T2DM risk.

Methods

Subjects

The DHS is a study of the genetic and epidemiological
causes of CVD in individuals with T2DM. Ascertainment,
recruitment, and examination have been previously
described in detail [26]. Briefly, siblings concordant for
T2DM and without serious health conditions, e.g. renal re-
placement therapy, were recruited. T2DM was defined as
diabetes developing after 35 years of age, treatment with
insulin and/or oral agents and absence of historical evi-
dence of ketoacidosis. If available, additional non-T2DM
affected siblings were recruited simultaneously using cri-
teria above to exclude T2DM. The 1208 DHS EA indivi-
duals used in this analysis were from 473 families.

Clinical evaluation

The protocols for this study were approved by the Insti-
tutional Review Board at Wake Forest School of Medicine;
written informed consent was received prior to participa-
tion. Examinations were conducted in the General Clinical
Research Center of the Wake Forest Baptist Medical Cen-
ter, and included interviews for medical history and health
behaviors, anthropometric measures, resting blood pres-
sure, electrocardiography, fasting blood sampling and spot
urine collection. Individuals reported history of prior CVD
based on prior event (angina, myocardial infarction, stroke)
and/or intervention (coronary angiography, coronary artery
bypass grafting, carotid endarterectomy). CAC, carotid ar-
tery calcified plaque (CarCP) and infra-renal abdominal
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aortic calcified plaque (AACP) were measured using fast-
gated helical CT scanning, and calcium scores calculated
as previously described and reported as an Agatston score
[27,28]. Carotid IMT was measured by high-resolution B-
mode ultrasonography with a 7.5-MHz transducer and a
Biosound Esaote (AU5) ultrasound machine (Biosound
Esaote, Inc., Indianapolis, IN) as previously described [29].
All measurements were not available for all participants.

Mortality

Vital status was determined from the National Social Security
Death Index maintained by the United States Social Secur-
ity Administration. For participants confirmed as deceased,
length of follow-up was determined from data of the initial
study visit to date of death. For deceased participants, cop-
ies of death certificates were obtained from relevant county
Vital Records Offices to confirm cause of death. For all
other participants the length of follow-up was determined
from the date of the initial study visit to January 1, 2011.
Cause of death was categorized based on information con-
tained in death certificates as CVD-related (myocardial
infarction, congestive heart failure, cardiac arrhythmia,
sudden cardiac death, peripheral vascular disease, and
stroke) or cancer, infection, end-stage renal disease, acci-
dental, or other (including obstructive pulmonary disease,
pulmonary fibrosis, liver failure and Alzheimer’s dementia).

Genotyping

Genomic DNA was purified from whole-blood samples
obtained from subjects using the PUREGENE DNA isola-
tion kit (Gentra Systems., Minneapolis, MN). DNA was
quantitated using standardized fluorometric readings on a
Hoefer DyNA Quant 200 fluorometer (Hoefer Pharmacia
Biotech, Inc., San Francisco, CA). Each sample was diluted
to a final concentration of 20 ng/pL. HP duplication geno-
typing was performed using paired polymerase chain reac-
tions (PCR). PCR primers, reaction and cycling conditions
were performed as described previously by Koch et al.
[30] for 10 pL reactions containing 45-60 ng DNA and
primers at final concentrations of 0.8 uM for the HP1 and
0.6 uM for the HP2.

PCR products from the two reactions were combined
(10 pL of the HPI product with 5 puL of the HP2 PCR
product) and resolved on a 1% agarose gel (Figure 1)
which was visualized by staining with 1.4% ethidium
bromide and the images captured using an Alpha Imager
(Alpha Innotech, San Leandro, CA). Haptoglobin geno-
types were called independently by two investigators
(JNA and AJC) with 100% concordance between calls.
Genotyping also included a total of 29 blind duplicates
to allow for evaluation of genotyping accuracy. The con-
cordance rate for these blind duplicates was 100%.
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Figure 1 Gel picture of HP PCR products. Example of HP
genotype discrimination using PCR reaction products resolved on a
1.4% agarose gel with ethidium bromide staining where lanes 1-6
are participant samples and lane 7 a DNA MW size ladder. Lane

numbers are at the top and genotyping call is at the bottom.

