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Abstract
Background  Metabolic syndrome (MetS) is a cluster of medical conditions and risk factors correlating with insulin 
resistance that increase the risk of developing cardiometabolic health problems. The specific criteria for diagnosing 
MetS vary among different medical organizations but are typically based on the evaluation of abdominal obesity, high 
blood pressure, hyperglycemia, and dyslipidemia. A unique, quantitative and independent estimation of the risk of 
MetS based only on quantitative biomarkers is highly desirable for the comparison between patients and to study the 
individual progression of the disease in a quantitative manner.

Methods  We used NMR-based metabolomics on a large cohort of donors (n = 21,323; 37.5% female) to investigate 
the diagnostic value of serum or serum combined with urine to estimate the MetS risk. Specifically, we have 
determined 41 circulating metabolites and 112 lipoprotein classes and subclasses in serum samples and this 
information has been integrated with metabolic profiles extracted from urine samples.

Results  We have developed MetSCORE, a metabolic model of MetS that combines serum lipoprotein and metabolite 
information. MetSCORE discriminate patients with MetS (independently identified using the WHO criterium) from 
general population, with an AUROC of 0.94 (95% CI 0.920–0.952, p < 0.001). MetSCORE is also able to discriminate the 
intermediate phenotypes, identifying the early risk of MetS in a quantitative way and ranking individuals according 
to their risk of undergoing MetS (for general population) or according to the severity of the syndrome (for MetS 
patients).

Conclusions  We believe that MetSCORE may be an insightful tool for early intervention and lifestyle modifications, 
potentially preventing the aggravation of metabolic syndrome.
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Background
Metabolic syndrome (MetS) is a complex and multifac-
eted pathological condition, characterised by a cluster 
of interrelated risk factors, that include obesity, insu-
lin resistance/impaired fasting glucose, hypertension, 
and dyslipidemia [1, 2]. MetS substantially increases the 
risk of cardiovascular disease, type 2 diabetes, and other 
chronic illnesses, also affecting the liver, kidneys and/or 
other organs [3]. The percentage of children and adoles-
cents affected by MetS is dramatically growing and this is 
directly related to the percentage of adult population that 
will ultimately present this syndrome, with a subsequent 
higher risk of developing cardiovascular diseases [4].

The definition of MetS has long been a subject of debate 
and lacks a universal consensus within the medical com-
munity [5, 6]. Different medical organizations and expert 
panels have proposed slightly varying diagnostic criteria, 
often only reporting a combination of the involved risk 
factors [6–9]. The absence of a consensual and accepted 
definition makes it challenging to accurately assess the 
prevalence of MetS, conduct comparative research across 
studies, and establish consistent clinical guidelines for 
diagnosis and management. Thus, a more objective 
definition of MetS, based on clinical signs and efficient 
molecular descriptors, would be highly desirable.

Considerable efforts have been dedicated to obtaining 
quantitative descriptors of MetS, based on biochemi-
cal parameters [10–12] or metabolites [13–16]. Some of 
these models have proved useful for the early detection 
of MetS in pediatric population [17] or to identify poten-
tial cardiovascular risk [18]. NMR-based metabolomics, 
a cutting-edge discipline in the field of systems biology 
[19], offers a promising avenue for unraveling the meta-
bolic intricacies of this syndrome at the molecular level 
[10, 11]. Recent studies, such as those exploring the asso-
ciation between metabolites and depressive symptoms 
[20], and the effects of prenatal exposure to chemical 
mixtures on MetS risk in children [21], emphasize the 
importance of integrating metabolic health assessments 
with broader health outcomes. These insights highlight 
the necessity for comprehensive models that can provide 
a more nuanced understanding of MetS and its multifac-
eted impacts on health.

In a previous study from our group, we investigated the 
relative contribution of each of the mentioned risk fac-
tors to MetS by analysing the urine of a large cohort of 
healthy donors and patients by NMR metabolomics [22]. 
In there, we identified a set of metabolites directly related 
to the presence of each of the associated clinical factors. 
Yet, urine alone may not be sufficient to investigate this 

complex syndrome at the molecular level. While this 
biofluid is exquisitely sensitive to glucose levels and, 
potentially, to hypertension markers as well, obesity and 
dyslipidemia are other contributing factors to MetS [23], 
that may not be reflected in the urine’s metabolome since 
they are largely associated to the concentration of lipo-
protein and metabolites in blood.

NMR metabolomics of serum includes the charac-
terization of various, highly homeostatised circulating 
metabolites, and furthermore offers the possibility of 
profiling the lipoproteins [24, 25]. Unlike traditional bulk 
lipid measurements, NMR spectroscopy offers unparal-
leled detail by characterizing lipoproteins according to 
their size, density, and composition [26, 27]. The analysis 
of a specific region of the 1H-NMR spectrum of serum 
or plasma provides quantitative information of the four 
types of lipids in the lipoprotein particles: phospholipid, 
unesterified cholesterol, cholesterol ester, and triglycer-
ide as well as the constituting apolipoproteins.

