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Abstract

Background: In the general population, peripheral metabolic complications (MC) increase the risk for left
ventricular dysfunction. Human immunodeficiency virus infection (HIV) and combination anti-retroviral therapy
(cART) are associated with MC, left ventricular dysfunction, and a higher incidence of cardiovascular events than
the general population. We examined whether myocardial nutrient metabolism and left ventricular dysfunction are
related to one another and worse in HIV infected men treated with cART vs. HIV-negative men with or without
MC.

Methods: Prospective, cross-sectional study of myocardial glucose and fatty acid metabolism and left ventricular
function in HIV+ and HIV-negative men with and without MC. Myocardial glucose utilization (GLUT), and fatty acid
oxidation and utilization rates were quantified using 11C-glucose and 11C-palmitate and myocardial positron
emission tomography (PET) imaging in four groups of men: 23 HIV+ men with MC+ (HIV+/MC+, 42 ± 6 yrs), 15 HIV
+ men without MC (HIV+/MC-, 41 ± 6 yrs), 9 HIV-negative men with MC (HIV-/MC+, 33 ± 5 yrs), and 22 HIV-
negative men without MC (HIV-/MC-, 25 ± 6 yrs). Left ventricular function parameters were quantified using
echocardiography.

Results: Myocardial glucose utilization was similar among groups, however when normalized to fasting plasma
insulin concentration (GLUT/INS) was lower (p < 0.01) in men with metabolic complications (HIV+: 9.2 ± 6.2 vs. HIV-
: 10.4 ± 8.1 nmol/g/min/μU/mL) than men without metabolic complications (HIV+: 45.0 ± 33.3 vs. HIV-: 60.3 ± 53.0
nmol/g/min/μU/mL). Lower GLUT/INS was associated with lower myocardial relaxation velocity during early
diastole (r = 0.39, p < 0.001).

Conclusion: Men with metabolic complications, irrespective of HIV infection, had lower basal myocardial glucose
utilization rates per unit insulin that were related to left ventricular diastolic impairments, indicating that well-
controlled HIV infection is not an independent risk factor for blunted myocardial glucose utilization per unit of
insulin.
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Background
Individuals infected with the human immunodeficiency
virus (HIV) are at a greater risk for cardiovascular dis-
ease [1], myocardial infarction [2], and left ventricular
dysfunction [3-5] than the general population. Although
morbidity and mortality from HIV-related immune dis-
orders have markedly declined [6], HIV-related cardio-
vascular disease has increased, signaling a new health
crisis in the HIV-infected population.
HIV infection and combination anti-retroviral therapy

(cART) directly impair peripheral nutrient metabolism
[7,8] however their effects on myocardial metabolism
and their relationship to left ventricular dysfunction are
unknown. Approximately 50% of HIV-infected people
treated with cART develop a cluster of peripheral meta-
bolic complications (MC) [9] that include traditional
cardiovascular disease risk factors such as dyslipidemia
[10-12], peripheral insulin resistance [13-15], elevated
blood pressure [16] and abdominal adiposity [17]: all
components of “the metabolic syndrome” [18]. HIV
infection/cART [19] and metabolic syndrome [20] also
are associated with a pro-inflammatory state which
further increases cardiovascular disease risk.
HIV-negative individuals with the metabolic syndrome

develop left ventricular systolic and diastolic load inde-
pendent abnormalities indicating that MC adversely
affects left ventricular function [21]. In addition, HIV-
negative individuals with MC have elevated myocardial
fatty acid oxidation rates [22,23] and lower myocardial
glucose utilization rates [22,24-27] and cardiac efficiency
(i.e. ATP generation/oxygen consumed) [28]. cART com-
ponents, especially nucleoside reverse transcriptase inhi-
bitors, are associated with a myocardial mitochondrial
toxicity [29] that may impair myocardial fatty acid meta-
bolism in HIV+ patients. Also, HIV protease inhibitor-
based cART has been associated with impaired peripheral
fatty acid [8] and glucose (i.e. insulin resistance) metabo-
lism [30,31]. The combination of impaired myocardial
fatty acid metabolism (or decreased cardiac efficiency)
and reduced myocardial glucose utilization, especially in
the presence of metabolic inflexibility [32,33], may result
in an impaired ability to generate ATP for contraction
[34]. Although impairments in myocardial glucose meta-
bolism may result in both systolic and diastolic contrac-
tile abnormalities [35,36], disruptions in myocardial
glucose metabolism may manifest more through diastolic
function due to the importance of ATP in cross bridge
cycling, specifically during relaxation [37]. This is impor-
tant as mild abnormalities in diastolic function frequently
lead to overt heart failure later in life [38]. In addition,
impaired myocardial glucose utilization may limit the
heart’s tolerance to ischemia, impair cardiac energetics
and function [39,40] and predict worse outcomes follow-
ing myocardial infarction [41].