HP promoter polymorphism genotyping

In addition to the classical HPI and HP2 variants, three
single nucleotide polymorphisms (SNPs), rs5467, rs5470,
and rs5471, located in the promoter region of HP and
previously reported to be associated with circulating HP,
were genotyped in the DHS. Genotyping was performed
using the Sequenom Mass ARRAY genotyping system
(Sequenom, San Diego, CA) and PCR primers were de-
signed using the Mass ARRAY Assay Design 3.4 Software
(Sequenom). These SNPs are in low linkage disequilibrium
(LD) with each other or with the HP duplication (r* <0.03)
(see Additional file 1). An additional 41 quality control
samples were included in the genotyping analysis to serve
as blind duplicates. The concordance rate for these blind
duplicates was 100%. The minimum acceptable call fre-
quency for all SNPs was 95%. The average call frequency
was 98.4 +0.001% (mean + SD). Samples with genotyping
efficiency rates <90% were excluded from further analysis.

T2DM-affected cases and controls for analysis of T2DM risk
An additional 606 EA T2DM cases and 985 EA non-T2DM
affected controls from an independent study of EA T2DM
[31,32] were genotyped for the HP duplication using the
PCR method described above. Thirty-one additional quality
control samples were included as blind duplicates. The
concordance rate for these samples was 100%. For analysis
we combined HP data for unrelated T2DM cases from
DHS (n=473) with T2DM cases from the independent
T2DM case sample for a total of 1079 cases. These data
were evaluated for association with HP genotypes contrast-
ing with controls without T2DM (n = 985).
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Statistical analysis

HP allele frequencies were calculated for a sub-set of unre-
lated individuals and departure from Hardy-Weinberg
equilibrium was calculated from a group of unrelated sam-
ples using a chi-squared goodness-of-fit test. Association
between the HP genotypes and subclinical CVD measures
was examined using variance component methods com-
puted using SOLAR v4.3.1 (Texas Biomedical Research
Institute, San Antonio, TX, USA). Each trait was examined
using additive, dominant, and recessive models of inherit-
ance. Continuous variables were transformed prior to ana-
lysis to approximate conditional normality. Age, gender,
and T2DM-affection status were used as covariates in ana-
lysis of quantitative traits. Additional covariates (smoking,
hypertension, C-reactive protein, lipid medication use,
hypertension medication use, and T2DM duration) were
also evaluated, but did not impact the results. Analyses
were repeated in the subset of the population that was
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affected by T2DM. Statistical significance was accepted at
p <0.05. The program SNPGWA (http://www.phs.wfubmc.
edu/public_bios/sec_gene/downloads.cfm) [33] was used to
test for associations between HP and T2DM risk compar-
ing individuals affected with T2DM (DHS T2DM-affected
unrelated individuals [n=473] and EA T2DM-affected
individuals [n = 606]) to the EA non-T2DM affected con-
trols (n=985). Covariates used in this analysis were age,
gender, and body mass index (BMI). Analyses included
samples that had genotype and all covariate data.

Results

Characteristics of the DHS sample are summarized in
Table 1 including the mean trait values for the overall
sample and for each HP genotype group. Briefly, the mean
age of the sample was 61.5 years; 1013 individuals
(83.86%) were T2DM-affected and slightly more than 50%
(643) were female. Overall, the characteristics of the DHS

Table 1 Demographic characteristics of DHS samples, including HP duplication genotypes

(data shown are mean + SD, unless specified otherwise)

