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Abstract

Background: The decrease and dysfunction of endothelial progenitor cells (EPCs) has been assumed as an
important cause/consequence of diabetes mellitus (DM) and its complications, in which the senescence of EPCs
induced by hyperglycemia may play an immensurable role. However, the mechanisms of EPCs senescence has not
been fully investigated. Recently, ribosomal protein S6 kinase 4 (RSK4), a member of serine/threomine (Ser/Thr)
kinase family and p53-related gene, is reported to regulate the replicative and stress-induced senescence of
different cells.

Presentation of the hypothesis: These above lead to consideration of an evidence-based hypothesis that RSK4
may serve as a mediator of EPCs senescence in DM.

Testing the hypothesis: EPCs of healthy subjects and DM patients are isolated from peripheral blood and incubated
with high glucose (HG). Then, the EPCs senescence would be detected by senescence associated B-galactosides (SAB-
gal) staining. Meanwhile, the RSK4 expression is assessed by RT-PCR and western blot. Moreover, overexpressing or RNA
interfering of RSK4 in EPCs to investigate the relationship between RSK4 expression and the senescence of EPCs are
necessary to substantiate this hypothesis. Also, studies on possible upstream and downstream factors of RSK4 would be
explored to reveal the RSK4-mediated senescence pathway in EPCs.

Implications of the hypothesis: If proved, this hypothesis will provide another mediator of EPCs senescence, and

may establish a novel pathogenesis for DM and further benefit to the management of DM.
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Background

EPCs are first reported in 1997 [1], which are derived from
the bone marrow and could be mobilized to the peripheral
circulation in response to stimuli. EPCs have been believed
to be angioblasts and contribute to neovascularization,
vascular maintenance and repair in adults, and EPCs dys-
function may enhance the risk for cardiovascular disease,
DM and tumor [2,3]. Emerging evidence has showed the
count and function of EPCs are impaired in DM [4-6].
Moreover, diabetes could alter the subpopulation of EPCs
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by impairing the production in the bone marrow and
decreasing the mobilization from the spleen [7]. Likewise,
Jung C et. al found that DM patients had a smaller num-
ber of CD34-/CD133+ EPCs, but a larger proportion of
apoptotic EPCs [8]. Besides, the reduction of EPCs may
augment with an increased number of diseased coronary
arteries, which may aggravate the DM and the complica-
tions [9]. And it is proved that increased EPCs number
could promote the revascularization in asymptomatic type
2 diabetic patients [10,11].

The mechanisms of EPCs dysfunction in DM

The mechanisms of the EPCs impairment are largely
unknown. Reactive oxygen species (ROS) and nitric
oxide (NO) are considered as regulators of EPCs [12].
Emerging evidence has found that hyperglycemia, as a
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type of ROS, could impair vascular endothelial function,
and the severity of diabetes is reversely correlated with
EPC number and function [13]. However, it is reported
that EPCs could tolerate oxidative stress to some extent
by upregulating superoxide dismutase (SOD), an enzyme
that neutralizes superoxide anion (O,-) [14]. Similarly,
Hamed S et.al found that EPCs from diabetic patients
had higher SOD activity, but lower NO bioavailability
than those from the healthy individuals. Nevertheless,
when exposed to prolonged hyperglycemia in DM, the
function of EPCs are adversely affected by excessive O,-
generation [15], such as the reendothelialization capacity
in vivo [16]. Furthermore, there also exit proofs that
optimal glucose control could improve the number and
function of EPCs [9,17].

Recently, the senescence of EPCs has been assumed as
an important cause/consequence of diabetes and its
complications [18], the reasons of which lie in that
hyperglycemia in vivo could product free radicals and
generate oxidative stress, triggering cellular senescence
in DM. However, the mechanisms remain largely
unknown.

RSK4 and senescence

RSK4, ribosomal protein S6 kinase 4, is firstly found as an
X-linked gene in patients with mental retardation and
most abundantly expressed in brain and kidney [19]. As a
member of Ser/Thr kinase family, RSK4 is widely partici-
pating in cell signaling pathway by regulating the prolifera-
tion and differentiation of cells [20,21]. A large-scale RNAi
screen in human cells identifies RSK4 as a new component
of the p53 pathway, which could modulate the p53-depen-
dent proliferation arrest on the p21cipl promoter, either
directly or indirectly [22]. Recently, it is reported that
RSK4 could regulate replicative and stress-induced senes-
cence [23], and the senescence could be bypassed when
RSK4 is inhibited, of which is mediated by p21, but not of
p16 or p38MAPKSs [24].