Whether or not HIV infection, cART, and peripheral
MC alter myocardial metabolism and its relationship to
left ventricular function is unknown. The purpose of
this study was to examine myocardial glucose and fatty
acid metabolism and their relationship to left ventricular
function in HIV-infected and HIV-negative men with
and without MC. Due to their potential adverse effects
on mitochondrial function, peripheral insulin sensitivity,
and body composition, we hypothesized that well-con-
trolled HIV infection (and cART) would be associated
with lower myocardial glucose utilization and worse left
ventricular function. Also, we hypothesized that periph-
eral MC, regardless of HIV status, would be associated
with lower myocardial glucose utilization and worse left
ventricular function. Specifically, we hypothesized that
HIV+ men (taking cART) with MC would have the low-
est myocardial glucose utilization and LV function com-
pared to HIV+ men without MC, and HIV-negative
men with or without MC. We also hypothesized that
regardless of HIV status; men with metabolic complica-
tions would have lower myocardial glucose utilization
rates and worse left ventricular function than men with-
out metabolic complications. Lastly, we hypothesized
that lower myocardial glucose utilization rate would be
associated with lower diastolic function. We found that
men with metabolic complications that include periph-
eral insulin resistance, with or without well-controlled
HIV infection, have altered myocardial glucose utiliza-
tion per unit insulin and left ventricular relaxation and
that these alterations appear to be interrelated.

Methods
Participants
HIV-infected participants were recruited from the AIDS
(Acquired Immune Deficiency Syndrome) Clinical Trials
Unit and Infectious Diseases Clinics at Washington Uni-
versity School of Medicine in St. Louis, Missouri, USA.
Due to the complexity and expense of these imaging
studies, phenotypic data obtained from HIV+ men were
compared to the same obtained from HIV-negative men
with and without MC from prior [28] and ongoing stu-
dies conducted at our Medical School. All inclusion/
exclusion criteria were similar and experimental proce-
dures were performed identically in both HIV+ and
HIV-negative (i.e. controls) groups.
Volunteers were excluded if they were diabetic, taking

beta-blockers or taking medications that affect lipid or
glucose metabolism. Two HIV+ men with MC were tak-
ing an ACE inhibitor, one HIV+ man without MC was
taking an ACE inhibitor and a diuretic. No HIV-negative
men were taking any anti-hypertensive medications at
the time of study. All men consumed < 3 alcohol-con-
taining beverages/week, reported no use of recreational
drugs or tobacco for at least 6 months prior to
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enrollment and were weight stable. HIV+ men (23 with
and 15 without metabolic complications) were taking
cART (for at least the past 6 months) that included:
nucleoside reverse transcriptase inhibitors (MC+: 87%
vs. MC-: 100%), nucleotide reverse transcriptase inhibi-
tors (MC+: 48% vs. MC-: 40%), non-nucleoside reverse
transcriptase inhibitors (MC+: 17% vs. MC-: 27%), pro-
tease inhibitors: (MC+: 57% vs. MC-: 60%), boosted rito-
navir: (MC+: 43% vs. MC-: 40%), and an integrase
inhibitor: (MC+: 4% vs. MC-: 0%). Volunteers were
excluded if their screening plasma viremia > 55, 000
copies/mL, or if they had an AIDS diagnosis (defined as
either CD4+ T-cell count < 200 cells/μL or current/past
opportunistic infection). The Human Research Protec-
tion Office at Washington University School of Medi-
cine approved the study and all men provided informed
consent prior to participation.
Eligible men were categorized into one of four groups

based on their HIV status and the presence of MC: 1)
HIV+ with MC (HIV+/MC+), 2) HIV+ without MC
(HIV+/MC-), 3) HIV-negative with MC (HIV-/MC+)
and 4) HIV-negative without MC (HIV-/MC-). Meta-
bolic complications (MC) were defined as peripheral
insulin resistance/glucose intolerance (fasting plasma
glucose 100-126 mg/dL OR fasting plasma insulin ≥ 13
μU/mL), AND ≥ 2 of the following criteria: 1) abdom-
inal obesity (either a waist circumference ≥ 102 cm or
BMI ≥ 30 kg/m2), 2) hypertriglyceridemia (fasting
plasma triglycerides ≥ 150 mg/dL), 3) low high density

lipoprotein (HDL)-cholesterol (fasting plasma HDL ≤ 40
mg/dL), or 4) elevated blood pressure (SBP ≥ 130 or
DBP ≥ 85 mmHg; Table 1). These criteria represent a
modification of the ATP-III definition for the metabolic
syndrome [18]. We broadened the insulin resistance/glu-
cose intolerance criteria because HIV+ people frequently
have normal fasting glucose, but elevated fasting insulin
levels [13,42]. Men with normal glucose tolerance and 1
or none of the above criteria were enrolled into a non-
metabolically complicated group (i.e. HIV+/MC- or
HIV-/MC-).

Experimental Procedures
Fat and fat-free mass were quantified using a Hologic
Discovery (version 12.4; Waltham, MA, USA) enhanced-
array dual-energy X-ray absorptiometer (DXA). Partici-
pants were admitted to the Clinical Research Unit at
1800 h the night prior to the study and were provided a
standardized meal containing 12 kcal/kg body weight
and 55% carbohydrate, 30% fat and 15% protein. At
1900 h, they ingested a high carbohydrate beverage (80
gm carbohydrates, 12.2 gm fat, 17.6 gm protein, Ensure;
Ross Laboratories, Columbus, OH, USA) to ensure ade-
quate muscle and hepatic glycogen stores. They were
fasted overnight (12 hours). In the morning, an 18-
gauge catheter was inserted into an antecubital vein for
radiopharmaceutical infusion, and a second catheter was
inserted into a contralateral hand vein (heated to 55°C)
for arterialized venous blood sampling. To standardize