DHS Demographics

HP Genotypes

Total 71 1/2 2/2
Number 1208 168 505 535
Age (years) 61.5+9.35 62.5+9.36 61.2+£9.34 61.5+9.36
Female (%) 643 (53.2) 87 (51.8) 274 (54.3) 282 (52.7)
BMI (kg/mz) 31.8+£6.49 31.9+£6.27 32.1£6.81 314£6.23
Affected (%) 1013 (83.9) 134 (79.8) 431 (854) 448 (83.7)
Diabetes duration (years) 1041+£7.1 109579 1015724 1049+ 6.86
Metabolic Syndrome (%) 1029 (85.2) 140 (83.3) 434 (85.9) 455 (85.1)
Glucose (mg/dL) 1394 555 139.7 £ 588 1423 +56.7 136.7 £53.1
HbATc (%) 729+1.7 713+157 731+£1.78 732+178
C-reactive protein (mg/dl) 059+097 0.54+ 081 0.60 + 1.05 0.59+0.94
Hypertension (%) 1025 (84.85) 141 (83.93) 422 (83.56) 462 (86.36)
Smoking (%) 708 (58.85) 6 (57.49) 285 (56.55) 327 (6147)
Lipid medication (%) 540 (44.7) 76 (45.24) 1(43.76) 243 (45.42)
Anti-hypertensive medication (%) 747 (61.84) 101 (60.12) 324 (64.16) 322 (60.19)
CAC 1662.5 +3160.7 1679.1 +£2449.8 1607.2 +3001.5 17085 +3492.3
CarCP 3129+672.1 2762 +5225 2928+6108 34337624
AACP 10949.3 £ 1574838 1262886 + 16231.1 97819 +14236.0 11458.1 £16775.3
IMT (mm) 0676 +£0.134 0677 +0.136 0.665+0.129 0.686+0.139
Cholesterol (mg/dL) 186.8+424 187.5+46.2 187.7 £434 185.8+403
LDL (mg/dL) 105.1+327 1040+ 353 103.3+308 107.1£335
HDL (mg/dL) 43.1+125 435+ 144 433+127 427+116
Triglycerides (mg/dL) 2014 +132.1 21281623 2088 £ 133.7 1909+119.2
History of CVD (%) 471 (38.99) 72 (42.86) 191 (37.82) 208 (38.88)
Non-CVD Mortality (%) 22 (10.10) 19 (11.31) 49 (9.70) 54 (10.09)
CVD Mortality (%) 100 (8.28) 11 (6.55) 34 (6.73) 55(10.28)
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sample are representative of T2DM-affected patients in
the general population.

HP duplication genotypes were determined for 1208
individuals (Table 1). The genotype frequencies were
13.9% HP 1-1, 41.8% HP 1-2, and 44.3% HP 2-2 and
were consistent with Hardy-Weinberg proportions.

CVD associations

HP duplication data was analyzed for association with mul-
tiple CVD measures, risk factors, and outcomes: calcified
plaque (CAC, CarCP, and AACP), carotid IMT, lipids,
prevalent CVD and mortality. The HP duplication was
associated with carotid IMT (p =0.001, Table 2). We did
not, however, observe a significant association of HP with
measures of vascular calcification: CAC, CarCP or AACP
(Table 2). There did not appear to be any discernable trend
of increased calcification in the mean trait values by geno-
type for any of the three arterial beds (Table 1). Additional
analyses performed in T2DM-affected individuals alone,
revealed similar results (data not shown).

A total of 471 (39.0%) individuals in the DHS have a self
reported history of prior CVD. This included 72 individuals
(42.9%) for HP 1-1, for HP 1-2 genotype 191 (37.8%), and
for HP 2-2 208 (38.98%). However, prevalent CVD was not
associated with the HP duplication (p = 0.23-0.94; Table 2).

The HP2 allele was associated with serum triglyceride
concentrations (p = 0.005; Table 2). With each additional
copy of the HP2 allele, triglyceride concentrations decreased
and were on average 10.3 mg/dL lower with the HP2-2
genotype (Table 1). In addition, the HP2 allele was not
associated with all cause mortality (p =0.17); however, it
was nominally associated with CVD mortality (p =0.04;
Table 2). Results were essentially unchanged when ana-
lyses were repeated in T2DM affected individuals only
(see Additional file 2).
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HP promoter polymorphisms

SNPs rs5467, rs5470, and rs5471 were genotyped based on
prior reports that they were associated with HP protein
concentrations [34,35]. Each SNP was in Hardy-Weinberg
equilibrium. Minor allele frequencies (MAF) were 19.2%
for rs5467, 0.04% for rs5470, and 0.08% for rs5471. None
of these HP SNPs were associated with any of the subclin-
ical CVD traits, CVD risk factors, events, or mortality
ascertained in the current study (see Additional file 3).