We now have extended our previous molecular study 
on MetS, based on urine measurements alone, to exam-
ine serum samples from both, the previous and new 
donors, completing the cohort with serum samples from 
individuals with a high probability of developing MetS. 
In total a cohort of 20,662 independent donors and up 
to 34,773 samples of urine/serum are considered in the 
present analysis. The challenges of integrating the NMR 
information derived from different matrices was solved 
by unsupervised cluster analysis, leading to an optimal 
molecular model, MetSCORE, based on the combined 
information on lipoprotein and metabolites provided 
from serum metabolomics, that efficiently estimates the 
risk of undergoing MetS (AUROC 0.94 [95% CI 0.920–
0.952, p < 0.001]). This model was further validated using 
data from an additional independent cohort including 
three independent sub-cohorts, comprising a total of 661 
additional samples. Altogether, MetSCORE constitutes a 
robust and validated model for MetS, enabling healthcare 
professionals to develop more personalised and precise 
strategies for the prevention and management of MetS.

Methods
Cohort study
We considered a sample donor cohort (DISCOVERY) 
comprising over 20,000 individuals, of whom more than 
14,000 have also provided urine samples. The cohort 
includes 5 sub-cohorts: AKRIBEA, OSARTEN, METS+, 
AGEPORTUGAL, and LIVER-BIBLE. The AKRIBEA 
and OSARTEN sub-cohorts consist of individuals from 
the working general population of the Basque Country. 

Keywords  Metabolic syndrome, Lipoproteins, Obesity, Dyslipidemia, Diabetes, Hypertension, NMR spectroscopy, 
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They are complemented by: LIVER-BIBLE, which con-
sists of individuals from Milan who are part of a study 
on risk factors for steatotic liver disease (SLD) and other 
complications of MetS; MET+, which are individuals 
from Navarra and Madrid who have diabetes and one 
or more of the other risk factors; AGEPORTUGAL, a 
cohort belonging to a study on aging in the Portuguese 
population conducted in geriatric centers. For validation 
purposes, VALIDATION cohort includes three addi-
tional sub-cohorts that were not employed in the model’s 
build-up: BPH, TÜBINGEN and BIOPERSMED. A com-
plete description of the DISCOVERY and VALIDATION 
cohorts and its associated sub-cohorts can be found in 
the Additional file 1 (Supplement S1). Tables S1–S6 sum-
marize the data associated with each of the sub-cohorts 
by gender. The gender of participants was self-reported 
and was not considered during the selection process. 
Following the principles of the Declaration of Helsinki, 
all individuals provided informed consent for clinical 
research, with the consequent evaluation and approval of 
the corresponding ethics committees. The specific Ethics 
Committee are: OSARTEN (CEIC-E 16-114); AKRIBEA 
(CEIC-E 19-13); BPH (CEIC-E numbers 11-12, 14-14 and 
19-20); LIVERBIBLE (Fondazione IRCSS, Bambino Gesù 
Children’s Hospital and Palermo University Hospital, CE 
125_2018bis); METS+ (CEIC-E 21-199); AGEPORTU-
GAL (CE-UBI-Pj-2017-012); TÜBINGEN (141/2018BO2 
from Tübingen and 52/18 from Würzburg) and BIOP-
ERSMED (Medical University of Graz, 24-224 ex 11/12). 
To protect patient confidentiality, all data has been dou-
ble codified.

Assignment of MetS profiles to the donors
Independent information for the associated risk factors 
(i.e. diabetes, obesity, dyslipidemia, and hypertension) 
was obtained from biochemical analysis and the general 
characteristics of the donors. The presence or absence of 
each risk of the four factors is indicated by a binary code 
(0 for absence and 1 for presence). The profile with no 
activated risk factors (0000) is named asymptomatic. We 
have employed the definition of the World Health Orga-
nization (WHO), referred henceforth to as WHO. The 
profiles that are classified as having MetS are: 1011, 1101, 
1110 and 1111 (named here as MetS_WHO). Tables 1, S6 
and S7 show a summary of the profiles and the criteria 
used to associate or not a risk factor to a given individual.

Sample preparation and acquisition with IVDr NMR 
metabolomics
Urine and serum samples were stored and manipulated 
according to standardised operating protocols, as previ-
ously described [28]. The 1H-NMR spectra were acquired 
on Avance IVDr 600 MHz spectrometers like other stud-
ies [22].

NMR quantifications
Quantification of serum metabolites and lipoprotein 
subclasses from 1H-NMR spectra was performed using 
Bruker IVDr software, specifically B.I.Quant-PS 2.0.0 for 
the quantification of 41 serum metabolites in mmol/L 
units, and B.I.LISA (Lipoprotein Subclass Analysis) 
PL-5009-01/001 for the quantification of 112 serum 
lipoprotein classes and subclasses in mg/dL units, with 
the exception of particle numbers which are expressed 
in nmol/L and ratios which are dimensionless. The 41 
quantified serum metabolites belong to the following 
classes: alcohols and derivatives, amines and derivatives, 
amino acids and derivatives, carboxylic acids, essential 
nutrients, keto acids and derivatives, sugars and deriva-
tives, and sulfones. This comprehensive analysis covers 
the diverse types of metabolites present in the metabo-
lome. A complete list of quantified serum metabolites 
and lipoproteins can be seen in Table S8. For urine sam-
ples, a pseudo-quantification of spectral regions (bins) 
was performed. The one-dimensional 1H spectrum from 
the NOESY experiment was segmented between 0.5 and 
9.5  ppm, excluding the water region (4.7 to 5.0  ppm). 
The resulting spectrum was normalized by total intensity 
and divided into 290 fixed-width bins (0.03  ppm). Each 
bin is named by its ppm position, covering 0.015 ppm to 
the right and left. Bin intensity is the sum of the spectral 
point intensities within it.