Table 1 Demographic, Body Composition, and Serum Metabolic Variables

Variable HIV-/MC- (n = 22) HIV-/MC+ (n = 9) HIV+/MC-(n = 15) HIV+/MC+ (n = 23)

Age (yrs) 25 ± 6 33 ± 5† 41 ± 6* 42 ± 6*

Median viral load (copies/mL) NA NA UD (0-0) UD (0-34, 000)

CD4+ T-cells (cells/μL) NA NA 585 ± 227 471 ± 202

HIV duration (months) NA NA 127 ± 80 113 ± 88

cART duration (months) NA NA 66 ± 54 72 ± 72

BMI (kg/m2) 24 ± 2 37 ± 2‡ 24 ± 4 31 ± 5§

Waist circumference (cm) 82 ± 5 122 ± 9‡ 84 ± 6 106 ± 13§

FFM (kg) 64 ± 7 78 ± 8 60 ± 10 70 ± 16

Fat mass (kg) 13 ± 6 37 ± 6‡ 11 ± 5 24 ± 10§

Fasting glucose (mg/dL) 90 ± 5 100 ± 8§ 86 ± 6 94 ± 8¶

Fasting insulin (μU/mL) 4.7 ± 2.7 20.2 ± 14.0§ 4.8 ± 2.2 14.8 ± 6.0§

Fasting HOMA 1.1 ± 0.7 5.1 ± 3.7§ 1.1 ± 0.5 3.4 ± 1.4§

TG (mg/dL) 90 ± 24 271 ± 117§ 126 ± 69† 186 ± 89†

HDL (mg/dL) 51 ± 9 37 ± 8† 48 ± 13 38 ± 10†

LDL (mg/dL) 91 ± 21.1 108 ± 33§ 87 ± 23 108 ± 28§

Chol (mg/dL) 160 ± 26 194 ± 38 159 ± 28 181 ± 36

Lactate (μmol/L) 857 ± 377 887 ± 464 572 ± 147 808 ± 282

FFA (μmol/L) 548 ± 254 690 ± 176 663 ± 178 591 ± 174

Data expressed as mean ± SD. UD = undetectable, cART = combination anti-retroviral therapy, BMI = body mass index, FFM = fat free mass, HOMA =
homeostasis model of assessment for insulin resistance, TG = triglyceride, HDL = high density lipoprotein, LDL = low density lipoprotein, Chol = total cholesterol,
FFA = free fatty acid, *: p < 0.05 vs. HIV-/MC- and HIV-/MC+, †: p < 0.05 vs. HIV-/MC-, ‡: p < 0.05 vs. remaining groups, §: p < 0.05 vs. HIV-/MC- and HIV+/MC-, ¶: p
< 0.05 vs. HIV+/MC-.
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for potential circadian variations, positron emission
tomography (PET) imaging started at 0800 h [43] using
a commercially available tomograph (Siemens ECAT
962 HR+, Siemens Medical Systems, Iselin, NJ, USA).
Blood pressure and heart rate were monitored through-
out the imaging study. PET imaging quantified myocar-
dial blood flow after 15O-water injection, myocardial
oxygen consumption (MVO2) after 1-

11C-acetate injec-
tion, myocardial glucose extraction fraction and utiliza-
tion (GLUT) after 1-11C-glucose injection, and fatty acid
extraction fraction, utilization, oxidation and esterifica-
tion after 1-11C-palmitate injection. All PET procedures
have been previously described and validated [44-46].
During the PET, arterialized venous blood samples were
obtained at predetermined intervals for plasma substrate
(glucose, fatty acids, and lactate), insulin, and radio-
labeled metabolite concentrations. Validated compart-
mental models were used to calculate myocardial sub-
strate kinetic rates [45-47].

Echocardiography
Immediately after PET imaging, a complete 2-D, Dop-
pler and tissue Doppler echocardiographic examination
was conducted (Sequoia Cypress, Acuson-Siemens,
Mountain View, CA, USA). Left ventricular (LV) end-
diastolic and end-systolic volumes and LV mass were
determined according to recommendations of the Amer-
ican Society of Echocardiography [48]. Pulsed-wave
Doppler mitral inflow velocities of early left ventricular
filling (E) and atrial filling (A) were obtained at the
mitral leaflet tips in the apical 4-chamber view for calcu-
lating E/A ratio. Tissue Doppler imaging was performed
in the apical 4-chamber view to determine the peak sys-
tolic shortening velocity (Sm) and early diastolic myocar-
dial relaxation velocity (Em) for regional assessment of
systolic and diastolic function, respectively. Em and Sm
were calculated by averaging the velocities of the lateral
and septal base.

Plasma Analyses
Plasma glucose concentration was measured using an
automated glucose analyzer (Yellow Spring Instruments,
Yellow Springs, OH, USA). Plasma insulin levels were
quantified using a chemiluminescent immunometric
method (Immulite; Siemens, Los Angeles, CA, USA).
Peripheral insulin resistance was evaluated using
HOMA-IR [49]. Fasting plasma lipid/lipoproteins were
quantified as previously described [50]. Lactate concen-
tration was measured using a colorimetric assay kit
(Sigma Chemicals, St. Louis, MO, USA).