HP polymorphism and T2DM risk
Table 3 contains the clinical demographics of the T2DM
case and control samples. This sample was ascertained
and recruited independently from the DHS, but using the
same diagnostic criteria for T2DM diagnosis and has been
the basis for prior genetic studies of T2DM [31,32].
Briefly, the mean age of the T2DM-affected case sample
was 65.2 + 9.9 years compared to 53.8 +15.0 for the non-
T2DM controls. Fewer than 50% (n=299) of cases and
greater than 63% (n = 628) of the controls were female.
For all T2DM cases, genotype frequencies were 14.1%
HP 1-1,43.4% HP 1-2, and 42.5% HP 2-2. In non-T2DM
controls, genotype frequencies were 15.8% HP 1-1, 50.1%
HP 1-2, and 34.1% HP 2-2 (Table 3). Genotype frequen-
cies in both samples were consistent with Hardy-Weinberg
proportions. Individuals with the HP 2-2 genotype were
found to be more likely to have T2DM (recessive model
OR: 1.49; 95% CI: 1.18-1.86; p = 6.59x10™). Similar to the
DHS analysis of CVD, there was no evidence of association
of T2DM risk with HP promoter SNPs in the DHS (data
not shown).

Discussion

This study evaluated association of HP gene polymorph-
isms with subclinical CVD, mortality, and T2DM in 1208
EA individuals from the DHS. The HP 2-2 genotype was

Table 2 Association result for the HP duplication with measures of subclinical CVD and blood lipids

HP Duplication - CVD Association Results

Additive Dominant Recessive

N Beta + SE p-value Beta + SE p-value Beta + SE p-value
CAC 1134 0.022+0.097 0.82 —0.025+0.135 0.85 0.135+0.189 048
CarCP 1142 -0.159+0.102 0.12 —0.180+0.142 021 —0.255+0.200 020
AACP 865 —-0.025+0.102 0.81 -0.117+0.141 041 0.141£0.202 048
IMT 1103 —0.008+0.003 0.01 —0.014+0.004 0.001 —0.002+0.006 0.79
Cholesterol 1188 0.006+0.010 053 0.014+0.013 0.28 —0.005+0.019 0.78
Triglycerides 1188 0.060£0.024 0.01 0.091£0.033 0.005 0.050£0.047 0.28
Prevalent CVD 1084 —0.033 £0.061 0.58 0.006 +0.083 0.94 -0.140+0.117 023
All Cause Mortality 1208 0.063 +0.065 033 0.123 +£0.089 0.17 —0.004+0.129 0.98
CVD Mortality 1208 0.145 = 0.081 0.07 0.222 £0.101 0.04 0.117£0.116 047

Associations were examined under additive, dominant and recessive genetic models. Bold indicates statistical significance. CAC: coronary artery calcified plaque;
CarCP: carotid artery calcified plaque; AACP: abdominal aortic calcified plaque; IMT: carotid intima-media thickness. SE = standard error.
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Table 3 Demographic characteristics of T2DM case and non-diabetic control samples, including HP duplication
genotype measures (data shown is mean £ SD unless specified otherwise)