RSK4 and diabetes

As a member of p90rSk family, RSK4 could modulate the
synthesis of glucose. Insulin binding to its receptors results
in interacting with growth factor receptor-bound protein 2
(Grb2). Grb2 is part of the cascades including RAS, RAF
and MEK (MAP2K, Mitogen-activated protein kinase
kinase) that leads to activation of mitogen-activated pro-
tein kinase (MAPK) and mitogenic responses [25], which
includes the activation of glucose synthesis kinase (GSK),
resulting in HG. As mentioned above, HG is the main dia-
betic feature and the cause of EPCs senescence in diabetes.
Niehof et. al [26] found that RSK4 might provide a mole-
cular rationale for late-stage complications of kidney and
brain in Streptozotocin-induced diabetic rat with hepatic
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necrotic factor 4o (HNF4a) dysfunction. It is reported
that HNF4o could regulate epithelial differentiation and
overexpressed HNF4o could cause activation of p21
expression, a senescence mediator, thus inhibiting the cell
proliferation [27]. Taken together, it is speculated that
RSK4 may mediate EPCs senescence via p21 pathway in
DM.

Presentation of the hypothesis

We assumed that RSK4 might serve as a mediator of
EPCs senescence in DM. Hyperglycemia appears to be
the most important cause of enhanced EPCs senescence.
There are two main pathways involved in senescence:
pl19/p53 and p16/Rb [28]. p53 or pl6 activates p21,
which, in turn, can activate retinoblastoma protein (Rb)
to shut down the transcription factor (E,F) target genes,
thus inducing cell growth arrest and senescence [29].
Rosso et.al [30] reported that when cultured under HG,
as a kind of ROS, normal EPCs underwent senescent-
like growth arrest via the classical p53-dependent senes-
cence pathway. Another study found that p16, together
with telomerase, might co-modulate EPCs senescence.
Besides, the activation of p38 MAPK pathway also
involved in HG-induced EPCs senescence [31]. How-
ever, Chen et al. [32] reported that HG enhanced EPC
senescence and impaired the migration and tube forma-
tion of late EPCs, which were modulated by NO-related
rather than oxidative stress-mediated mechanisms
through PI3K/Akt/eNOS signaling pathway. Another
study [33] also showed PI3K/Akt/eNOS signaling cas-
cade were suppressed in oxidized-LDL and HG treated
EPCs, thus leading to the reduced number and the
impaired functions of EPC in diabetic patients.

In addition, insulin resistance (IR) may also be a poten-
tial factor of EPCs senescence in diabetes. IR could lead to
several biochemical alterations, including inflammation
and oxidant stress, which leads to the dysfunction of EPCs
via the following two pathways: PI3K-PDK1-Akt and RAS-
MAPK-p38 pathway [34-36]. However, it is not clear that
whether this dysfunction of EPCs is senescence-related
and what the senescence mediators are.

Based above, HG or IR could trigger signaling pathways,
leading to the senescence of EPCs in DM. For now, PI3K-
Akt-eNOS and p53-dependent pathway are considered to
be linked to EPCs senescence [37].

Given that RSK4, a p53-related gene, participates in
Ras-MEK-ERK pathway and could regulate senescence,
we postulate that RSK4 might be a mediator in EPCs
senescence in DM. If true, it will provide more infor-
mation about the pathogenesis of diabetes and new
therapeutic targets for diabetic patients. The possible
signaling pathway of EPCs senescence is listed as
Figure 1.
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Figure 1 The possible signaling pathways of EPCs senescence. In diabetes, HG and/or IR might induce EPCs senesecne via the following
pathways. HG and/or IR could inhibit the PI3K-Akt-eNOS pathway, resulting in the decrease of NO, which might induce the EPCs senescence. At
the same time, HG and/or IR could be a kind of ROS and induce senescence through the classical p16 and p53 dependent senescence pathway,
in which p38 is also invovled. Moreover, we conjecture that HG and/or IR could activate the insulin receptor mediated Ras-MEK-RSK4 pathway,
resulting in on one hand the EPCs senescence mediated by RSK4 via p21 signaling pathway and a more production of glucose on the other
hand. In additon, RSK4 could be a cadidate gene for HNF4a, which activates p21 and thus inhibit the cell proliferation in diabetes. HG: high
glucose; IR: insulin resistance; ROS: reactive oxygen species; GSK: glucose synthesis kinase; HNF4a.: hepatic necrotic factor 4ot

Testing the hypothesis

Our hypothesis demonstrates RSK4 protein might take a
part in the senescence of EPCs. To testify the hypothesis,
EPCs of healthy subjects and DM patients are isolated
from peripheral blood and incubated with high glucose.
Then, the EPCs senescence would be detected by SA-B-gal
staining, and there might present an elevated number of
SA-B-gal-positive EPCs. Meanwhile, the RSK4 expression
is assessed by RT-PCR and western blot to find out
whether it can be upregulated, which could provide an
effective evidence for the hypothesis. Moreover, overex-
pressing or RNA interfering of RSK4 in EPCs to investi-
gate the relationship between RSK4 expression and the
senescence of EPCs are necessary to substantiate this
hypothesis. Also, studies on possible upstream and down-
stream factors of RSK4 would be explored to reveal the
RSK4-mediated senescence pathway in EPCs.

Implications of the hypothesis

As above, our new hypothesis might be another expla-
nation to the EPCs senescence in DM. These findings
may provide insight into a novel pathophysiological
mechanism of DM and may offer new therapeutic
opportunities in the future.
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