Statistical Analysis
Statistical comparisons were performed using SAS ver-
sion 9.1 (SAS®, Cary, NC, USA). Between group

differences in continuous variables (myocardial substrate
kinetics, left ventricular function) were determined
using two-way analysis of covariance (ANCOVA) and
post-hoc analysis by Tukey HSD. The ANCOVA was
adjusted for age, because HIV+ men were older than
HIV-negative men. An independent t-test was used to
compare dichotomous variables.
Pearson’s correlation coefficient was used for univari-

ate analysis of continuous variables; (e.g., left ventricular
function during diastole and myocardial glucose utiliza-
tion per unit plasma insulin (GLUT/INS)). Linear
regression was used for multivariable analysis. Multivari-
able models were built in a manual forward stepwise
fashion, considering variables with p < 0.10 in univariate
analysis, to determine the most significant predictors of
the specified dependent variables. Interactions of final
predictors with HIV status were also examined. A p-
value < 0.05 was considered statistically significant.

Results
Demographics
The HIV+/MC+ men were 35% African American, 6%
Asian Indian and 59% Caucasian, HIV+/MC- were 40%
African American, 7% Hispanic and 53% Caucasian,
HIV-/MC+ were 100% Caucasian and HIV-/MC- were
10% African American and 90% Caucasian. HIV+
groups had a significantly greater percentage of African
American men than HIV-negative groups (Table 1). As
expected, total fat content measured by DXA was
greater in the groups with MC compared to the groups
without MC, and total fat content in HIV-/MC+ was
greater than all other groups (Table 1). Based on the
DXA regional fat measures, 32% of HIV+ men had
“lipoatrophy” (< 5 kg limb fat), 50% had trunk adiposity
(top 10th percentile of all HIV+ men), 12% had a
“mixed” phenotype (both lipoatrophy and trunk adipos-
ity), and 6% had normal fat distribution. Other demo-
graphic variables are reported in Table 1.

Myocardial Glucose and Fatty Acid Metabolism
Myocardial blood flow and MVO2 were not different
among groups (Table 2). There was a trend towards
lower myocardial glucose extraction fraction (i.e. percen-
tage of blood glucose extracted by the left ventricle of
the heart) in HIV+/MC+ than HIV+/MC- (p = 0.06,
Figure 1A). However, myocardial GLUT was not differ-
ent among groups, and downstream myocellular meta-
bolism of glucose: i.e. glycolysis, glycogen storage,
oxidation, and lactate production was not different
among groups (Table 2). After adjusting for the prevail-
ing plasma insulin concentration, myocardial glucose
utilization per unit insulin (GLUT/INS) was lower in
metabolically complicated groups (i.e. HIV+/MC+ and
HIV-/MC+) than in non complicated groups (i.e. HIV

Cade et al. Cardiovascular Diabetology 2011, 10:111
http://www.cardiab.com/content/10/1/111

Page 4 of 12



+/MC- and HIV-/MC-) irrespective of HIV status (Fig-
ure 1B). Myocardial GLUT/INS was not different
between MC+ groups (HIV+ vs. HIV-negative), and not
different between the MC- groups. Regardless of HIV,
basal myocardial glucose utilization was blunted in the
presence of elevated plasma insulin in men with meta-
bolic complications that included peripheral insulin
resistance (HOMA-IR).
Myocardial fatty acid extraction fraction (i.e. percen-

tage of fatty acids extracted from blood by left ventricle)
was significantly lower in HIV+/MC+ and HIV-/MC+
than HIV+/MC- (Table 2) but was similar to HIV-/MC-
. Myocardial fatty acid uptake, esterification, and utiliza-
tion rates were similar among groups (Table 2).

Left Ventricular Structure and Function
Rate pressure product (i.e. cardiac work) was significantly
higher in MC+ groups than HIV-/MC-, and higher in
HIV-/MC+ than HIV+/MC- (Table 2). However, cardiac

efficiency (i.e. cardiac work/MVO2) was not different
among groups. Myocardial relaxation velocity averaged at
the lateral wall and septum during early diastole (Em) was
lower in both MC+ groups than HIV-/MC-, and was
lower in HIV-/MC+ than HIV+/MC- (Table 2).

Analyses Using Traditional Metabolic Syndrome Criteria
The myocardial metabolism findings were similar regard-
less of whether we used the modified definition for MC or
the traditional NCEP/ATP-III criteria for metabolic syn-
drome [18] (i.e. excluding fasting insulin and BMI criteria).
Both HIV+ and HIV-negative men with ATP-III metabolic
syndrome had significantly lower GLUT/INS than HIV-
negative men without the metabolic syndrome, and both
tended to be lower than HIV+ men without the metabolic
syndrome (data not shown). In addition, myocardial
relaxation velocity averaged at the lateral wall and septum
during early diastole (Em) was significantly lower in both
groups with ATP-III metabolic syndrome than HIV-

Table 2 Myocardial Metabolic and Function Variables

Variable HIV-/MC- (n = 22) HIV-/MC+ (n = 9) HIV+/MC- (n = 15) HIV+/MC+ (n = 23)