Train/test split
The DISCOVERY cohort was randomly divided (without 
stratification by sub-cohorts) into two sets: train (80%) 
and test (20%). The train set is used for variable cluster-
ing, statistical analysis, variable selection, and predictive 
model generation, which are subsequently evaluated on 
the test set.

Metabolomic variable clustering
To facilitate analysis and avoid overrepresentation of 
some variables or metabolic processes, an unsupervised 
analysis was performed using hierarchical clustering for 
each variable type. The process used Spearman correla-
tion and average as distance and linkage methods respec-
tively. Prior to clustering, each variable was normalised 
by subtracting its mean and dividing by its standard 
deviation. Clusters were selected based on where the 
dendrogram is cut at a height of 0.5 for serum, and 0.85 
for urine bins, since the correlation between the bins is 
higher (combining the metabolic effect with the effect of 
working with bins mentioned earlier).

Univariate analysis
Each MetS profile was compared to the asymptomatic 
profile. For each metabolomic variable, a linear regression 
model was created with the variable as the dependent 
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variable, while the MetS profile (i.e. each of the 16 possi-
ble states) was the independent variable, with 0000 as the 
reference profile. The model was adjusted for gender and 
age group. The coefficients associated with each profile 
represent the effect size of having those risk factors acti-
vated compared to having none and are expressed as the 
number of standard deviations. The p-values obtained for 
each type of variable (urine bins, serum metabolites, or 
serum lipoproteins) were adjusted for the False Discov-
ery Rate (FDR) method to control for the occurrence of 
Type I errors due to multiple comparisons. In this study, 
adjusted p-values below 0.05 were considered statistically 
significant.

Filtering of variables
Some variables were manually discarded. Lipopro-
teins based on particle number were eliminated as they 
have a Pearson correlation of one with Apo-B variables, 

although using different units. Serum metabolites related 
to EDTA (Ca-EDTA and K-EDTA) were also discarded. 
Additionally, all variables that had minimal changes (near 
zero variance) within both the reference group and the 
rest of the samples with active risk factors were also dis-
carded. Specifically, variables were discarded if the fre-
quency ratio of the most common value to the second 
most common value was greater than 19 (95/5) and the 
percentage of unique values was less than 10% (default 
values of nearZeroVar function from caret R package). 
All statistically significant variables with an absolute 
effect size of at least 0.5, as obtained from the prior uni-
variate analysis, were selected. Variables that passed 
this filter are grouped according to their corresponding 
cluster, and only one representative of each cluster is 
selected, the one with the highest cumulative absolute 
effect size through MetS profiles. The final set of selected 

Table 1  Number of samples included in the study per gender, age group, and metabolic syndrome profile
DISCOVERY VALIDATION
Total Serum Serum with urine Serum
N = 20,662 N = 14,111 N = 661

Gender: female 7821 (37.9%) 5067 (35.9%) 173 (26.2%)
Age (years) 44.7 (10.3) 43.7 (9.7) 63.7 (10.5)
Grouped age (years)
 [18,25) 424 (2.05%) 301 (2.13%) 0 (0.0%)
 [25,35) 3022 (14.6%) 2233 (15.8%) 1 (0.15%)
 [35,45) 6371 (30.8%) 4786 (33.9%) 6 (0.93%)
 [45,55) 7488 (36.2%) 4931 (34.9%) 127 (19.7%)
 [55,64) 3014 (14.6%) 1759 (12.5%) 190 (29.4%)
 [64,70) 127 (0.61%) 29 (0.21%) 116 (18.0%)
 [70,81) 83 (0.40%) 21 (0.15%) 167 (25.9%)
 [81,105] 133 (0.64%) 51 (0.36%) 39 (6.04%)

MetS profile
Diabetes Obesity Dyslipidemia Hypertension
(0—no; 1—yes)
 0 0 0 0 14,145 (68.5%) 10,214 (72.4%) 145 (21.9%)
 0 0 0 1 1004 (4.86%) 631 (4.47%) 97 (14.7%)
 0 0 1 0 1721 (8.33%) 1241 (8.79%) 70 (10.6%)
 0 0 1 1 578 (2.80%) 221 (1.57%) 69 (10.4%)
 0 1 0 0 1182 (5.72%) 817 (5.79%) 24 (3.63%)
 0 1 0 1 361 (1.75%) 195 (1.38%) 24 (3.63%)
 0 1 1 0 491 (2.38%) 338 (2.40%) 23 (3.48%)
 0 1 1 1 300 (1.45%) 108 (0.77%) 40 (6.05%)
 1 0 0 0 166 (0.80%) 107 (0.76%) 33 (4.99%)
 1 0 0 1 139 (0.67%) 26 (0.18%) 29 (4.39%)
 1 0 1 0 86 (0.42%) 40 (0.28%) 19 (2.87%)
 1 0 1 1 124 (0.60%) 35 (0.25%) 35 (5.30%)
 1 1 0 0 79 (0.38%) 44 (0.31%) 4 (0.61%)
 1 1 0 1 91 (0.44%) 27 (0.19%) 10 (1.51%)
 1 1 1 0 62 (0.30%) 31 (0.22%) 5 (0.76%)
 1 1 1 1 133 (0.64%) 36 (0.26%) 34 (5.14%)
Has MetS WHO? 410 (1.98%) 129 (0.91%) 84 (12.7%)
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variables was used to discriminate between patients with 
MetS_WHO and the rest of the cohort.