T2DM Demographics

T2DM Cases DHS T2DM Cases Total T2DM Cases Non-diabetes controls Total
Number 606 473 1079 985 2064
Age (years) 65.18 £ 1045 62.09 + 8.86 63.79+9.88 53.83£15.03 59.82+13.13
Female (%) 299 (49.42) 246 (52.01) 545 (50.06) 628 (63.82) 1173 (56.89)
BMI (kg/m?2) 2965+7.15 3264 +6.53 3097 £7.04 2835+567 2997 +6.67
Affected (%) 606 (100) 473 (100) 1079 (100) 0 (0.00) 1079 (52.13)
1/1 Genotype (%) 88 (14.52) 64 (13.53) 152 (14.09) 156 (15.84) 308 (14.92)
1/2 Genotype (%) 274 (45.21) 194 (41.01) 468 (43.37) 493 (50.05) 961 (46.66)
2/2 Genotype (%) 244 (40.26) 215 (45.45) 459 (42.53) 336 (34.11) 795 (38.52)

associated with increased carotid IMT (p = 0.001, Table 1)
in this T2DM enriched population. However, we did not
observe significant evidence of association between HP
genotype and calcified plaque as a different measure of sub-
clinical CVD. An association with triglyceride concen-
trations was also observed; the HP 2—2 genotype was
associated with lower concentrations. The biological mech-
anism for this latter association is as of yet, unknown. We
also observed suggestive evidence for association of the HP
duplication polymorphism with CVD related mortality in
the DHS. In addition, we found that the HP 2-2 genotype
was associated with T2DM status (OR: 1.49; 95% CI: 1.18-
1.86; p = 6.59x107).

Several prior studies have investigated HP polymorphisms
and CVD risk in T2DM. In 2002 Levy et al. [19] reported
an OR of CVD events in diabetes five times greater with
the HP 2-2 phenotype, than with HP 1-1 in a study that
included 206 CVD patients and 206 CVD controls (146
and 93 were affected by T2DM, respectively, as part of the
Strong Heart Study). In 2004, a subsequent study by Levy
et al. [23] included 3273 individuals in the Framingham
Heart Study, however only a subset of 433 individuals
were affected with T2DM, and of these, only 86 had a his-
tory of prevalent CVD. Finally, a 2003 study in individuals
with acute myocardial infarction (AMI) reported indivi-
duals with T2DM and the HP2 allele had increased mor-
tality following AMI compared to individuals with T2DM
and the HP I-1 genotype (included only 224 T2DM-
affected individuals) [20]. In the present study we detected
modest evidence of association with carotid IMT, but did
not strongly replicate association with history of prior
CVD and only nominally with CVD mortality. Parenthet-
ically, IMT and measures of vascular calcification are not
highly correlated [26]. The DHS is predominately com-
prised of T2DM-affected subjects (1013 of 1208 parti-
cipants). Our primary measures were the subclinical
measures of CVD, CAC and IMT which may not be as
strongly influenced by HP polymorphism. Of the DHS
subjects, 435 were T2DM-affected participants with a

history of prevalent CVD, based upon self-reported history
and prior intervention which was not associated with HP
genotype. The analysis with CVD mortality, a firm end-
point, suggests a possible contribution to risk. Given the
association of the HP 2-2 genotype with risk for mortal-
ity, it is possible that a survival bias may be present.
However, genotype frequencies were consistent with
Hardy-Weinberg equilibrium. In addition, the genotype
frequencies of the HP duplication in this study were simi-
lar to those reported previously [5].

In prior reports, two promoter SNPs, rs5470 and rs5471
were associated with altered levels of HP expression
[34,35] with rs5471 reported to be associated with the
Haptoglobin 1-2 modified (HP1-2mod) phenotype. In
individuals with the rs5471 “C” allele and the HP I1-2 geno-
type, normal expression levels of the HP 1 protein, but
decreased levels of HP 2 have been reported [34]. It has
been suggested that the decreased levels of HP 2 lead to
greater oxidative stress [36]. We did not observe evidence
of association for these three genotyped HP SNPs geno-
typed (rs5467, rs5470, and rs5471) with measures of sub-
clinical CVD, history of CVD, or mortality. One possible
explanation is the low MAF for both rs5470, and rs5471
(0.0004 and 0.0008 respectively). The combination of the
HPI-2 and the rs5471 SNP has been reported in approxi-
mately 10% of African Americans [34], but we are unaware
of reports of the frequency of the HP1-2mod phenotype in
other populations. In this study there were no minor allele
homozygotes for rs5471, nor rs5471 heterozygotes with the
HPI-2 genotype; as such, the Haptoglobin 1-2 modified
phenotype is unlikely to have confounded the HP asso-
ciations described here. In addition, in LD analysis (see
Additional file 1) these two SNPs were in low LD with
the HP duplication. Thus these two promoter SNPs along
with rs5467 probably do not have an impact on CVD or
T2DM status. However, there are other SNPs that are
known to impact circulating HP concentrations (e.g.
rs2000999) [37] that we did not genotype in the current
study which may also contribute to the variance in HP
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and its role in CVD risk. The lack of measured HP con-
centrations in the DHS and the inability to further con-
trol for these additional genetic variants is one limitation
of this work.