MVO2 (μmol/g/min) 4.3 ± 1.0 4.5 ± 1.3 3.9 ± 1.1 4.3 ± 1.1

MBF (ml/g/min) 0.97 ± 0.19 1.06 ± 0.22 0.92 ± 0.26 0.97 ± 0.29

GLUT (nmol/g/min) 242 ± 141 139 ± 71 184 ± 135 113 ± 66

Glycolysis (nmol/g/min) 69 ± 54 40 ± 30 80 ± 89 81 ± 39

Glycogen formation (nmol/g/min) 147 ± 82 127 ± 57 118 ± 90 35 ± 34

Lactate production (nmol/g/min) 10 ± 11 5 ± 7 18 ± 35 6 ± 9

Glucose oxidation (nmol/g/min) 62 ± 43 34 ± 23 70 ± 67 33 ± 33

EF Total (%) 42 ± 8 38 ± 6* 49 ± 19 37 ± 8¶

FAOX (nmol/g/min) 133 ± 56 145 ± 44 115 ± 47 97 ± 38

FAOX/MVO2 30 ± 13 34 ± 11 32 ± 15 23 ± 9

FAEST (nmol/g/min) 19 ± 20 10 ± 11 35 ± 28 24 ± 23

FAUT (nmol/g/min) 110 ± 89 155 ± 43 149 ± 55 122 ± 40

HR (bpm) 57 ± 7 72 ± 10† 60 ± 14 62 ± 10

SBP (mm/Hg) 116 ± 12 134 ± 1† 125 ± 20 127 ± 14

DBP (mm/Hg) 63 ± 10 73 ± 9 73 ± 11 74 ± 9

RPP (arbitrary units) 6269 ± 1737 9684 ± 1864‡ 7488 ± 1775 7896 ± 1666†

LVM MM (g) 185 ± 29 230 ± 42§ 185 ± 40 189 ± 41

EDV (mL) 125 ± 23 129 ± 18 101 ± 25 110 ± 24

ESV (mL) 52 ± 12 53 ± 13 39 ± 10 44 ± 13

EF (%) 58 ± 4 59 ± 6 61 ± 5 60 ± 8

LVET (ms) 319 ± 25 272 ± 17‡ 313 ± 37 297 ± 29

Sm (cm/s) 8 ± 1 8 ± 2 8 ± 1 8 ± 1

E wave (cm/s) 74 ± 15 59 ± 21 71 ± 14 66 ± 16

E/A ratio 2.1 ± 0.6 1.5 ± 0.5 1.7 ± 0.6 1.4 ± 0.5

Em (cm/s) 17.2 ± 1.9 12.1 ± 2.4§ 13.9 ± 1.7 12.8 ± 2.0†

DT (ms) 178 ± 29 197 ± 21 198 ± 35 202 ± 48

IVRT (ms) 80 ± 13 74 ± 8 79 ± 8 80 ± 7

Data expressed as mean ± SD. MVO2: myocardial oxygen consumption, MBF: myocardial blood flow, GLUT: myocardial glucose utilization, EFTotal: myocardial
fatty acid extraction fraction total, FAOX: fatty acid oxidation, FAEST: fatty acid esterification, FAUT: fatty acid utilization, LVM = left ventricular mass, LVMI: left
ventricular mass index, EDV: end diastolic volume, ESV: end systolic volume, EF: ejection fraction, LVET: left ventricular ejection time, Em: average myocardial
relaxation velocity during early diastole measured at the lateral wall and septal bases, DT: deceleration time, and IVRT: isovolumic contraction time. *: p < 0.05 vs.
HIV-/MC- and HIV-/MC+, †: p < 0.05 vs. HIV-/MC-, ‡: p < 0.05 vs. remaining groups, §: p < 0.05 vs. HIV-/MC- and HIV+/MC-, ¶: p < 0.05 vs. HIV+/MC-.
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negative men without the metabolic syndrome, and was
significantly lower in HIV-negative men with ATP-III
metabolic syndrome than HIV+ men without the meta-
bolic syndrome (data not shown).

Analyses Using Immunological Status
We [42] and others [51] have noted associations
between CD4+ T-cell count and the presence of

metabolic complications and cardiovascular events in
HIV infected adults. So, we performed a sub-analysis
(controlled for age) that examined myocardial nutrient
metabolism and left ventricular function between HIV+
men with current CD4+ T-cell count ≥ 500 cells/μL and
HIV+ men with CD4+ count ≤ 500 cells/μL, HIV+ men
with CD4+ T-cell count ≤ 500 cells/μL had significantly
lower (p < 0.05) GLUT/INS (16.4 ± 22.5) than HIV+

Figure 1 (A) Myocardial glucose extraction fraction (%), and (B) Myocardial glucose utilization normalized to plasma insulin
concentration (nmol/g/min/μU/mL) in HIV+ and HIV-negative men with and without metabolic complications (MC).
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men ≥ 500 cells/μL (27.9 ± 29.9 nmol/g/min per μU/mL
insulin). Myocardial fatty acid oxidation and utilization
rates were similar between groups (data not shown).
Myocardial relaxation velocity during diastole (diastolic
function) averaged at the septum and lateral wall was
not different between the HIV+ groups with low or high
CD4+ T-cell counts.