Profile visualization
A heat map was used to represent the results of the uni-
variate analysis for the selected metabolomic variables. 
The colour intensity in the heat map indicates the effect 
size of a variable for a given profile, truncated between 
− 1 and 1 to enhance visualization. Asterisks inside cells 
highlight statistically significant differences. Both vari-
ables and profiles were organised according to the result 
of the dendrogram obtained by performing hierarchical 
clustering using Euclidean distance and complete linkage 
method.

Grouping of individuals based on serum biomarkers
Self-organizing Kohonen maps were used to group 
individuals based on their combined profile of serum 
metabolites and lipoproteins (see additional informa-
tion in Supplement S2 of Additional file 1). Using the 
representative profiles of each cell, a hierarchical group-
ing is created using Euclidean distance and Ward.D2 as 
the clustering method. The dendrogram was cut so that 
6 groups were generated, which are the divisions repre-
sented within the Kohonen map.

Predictive models for MetS
Predictive models were constructed using Orthogonal 
Partial Least Squares Discriminant Analysis (O-PLS-DA, 
see Supplement S3 of Additional file 1) method with one 
predictive and one orthogonal component, employing 
as input the variables selected from the filtering step. A 
logarithmic transformation is applied to input variables 
which are then auto scaled. The class of each individual 
is a binary variable indicating whether they have MetS_
WHO or not. The predictive component (tpred) obtained 
from the model is used as measure of progression to 
MetS. The metrics used to evaluate the model were the 
area under the receiver operating characteristic (ROC) 
curve, sensitivity, and specificity, calculated after setting a 
threshold on the ROC curve based on the Youden’s index. 
To assess the predictive capacity of the models, they are 
first trained using the train set and then evaluated on 
the test set. Subsequently, the final model is constructed 
using all samples (train+test), and this model is assessed 
through 10 repetitions of fivefold cross-validation com-
bined with permutation analysis (100 permutations) 
to estimate the statistical significance of the metrics 
obtained.

Software for data analysis
All analysis were performed in R language (4.3.2) with 
RStudio (2023.06.2), using the following R packages: 
ade4 (1.7-22), caret (6.0-94), compareGroups (4.6.0), 

ComplexHeatmap (2.16.0), factoextra (1.0.7), ggpubr 
(0.6.0), ggridges (0.5.4), igraph (1.4.2), kohonen (3.0.12), 
tidymodels (1.1.0), tidyverse (2.0.0), and pROC (1.18.0). 
For O-PLS-DA models, metabom8 package (https://
github.com/tkimhofer/metabom8) was used (0.4.4).

Results
Cohort study
To overcome the potential limitations of using urine 
metabolomics alone, here we explored the potential use 
of serum for the molecular characterization of MetS, 
using the serum information alone or in combination 
with the urine data. To that end, first we built up an ad 
hoc cohort (DISCOVERY), based on different existing 
sub-cohorts (see Materials and Methods). Overall, we 
obtained serum from 20,662 donors, from which we also 
had urine information for 14,111 donors. This cohort 
was designed to ensure a significant sample population 
in each of the 16 intermediate conditions arising from 
the consideration of the four main contributing risk fac-
tors: impaired fasting glucose, obesity, dyslipidemia, and 
hypertension (Table 1). For simplicity, we used a nomen-
clature for the conditions where the digits represent the 
four risk factors (RF1 RF2 RF3 RF4), binary coded by “1” 
or “0” to indicate that the given factor is present or absent 
in the condition (Table 1). According to this notation, a 
0000 sample would originate from an apparently healthy 
subject without metabolic risk factors while, for instance, 
a sample encoded as 1110 would belong to a patient that 
has diabetes, obesity and dyslipidemia, but no hyperten-
sion. A quantitative definition for the inclusion criteria 
for each of the RF is also listed in Table S7.

Dataset collection and grouping of variables
All the serum samples from the DISCOVERY cohort 
were analysed by high field NMR spectroscopy (see 
Materials and Methods) to obtain two different datas-
ets: the CPMG-filtered experiment gets rid of the protein 
envelope and allows the quantification of up to 41 circu-
lating metabolites (defined as the metabo_serum dataset). 
In turn, the deconvolution of the regular 1D 1H-NMR 
spectrum provided up to 112 parameters on the serum 
lipoproteins (lipo_serum dataset), including apolipopro-
tein, phospholipid, triglyceride, cholesterol and choles-
terol ester composition and particle and sub-particle size.