Several previous studies have investigated the effect of
the HP polymorphism on T2DM risk. A previous study by
Stern et al. in 1986 [24] found that the HPI allele was
associated diabetes risk in Mexican Americans. They
found that a single copy of the HPI allele increased
T2DM risk by 50% and a second copy increased risk by
100%. A second report from 2006 by Quaye et al. [25]
found that the HP 2-2 phenotype was a risk factor for
T2DM in a population in Ghana. The current study had a
larger sample size than either of the two previous studies,
albeit in a different ethnicity. In this study it was found
that EA individuals with the HP 2-2 genotype are more
likely to have T2DM with an OR of 1.49. These studies,
when combined suggest that HP is a risk gene for diabetes
or is in LD with a risk gene. Several studies have shown
that the different alleles lead to different levels of circulat-
ing HP protein [22,37]. Higher circulating HP has been
suggested to be associated with metabolic syndrome, high
blood pressure, and elevated glucose [38]. This could pos-
sibly explain the association of the HP polymorphism with
T2DM. Different risk alleles across populations are prob-
lematic as it could be difficult to assess risk across differ-
ent populations.

Importantly, the T2DM association may be difficult to
further investigate without subsequent data generation
since the duplication is not included in the major, publi-
cally available, databases. Furthermore, any subsequent
studies will require a targeted phenotyping approach either
through analysis of HP in serum or genotyping through
fragment size analysis as performed in this study, since the
duplication is not captured by the current commercially
available genome-wide genotyping platforms and does not
appear to be tagged by other common polymorphisms
[37]. A genome wide association study (GWAS) analysis
has been performed in the DHS and LD was analyzed for
the HP duplication and the two SNPs on the GWAS chip
that are closest to the duplication (rs16973636 and
rs2287998). The SNPs were found to have low LD with the
duplication with an r* of <0.01 (data not shown).

Conclusions

Overall, we detected limited association of haptoglobin
polymorphisms with CVD. The HP2-2 genotype was found
to be positively associated with carotid IMT and the HP2
allele was associated with decreased serum triglyceride
concentrations. We identified an association with T2DM
in EAs that has not been reported previously [39-41].
Further studies are needed to extend and replicate these
relationships.
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Additional file 1: LD of HP duplication and promoter SNPs. LD plot
showing r” between the HP duplication (HPDup) and genotyped
promoter SNPs (rs5467, rs5470, and rs5471) based on genotypes from the
DHS sample.

Additional file 2: HP Duplication - T2DM CVD Association Results.
Association results for the HP duplication in the individuals with T2DM
only with measures of subclinical CVD (CAC: coronary artery calcified
plaque; CarCP: carotid artery calcified plaque; AACP: abdominal aortic
calcified plaque; IMT: carotid intima-media thickness) and blood lipids.
Associations were examined under additive, dominant and recessive
genetic models. Bold indicates statistical significance. SE = standard error.

Additional file 3: HP Promoter SNP - CVD Association Results.
Association analysis of HP promoter SNPs with subclinical CVD (CAC:
coronary artery calcified plaque; CarCP: carotid artery calcified plaque;
AACP: abdominal aortic calcified plaque; IMT: carotid intima-media
thickness) and blood lipids. Associations were examined under an
additive model. SE = standard error.
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