Correlations with Myocardial Glucose Metabolism
Endpoints
To avoid multicollinearity among the many demo-
graphic variables, we chose BMI (over DXA- derived
body fat parameters) and diastolic blood pressure (DBP;
over systolic BP) for multivariable analyses used to pre-
dict GLUT/INS. Variables that remained in the multi-
variable model included BMI (b = -1.80, p = .025), DBP
(b = -1.11, p = .011), and HDL-cholesterol (b = .097, p
= .022) (model r2 = 0.31). The dichotomous variable
HIV (positive or negative) was not a significant predic-
tor of myocardial GLUT/INS. Moreover, multivariable
models that included HIV did not predict myocardial
GLUT/INS better than models that did not include
HIV. When two outlier values for myocardial glucose
utilization (191.6 and 199.7 nmol/g/min) were excluded
from model predictions, the same variables remained in
the model, and parameter estimates were slightly smaller
(BMI b = -1.59, p = .003; DBP b = -0.82, p = .005;
HDL-cholesterol b = 0.87, p = .002; model r2 = 0.43).

Correlations with LV Structure and Function Endpoints
Like above, we used BMI and DBP in the multivariable
model for myocardial relaxation velocity during early dia-
stole (Em). Variables that remained in the model included
BMI (b = -.003, p < .001), DBP (b = -.0007, p = .007),
HIV (b = -.100, p < .001), and the interaction of HIV and
BMI (b = .003, p < .001) (model r2 = .57). Thus, when
considering the interaction with HIV, only BMI was sig-
nificantly associated with myocardial wall velocity during
diastole (Em) in HIV-negative men (b = -.003, p < .001),
but not in HIV+ men (b = -.0005, p = .35).
In univariate analyses, we examined the relationship

between the two main dependent variables: GLUT/INS
and myocardial relaxation velocity during early diastole.
Myocardial GLUT/INS was significantly related to myo-
cardial relaxation velocity during diastole (Em) (r = 0.39,
p < .001, Figure 2), and related to filling velocity during
early diastole (E/A) (r = 0.39, p = 0.001).

Discussion
This is the first study to describe myocardial blood flow
and nutrient metabolism in humans with HIV infection.
The major findings are: 1) men with metabolic compli-
cations that included peripheral insulin resistance had
lower basal myocardial glucose utilization rates per unit

of fasting plasma insulin, irrespective of HIV status; 2)
lower myocardial glucose utilization normalized to fast-
ing plasma insulin was associated with worse left ventri-
cular relaxation in both men with and without HIV; and
3) there were no differences in myocardial blood flow,
MVO2, or myocardial fatty acid metabolism due to well-
controlled HIV or metabolic complications. These find-
ings imply that well-controlled HIV infection does not
have an independent effect on myocardial metabolism in
men. Regardless of HIV status, men with metabolic
complications that included peripheral insulin resistance
required a higher fasting plasma insulin concentration
to achieve the same basal rate of myocardial glucose uti-
lization as men without metabolic complications. This
suggests that there is resistance to the ability of fasting
insulin levels to mediate basal myocardial glucose utili-
zation and this was associated with impaired left ventri-
cular relaxation in men with metabolic complications.
We did not find that myocardial glucose metabolism

and contractile function were worse in HIV+ men with
metabolic complications than HIV-negative men with
metabolic complications. The absence of the hypothe-
sized effect may reflect the fact that these HIV+ men
were virologically (low plasma viremia) and immunolo-
gically (CD4+ > 200 cells/μL) healthy. Perhaps myocar-
dial metabolism/function is more adversely affected in
men with more advanced HIV disease. In support of
this notion, our sub-analysis indicated that HIV+ men
with lower CD4+ T-cell counts had lower myocardial
glucose utilization per unit insulin than HIV+ men with
higher CD4+ T-cell counts. However, diastolic function
(Em) was similar between these two HIV+ groups. These
findings suggest important interactions between immune

Figure 2 Lower myocardial glucose utilization per unit plasma
insulin (i.e. lower insulin sensitivity) predicted worse left
ventricular diastolic function among all men. MC = metabolic
complications.
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status and myocardial glucose metabolism (but not left
ventricular diastolic function), that require further
exploration.
Other potential explanations for the lack of a HIV

effect on myocardial glucose metabolism and contractile
function in men with metabolic complications include:
the metabolic complications in the HIV+ men were less
severe than those in the HIV-negative men. On average,
HIV+ men had lower BMI, waist circumferences, and
tended to have lower plasma insulin, glucose and trigly-
ceride levels than HIV-negative men. If it were possible
to perfectly match HIV-positive and -negative men on
all traditional metabolic syndrome components, we may
have found an additional adverse effect of HIV or cART
on myocardial metabolism or function. This is practi-
cally very difficult, but could potentially be addressed in
a larger study. Also, men in the current study were
using contemporary cART regimens that may be asso-
ciated with less metabolic complications than earlier
cART regimens [52-54], and they may affect myocardial
metabolism and function less. Also, the independent
effects of cART on myocardial metabolism could not be
sufficiently evaluated. HIV infected people naïve to
cART are rare and may represent an inherently different
group (e.g. long term non-progressors), and people who
are initiating cART are difficult to capture and study
due to their urgent treatment needs. In our study, the
percentages of HIV+ men taking individual classes of
cART were similar between those with and without
metabolic complications. It is possible that specific
cART drug classes affected myocardial metabolism dif-
ferently, but this was not observed in the HIV+ men in
our study. For example, HIV-protease inhibitors have
been associated with cardiometabolic complications
[11]. We compared myocardial metabolism and function
between 23 men taking and 11 men not taking an HIV-
protease inhibitor; both groups were taking similar
nucleoside reverse transcriptase inhibitors. We found no
differences or trends in myocardial metabolism or func-
tion between these two sub-groups (data not shown),
suggesting that use of this cART class (protease inhibi-
tors) does not account for the observed differences in
myocardial metabolism and function. Importantly, this
sub-analysis was underpowered, and we cannot confi-
dently determine the independent effects of specific
cART medications on myocardial metabolism/function.
We found that a higher fasting insulin concentration