We evaluated to which extent the extracted informa-
tion from serum spectra is sensitive to MetS. First, Fig-
ure S1 highlights the different average concentrations 
for a set of metabolites and lipoparticles, when com-
paring people belonging to MetS_WHO (see Materials 
and Methods for the definition details) with the rest of 
the population. Figure 1a shows a grouping of individu-
als based on a self-organizing Kohonen map generated 
from information provided by serum metabolites and 

https://github.com/tkimhofer/metabom8
https://github.com/tkimhofer/metabom8
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lipoproteins. Each cell in this type of map presents a 
specific pattern for its metabolites/lipoproteins and this 
pattern is more similar (different) the closer (farther) it 
is from the other cells on the plane. In Fig. 1a each cell is 
coloured based on the percentage of individuals classified 
as MetS according to the metadata associated with the 
samples and using the WHO definition. In turn, Fig. 1b 
shows the same map, but this time coloured with the 
score obtained with the model for discriminating MetS, 
based solely on metabolic information from urine sam-
ples (analysed directly as spectral bins and, for consis-
tency, named here as metabo_urine dataset [22]). It can 
be observed that the pattern of colors obtained between 
the serum and metabo_urine datasets are very similar, 
suggesting that urine and serum report consistent and 
potentially complementary information on MetS.

Next, we attempted to combine the available datasets 
(metabo_urine, lipo_serum and metabo_serum) to refine 
the MetS classification molecular models, for the subset 
of donors were blood and urine was available (Table 1). 
A problem with this merging strategy is that the datas-
ets are very different in size (112 parameters for the 
lipo_serum, 290 bins for the metabo_urine and 41 metab-
olites for the metabo_serum) and with different levels of 
cross-correlation among the variables, so a simple addi-
tion of all of them would result in a biased and meaning-
less result due to overrepresentation of some variables. 
Instead, we eliminated redundancy in the datasets using 
an unsupervised hierarchical clustering of the metabolo-
mics variables. The dendrogram obtained from cluster-
ing lipoproteins (Figure S2) renders only seven groups 
(Figure S3): cluster 1 (LDLs 4-5) is mainly composed of 
LDL subclasses 4 and 5, along with Apo-B and total cho-
lesterol; cluster 2 (HDLs 1-3 noTGs) is composed of Apo-
A1 and Apo-A2 along with HDL subclasses 1, 2, and 3, 
except for triglycerides, which are in cluster 3 (HDLs 1-3 
TGs); cluster 4 (HDLs 4 noTGs) contains HDL subclass 

4; cluster 5 (VLDLs and IDLs) is mainly composed of 
VLDL sub-particles; cluster 6 (LDLs 1-3) is composed of 
LDL subclasses 1, 2, and 3; and finally, cluster 7 (LDLs 6) 
contains LDL-6. For serum metabolites (Figure S4), the 
dendrogram shows that they are quite divergent from 
each other, except for the groups of amino acids and 
ketone bodies and the cluster analysis keeps up to 28 
independent variables. The dendrogram of urine bins sig-
nificantly reduces complexity from 290 bins down to 15 
independent variables (Figure S5). Finally, we generated a 
combined dataset by adding all the variables that can be 
extracted from serum (metabo/lipo_serum) and another 
one that resulted from the addition of the variables 
obtained from the urine clustering (combined_urine/
serum dataset).

Molecular discrimination of MetS using serum data
We then compared the data obtained from individuals 
belonging to each condition to the equivalent data from 
individuals without any metabolic risk factor (samples 
from individuals with 0000, Fig.  2). The plot shows the 
most relevant variables obtained from the univariate 
analysis of the serum information alone (metabo/lipo_
serum, Fig.  2a) or as combined with the urine dataset 
(combined_urine/serum, Fig.  2b). Equivalent plots are 
shown in the Additional file 1 for the single serum data-
sets (metabo_serum and lipo_serum, Figures S6 and S7). 
In all cases, variable selection was adjusted to account 
for age and gender and the conditions (in the abscise 
axis), and the bins/metabolites (in the ordinate axis) were 
sorted according to unsupervised cluster analysis. The 
urine bins were assigned to the contributing metabolites 
and up to 22/34 different metabolites/lipoprotein vari-
ables contribute to the discrimination of the conditions 
in the metabo/lipo_serum and the combined_urine/serum 
respectively. For each condition, the p-value indicates the 
statistical significance of the variation with respect to 

Fig. 1  Grouping of individuals based on serum metabolomic data using a Kohonen self-organizing maps. The wide white lines separating groups of cells 
are the result of hierarchical clustering of the representative vectors of each cell. a Cells colored by the percentage of individuals with metabolic syndrome 
according to the metadata. This shows how serum metabolism is affected by MetS, with individuals clustering in certain regions. b Cells coloured accord-
ing to the average metabolic syndrome score obtained from the original urine model in the previous work [22]. This score is referred as ‘MetS score’. c Cells 
coloured according to MetSCORE obtained from the serum model of this work. The scale MetSCORE is centered around a threshold of 0.5 to optimise 
interpretability, so MetSCORE and ‘MetS score’ are not directly comparable
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apparently healthy individuals (see asterisks inside the 
squares), while the fold change is colour-coded according 
to the bar legend: a red/blue value in the heatmap indi-
cates up/down regulation of the variable.