is required to achieve the same basal rate of myocardial
glucose utilization in men with metabolic complications
that includes peripheral insulin resistance. This agrees
with studies conducted on HIV-negative people with
type 1 and type 2 diabetes [23,25,26,55] who have
reduced myocardial glucose utilization rates [25,26] and
myocardial glucose utilization per unit insulin [23]. A

plot of myocardial glucose metabolism versus fasting
insulin concentration (Figure 3) generated lines with a
negative slope for men with metabolic complications,
while positive slopes were noted in men without meta-
bolic complications. This implies that over the range of
fasting insulin concentrations, men with metabolic com-
plications did not increase myocardial glucose metabo-
lism; this provides additional indirect evidence for basal
myocardial insulin resistance. Although ideal, it is tech-
nically very challenging to conduct hyperinsulinemic-
euglycemic clamps during myocardial PET studies, so a
true dose-response curve for insulin was not obtained.
Despite this limitation, we found that regardless of HIV
status, the myocardium is capable of maintaining energy
production from glucose utilization, but a higher fasting
insulin concentration is required to achieve the same
absolute myocardial glucose utilization rate. Impaired
myocardial glucose utilization per unit insulin may
adversely affect left ventricular function in men (with or
without HIV) with metabolic complications. It may pre-
dispose men with metabolic complications to worse out-
comes following a myocardial infarction or
cardiovascular event since during ischemia, due to the
decrease in oxygen availability, ß-oxidation of fatty acids
decreases and subsequently the myocardium relies more
on glucose to generate ATP [56,57]. Indeed, HIV+ men
and women have a greater risk of mortality from myo-
cardial infarction and chronic ischemic heart conditions
than HIV-negative men and women [58]. However,
without performing hyperinsulinemic clamp procedures
in longitudinal outcome studies, the relationship
between myocardial glucose metabolism and worse car-
diac outcomes in HIV are only speculative. Also,
decreased myocardial glucose utilization per unit insulin
was not accompanied by a concurrent increase in

Figure 3 Myocardial glucose utilization plotted against fasting
plasma insulin concentration. HIV-/MC- b = 7.36, HIV-/MC+ b = -
1.87, HIV+/MC- b = 0.37, HIV+/MC+ b = - 2.61.
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myocardial fatty acid metabolism, suggesting that under
some conditions (e.g. increased energy demand, ische-
mia) alternate fuel sources such as lactate, amino acids,
or ketone bodies may be utilized to compensate for
lower myocardial glucose utilization, and to achieve the
myocardial ATP requirement. Myocardial lactate, amino
acid or ketone utilization and their functional conse-
quences need to be quantified in future studies.
We found that neither well-controlled HIV nor meta-

bolic complications appeared to affect myocardial blood
flow, MVO2, or myocardial fatty acid metabolism. This
contrasts with findings from HIV-negative obese and
non-obese women where these parameters increased
with increasing BMI and/or peripheral insulin resistance
[27]. The current findings are mostly consistent with
those from HIV-negative men where there was no dif-
ference in myocardial blood flow and MVO2 between
obese and non-obese, insulin resistant men [28]. In that
study, myocardial fatty acid utilization was slightly
higher in the obese men; this was primarily driven by
higher serum free fatty acid levels in the obese, insulin
resistant men [28]. We did not find significantly higher
free fatty acid levels in men with metabolic complica-
tions, and consequently, their myocardial fatty acid
metabolism was not different from men without meta-
bolic complications. Interestingly, MVO2 among groups
was similar even in the presence of increased cardiac
work in the metabolically complicated groups suggesting
that metabolically complicated groups appeared to be
more efficient in generating energy per unit of MVO2;
however, this was not a significant trend among groups
(p = 0.10). Stress echocardiography/MVO2 could have
also revealed differences in functional and metabolic
reserve between groups. However, due to financial con-
straints, these parameters were not measured.
Among all the left ventricular function parameters, left

ventricular relaxation was worse in the men with meta-
bolic complications, regardless of HIV status. This left
ventricular relaxation abnormality was not due to altera-
tions in left ventricular macrostructure or systolic func-
tion. Our results appear to differ from those reported by
Hsue et al. [5] who showed that HIV infection had an
independent negative effect on diastolic function. How-
ever, there are substantial differences in participant char-
acteristics between the two studies. Participants in Hsue et
al. [5] were older (47 vs. 41 years), a greater proportion of
participants were using illegal drugs (5% vs. 0%) or smoked
tobacco (36% vs. 24%), were co-infected with hepatitis C
(25% vs. 0%), and had prior coronary disease (5% vs. 0%).
As a group, they had left ventricular hypertrophy, and a
large proportion of participants had AIDS (median nadir
CD4: 120) where no man in the current study had AIDS.
The potential adverse effects of these worse co-morbid
conditions on left ventricular function in the Hsue et al.