Two main groups of profiles can be distinguished 
according to dyslipidemia (right versus left branches of 
the dendrogram), represented by an elevation of VLDL 
(and IDL) sub-particles, LDL subclasses 4 and 5, triglyc-
eride-rich HDL sub-particles, and LDL subclass 6. The 
sub-branches further separate the profiles with diabetes 
from those without it. As expected, elevated glucose per-
fectly marks the separation of individuals with diabetes, 
whether in serum or urine through its associated bins. 
On the other hand, elevated sarcosine is also a marker of 
dyslipidemia in the heatmap. Additionally, subclasses 1, 
2, and 3 of HDL sub-particles (except those rich in tri-
glycerides) are reduced in dyslipidemia, along with LDL 
subclasses 2 and 3. Finally, amino acids such as proline 
and phenylalanine emerge as a potential marker for obe-
sity and hypertension.

Remarkably, the combined serum dataset (metabo/
lipo_serum) and the dataset that combines all data from 

serum and urine (combined_urine/serum) provided most 
equivalent results (Fig.  2). Inclusion of urine data raises 
the weight of diabetes by adding urine glucose levels and 
reinforces the urine hypertension markers. On the other 
hand, inspection of the heatmaps obtained using the 
single datasets (metabo_serum and lipo_serum, Figures 
S6 & S7) revealed that they are less equilibrate, overesti-
mating some factors such as dyslipidemia (lipo_serum) or 
diabetes conditions (metabo_serum), and underlining the 
importance of combining the two sources of information 
to obtain a proper molecular metric for the evolution of 
MetS.

A quantitative molecular model to evaluate MetS 
progression
Next, we attempted to create discrimination models for 
MetS, based on the available datasets. The complete pre-
dictive models, using serum or urine/serum data, were 
trained with O-PLS-DA to achieve a clear separation 
between individuals abiding MetS_WHO definition or 
not, as shown in Fig. 3 for the metabo/lipo_serum dataset 
and in Figure S8 for the combined_urine/serum dataset. 

Fig. 2  Heatmap representing the univariate analysis for each metabolic syndrome profile compared to the asymptomatic profile. Panel a shows the 
analysis for the metabo/lipo_serum dataset and panel b for the combined_serum/urine dataset. The colors indicate the direction of change in metabolic 
levels compared to the asymptomatic profile. Red indicates an increase, and blue indicates a decrease. The intensity of the colour reflects the magni-
tude of change in standard deviation units. Statistically significant changes are marked with asterisks (*: adjusted p-value < 0.05; **: p-value < 0.01; ***: 
p-value < 0.001; ****: p-value < 0.0001). Both profiles and variables are organized into clusters based on their similarities, shown in the dendrogram. These 
heatmaps help visualize how different metabolic parameters change in patients with metabolic syndrome. Abbreviations: 4-DEA: 4-deoxythreonic acid; 
TMAO: trimethylamine-N-oxide
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Both models are rather equivalent but using the metabo/
lipo_serum dataset has the advantage that only relies on a 
single specimen. Figure 3a shows a scores plot, with the 
predictive component on the X-axis and the orthogonal 
component on the Y-axis. A higher predictive component 
indicates a higher proportion of individuals with MetS. 
The performance of this model is quite high, with an area 
under the curve of 0.94 (95% CI 0.920–0.952, p < 0.001) 
(Fig. 3b and Table S9) when using the metabo/lipo_serum 
dataset and of 0.982 for the combined urine and serum 
dataset (Figure S8b). These these results are not due to 

overfitting (see Table S9) and the addition of the urine 
data to the metabo/lipo_serum dataset adds only mar-
ginal value at the expense of adding a second specimen 
to the analysis. An alternative model based only on sex, 
age and BMI would also discriminate for MetS (AUROC 
0.92; 95% CI = 0.919–0.940). Yet, this is because most of 
the donors undergoing risk factors for MetS are aged 
individuals. When the model is tested with a healthy aged 
population, the metabo/lipo_serum model retains its 
capacity to discriminate MetS while the metadata-based 
model does not (data not shown).

Fig. 3  Metabolic syndrome model for the metabo/lipo_serum dataset based on O-PLS-DA. a Scores plot with the predictive component on the X axis and 
the orthogonal component on the Y axis. The green dots represent individuals who do not have metabolic syndrome according to their metadata and 
WHO criteria, while the red triangles represent those who are classified as having metabolic syndrome. This plot helps visualize the separation between 
individuals with and without metabolic syndrome based on their metabolic profiles. b ROC curve showing the area under the curve for the final model 
along with its 95% confidence interval. It also indicates the sensitivity and specificity for the selected cut-off based on the Youden index. The dashed 
horizontal line shows the threshold selected using the Youden index from the ROC curve. This curve demonstrates the model’s ability to distinguish be-
tween individuals with and without metabolic syndrome. c Cartoon showing the most influential variables in the model; the size of the bar indicates their 
relative influence, while the colour indicates whether they are elevated or not in metabolic syndrome. This visualization highlights the key biomarkers that 
contribute to the model’s predictive power. d Distribution of the predictive component averages from the O-PLS-DA model across different metabolic risk 
profiles. The bar plot shows the average predictive component values for various combinations of metabolic risk factors from the O-PLS-DA model. Each 
bar represents a unique combination of risk factors, coded in binary format on the x-axis. The left y-axis indicates the average predictive component val-
ues, while the right y-axis provides the equivalent MetSCORE for reference. The dashed blue line represents the threshold for MetS diagnosis, with scores 
above the line indicating a higher risk of MetS. Error bars represent the standard error of the mean for each risk profile. This plot illustrates how different 
combinations of metabolic risk factors contribute to the overall risk of metabolic syndrome as predicted by the model
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As expected, the model based on the metabo/lipo_
serum dataset has the most influential variables related to 
glucose and dyslipidemia, including LDLs of higher den-
sity and VLDLs increased in MetS, and decreased LDLs 
of lower density and HDLs not containing triglycerides 
(see Fig. 3c and Table S10). Elevated levels of the amino 
acids alanine and isoleucine are also noteworthy markers 
in MetS. Equivalent plots for the combined_urine/serum 
dataset model are shown in Figure S8b-c. When anal-
ysed individually, the model has a better performance in 
identifying diabetes (AUROC 0.928; 95% CI 0.917–0.939) 
than obesity (AUROC 0.730; 95% CI 0.720–0.741), dys-
lipidemia (AUROC 0.722; 95% CI 0.713–0.732) or hyper-
tension (AUROC 0.717; 95% CI 0.706–0.728). This is 
because the gold standard is based on the WHO defini-
tion that always includes diabetes in the definition. Yet, 
it is important to emphasize that our metabolic model is 
based on the progressive change of the concentration of 
the metabolites, allowing to also discriminate between 
phenotypes that are far away from MetS (Fig. 3d), a fea-
ture that cannot be grasped with the AUROC figure of 
merit.

Finally, we have also generated a model that is totally 
uncorrelated from the molecular definitions of the asso-
ciated risk factors. The serum levels of glucose and HLD/
LDL particles define diabetes and dyslipidemia respec-
tively, so we have rebuilt the model without these param-
eters (i.e. not considering glucose, HCLs 1-3 noTGs, 
HDLs4 no TGs, LDLs 6, HDLs 1-3 TGs and LDLs 
4-5). The new model retains the discrimination power 
(AUROC 0.895, Table S11 and Figure S10), consistent 
with a molecular metric based on the concerted variation 
of many serum components (Fig. 2).

MetSCORE, a molecular metric to classify MetS
The model derived from the metabo/lipo_serum dataset 
(including glucose and HDL/LDL particles) was used to 
create a score to evaluate the risk of MetS, named here 
MetSCORE. To that end the tpred statistical distance 
was converted into a score by non-linear transforma-
tion through a logistic regression model (Figure S11). 
We adjusted the weights of each sample to ensure equal 
representation of both groups, thus accounting for class 
imbalance. This logistic regression model utilises a sig-
moidal function to convert tpred values into probabilities 
ranging between 0 and 1 and indicates the probability of 
developing MetS according to the analysis of the serum 
metabolism. Figure  4a shows the MetSCORE values for 
the different groups, that are now assigned to a quantita-
tive probability of developing MetS. As expected, profiles 
0000 and 1111 are the furthest apart from each other. 
The graph shows how the four conditions considered as 
MetS by the WHO are the ones populating the highest 

MetSCORE values, followed by the rest of the diabetes 
profiles without MetS.

Figure  4b shows the different paths that an individual 
can take from asymptomatic to complete metabolic 
syndrome. Each column increases the number of active 
factors associated with metabolic syndrome (MetS). 
The connections between nodes represent transitions 
between states by changing only one risk factor (bit) 
at a time. The colours of the nodes indicate the aver-
age MetSCORE of individuals with that specific pro-
file. Shapes within the nodes signify the criteria used in 
various definitions of MetS: squares and triangles repre-
sent the MetS definition according to the WHO, Euro-
pean Group for the Study of Insulin Resistance (EGIR), 
and American Association of Clinical Endocrinologists 
(AACE); squares, triangles, and rhombus represent the 
definition from the National Cholesterol Education Pro-
gram Adult Treatment Panel III (NCEP) and Harmo-
nized; squares and rhombus represent the definition by 
the International Diabetes Federation (IDF). It can be 
observed that the paths in the lower part of the graph, 
which include diabetes, increase the score with lower 
steps, or in other words, they approach metabolic syn-
drome more readily. Incidentally, the average values 
of the 0000 and 1111 profiles do not match with the 
MetSCORE boundaries, as expected.

Finally, we also tested the effect of medication (see 
Supplement S4 of Additional file 1). MetSCORE is largely 
unsensitive to drug intake and medication raises the 
score only in 0.019 units.

Validation of the model using independent cohorts
As an internal validation, the MetSCORE was recalcu-
lated 10 times, using a five-fold cross-validation com-
bined with permutation analysis. To further validate the 
model, we also evaluated the risk of metabolic score in 
an additional validation cohort (named VALIDATION), 
which includes three sub-cohorts that were not included 
in the original build-up of the model (Tables 1 and S6). 
The serum model was tested on the VALIDATION 
cohort (n = 661). This cohort is challenging for the fol-
lowing reasons: (1) there is a big representation (more 
than 65%) of elder men (64 years old as mean age); (2) it 
differs from the collection site (three different European 
countries, two of them new); (3), some individuals were 
received hypertensive treatment 2  h before collection 
and also may not have been fasting when providing the 
sample; and (4) an small subgroup have been measured 
with a different NMR probe, which could result in minor 
variations. That said, the model kept a high separation 
power (AUROC of 0.93 as compared to 0.94 in the origi-
nal model, Figure S12) and it successfully distinguished 
nearly all patients with MetS, with a marginal number 
of false-negatives, indicating that no patients diagnosed 
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with the syndrome according to the WHO were miss-
diagnosed according to our model. This highlights that, 
despite alterations consistent with metabolic syndrome 
affecting the specificity of MetSCORE, its sensitivity 
remains unaffected.