study are difficult to ascertain because values for the com-
ponents of the metabolic syndrome were not reported
(only if participants were diagnosed as hypertensive, had
hyperlipidemia, or had diabetes). It is possible that the pre-
sence of metabolic complications could obscure any
potential detrimental effects of HIV infection on left ven-
tricular function, but we hypothesized additive indepen-
dent effects of HIV and metabolic complications on left
ventricular function. This was not observed in the current
study. Conversely, although diastolic function in men with
peripheral metabolic complications was similar in the cur-
rent study, multiple regression analysis revealed that HIV
infection predicted lower diastolic function. This supports
the findings from Hsue et al. [59] and others [5,60-62] in
well-controlled or advanced HIV disease. But in these stu-
dies, the individual influence of metabolic complications
was not considered. In the general population, metabolic
complications adversely affect left ventricular systolic and
diastolic function [21,63]. The current findings extend
these and suggest that impaired diastolic function is asso-
ciated with a reduced ability of fasting insulin to mediate
myocardial glucose utilization in men with metabolic com-
plications with or without well-controlled HIV infection.
Left ventricular diastolic function abnormalities are

common, early findings in diabetic cardiomyopathy. The
exact mechanism for peripheral and myocardial insulin
resistance associated diastolic dysfunction is unknown,
and it is unclear whether insulin resistance causes or is a
marker of diastolic dysfunction. Previous animal research
suggests that whole-body insulin resistance may cause:
cardiac fibrosis [64], impaired myocardial calcium trans-
port [65], advanced glycation end product-associated wall
stiffness [66], and reduced fasting insulin-mediated myo-
cardial glucose utilization [40]. The findings from our
cross-sectional study can only suggest that dysregulated
basal myocardial substrate utilization partially contributes
to left ventricular diastolic dysfunction in HIV+ and HIV-
negative men with metabolic complications. In multivari-
ate analyses, BMI, DBP, and HDL-cholesterol (but not
HIV status or HOMA-IR) were the strongest predictors
for lower fasting insulin-mediated basal myocardial glu-
cose utilization rate. The predictors were similar, even
when HIV+ and HIV-negative groups were analyzed sepa-
rately. Also, multivariate prediction models for diastolic
function revealed that higher diastolic blood pressure was
associated with worse diastolic function, and higher BMI
was associated with worse diastolic function for HIV-nega-
tive men (but not HIV+ men). For men with low or nor-
mal BMI, HIV-negative men had better diastolic function
than HIV+ men. This suggests that men with metabolic
complications (regardless of HIV status) have a similar
phenotype for myocardial glucose metabolism, but HIV
infection per se may contribute (not additive) to left ven-
tricular diastolic dysfunction. Our findings agree with
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those from HIV-negative people, where obesity and hyper-
tension were associated with lower myocardial glucose uti-
lization [28] and left ventricular diastolic dysfunction
[67,68], and they support studies suggesting that HIV
infection contributes to impaired diastolic function [59].

Limitations
Due to the expense and the complexity of the PET stu-
dies, myocardial substrate kinetic rates obtained from
HIV-negative men studied previously and in ongoing
studies were used for comparison. Although the men in
the study had similar metabolic profiles, hemodynamics,
and left ventricular structure, on average, the HIV+ men
were older than HIV-negative men. Thus, we adjusted
for age in all analyses. Ideally, the race/ethnicity compo-
sition of the groups should have been equivalent, how-
ever, this has not been shown to affect myocardial
metabolism [28]. Hyperinsulinemic-euglycemic clamps
were not conducted during the myocardial PET studies,
so the myocardium’s responsiveness to increasing insu-
lin levels was not determined. Basal measures of periph-
eral insulin resistance (HOMA-IR) in the absence of
infused insulin correlate with peripheral glucose disposal
rate measured during a glucose-insulin clamp (~r =
0.88) [69,70]. Our basal state findings may reflect or be
intensified during a glucose-insulin clamp, but this
requires further study. Our conclusions cannot be
extended to other groups of people (women with HIV
with/without metabolic complications or cART-naïve
HIV+ people) [27], or those with measurable plasma vir-
emia. We cannot rule out that HIV infection per se
affects myocardial metabolism, as HIV infection itself
affects peripheral metabolism [7]. Only 3 HIV+ men
were taking anti-hypertensive medications, but the
effects of ACE inhibitors and diuretics on heart metabo-
lism is unknown and not likely to affect our conclusions.
Also, large standard deviations in the myocardial meta-
bolism data may have limited statistical power and pre-
cluded our ability to detect some differences in
myocardial metabolism between groups. Biological varia-
bility in human myocardial substrate metabolism
appears inherent as large variability in these measures
has been previously reported previously [28,71,72].
Lastly, serum lactate levels appeared to be elevated in
HIV-negative men without MC however we are unable
to adequately explain this deviation.

Conclusions
The findings suggest that men with metabolic complica-
tions that include peripheral insulin resistance, with or
without well-controlled HIV infection, have altered myo-
cardial glucose utilization per unit insulin and left ventri-
cular relaxation. Moreover, these alterations appear to be
interrelated. Impaired myocardial glucose utilization per

unit insulin may detrimentally affect the heart’s ability to
adapt to conditions, such as ischemia, when the heart’s
reliance on glucose increases; this is speculative and
requires further study. Neither HIV, nor metabolic com-
plications, appears to affect myocardial blood flow,
MVO2, or myocardial fatty acid metabolism. Further stu-
dies should determine if increasing myocardial glucose
utilization per unit insulin improves left ventricular
relaxation in people with metabolic complications.
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