Discussion
The development of quantitative methods for the precise 
measurement of metabolites is crucial for advancing per-
sonalised healthcare. These methods may not only facili-
tate early disease detection and prognosis prediction but 
also enable the tracking of therapeutic efficacy, ultimately 
paving the way for more effective, personalised, and tar-
geted interventions in the realm of precision medicine. 
MetS can be easily identified by monitoring a set of basic 
biochemical and anthropometric parameters, but a more 
molecular vision of the syndrome is essential to evaluate 
the severity and for the disease managing. Many stud-
ies have tried to associate MetS with the measurement 
of molecular biomarkers including metabolites [11], 

lipids [29] and proteins [30] among other biomolecules. 
Moreover, there are many attempts to provide continu-
ous models of MetS, based on the combined analysis of 
biochemical and molecular parameters [31]. Here, we 
have further developed these concepts for an optimised 
characterization of MetS, using NMR-metabolomics and 
lipidomics in serum to provide definition-independent 
molecular models that describe progression towards 
MetS. The best results were obtained when serum or 
serum combined with urine and these models not only 
effectively identify the current “MetS” status with a 
very good agreement with the MetS_WHO definition 
(AUROC 0.94 in the discrimination model) but also 
render quantitative information on the metabolic status 
at intermediate stages. Initially, a multi-class classifica-
tion model was considered to identify the 16 risk pro-
files (from 0000 to 1111) or to create individual models 
determining the probability of each profile. However, it 
was concluded that developing a complex metabolomic 
model to obtain information that can be easily derived 

Fig. 4  Distribution of MetSCORE values based on different profiles. a Ridgeline plot for MetSCORE density values by profile. The ridgeline plot shows the 
distribution of MetSCORE values for each profile, illustrating the continuum of metabolic states and the overlaps in boundaries when using clinical data 
alone. b Graph with the different paths that an individual can follow from the asymptomatic profile to the metabolic syndrome profile with all risk factors, 
colored by average MetSCORE. This graph visualizes the potential progression paths from a healthy state (0000) to a fully developed metabolic syndrome 
state (1111), with colours indicating the average MetSCORE along each path. The MetSCORE is normalised between 0 and 1 and the average score values 
for the 0000 and 1111 profiles are also indicated in the legend. Shapes within the nodes define the criteria used in various definitions of MetS: squares and 
triangles represent the MetS definition according to the WHO, EGIR, and AACE; squares, triangles, and rhombus represent the definition from the NCEP 
and Harmonized; squares and rhombus represent the definition by the IDF. This helps to understand the relative risk of developing metabolic syndrome 
based on different combinations of risk factors
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from clinical data lacked practicality. Instead, the model 
aims to complement the classification achievable with 
clinical data, providing a more continuous and nuanced 
understanding rather than a categorical approach with 
diffuse boundaries between groups. This approach 
enhances traditional clinical classifications with a more 
detailed metabolic perspective, offering better insights 
into the progression and risk associated with MetS. 
Indeed, the progression is very linear in the metabolic 
dimension, as shown in Fig. 4a, and we transformed the 
result into a metric, the MetSCORE, that can be inter-
preted as the probability of undergoing further medical 
complications. In this regard, further validation of the 
score is required, involving the analysis of longitudinal 
cohorts with access to clinical information of cardiovas-
cular events.

We also investigated the use of different datasets in the 
discrimination of MetS at the molecular level. The urine 
dataset, as previously published, provides a very good 
approximation with an AUROC of 0.86 for the discrimi-
nation of the syndrome according to the WHO definition 
[22]. Yet, urine is difficult to quantify and very sensitive 
to osmolarity variations [32]. Moreover, the hydrophilic 
character of urine scores the model towards diabetes 
(represented mainly by the glucose levels in urine) to the 
detriment of dyslipidemia, among other risk factors. The 
inclusion of lipoprotein analysis from serum samples has 
been key to correct this bias, but it needs to be combined 
with additional metabolic information to produce a real-
istic molecular model of MetS (Fig. 1). Indeed, the serum 
model that combines metabolic and lipidomic data 
(metabo/lipo_serum) yields a very good discrimination of 
MetS, with a very similar AUROC and a very similar out-
come than the urine-based model (Figs. 1c and S8), but 
with a much more balanced distribution of contributing 
metabolites/lipoproteins among the different risk factors.

Linearity of the progression towards MetS enabled the 
possibility of generating the MetSCORE metric to evalu-
ate the risk of undergoing MetS. When compared to the 
standard definitions of the syndrome (i.e. MetS_WHO), 
the MetSCORE readout suggest that the sole addition 
of the risk factors, as is customary in the current defi-
nition of the syndrome, is not enough for an adequate 
description of the MetS risk since, at a given number 
of risk factors, some conditions confer a higher risk of 
complications than others (Fig. 4b). Thus, the molecular 
definition proposed here in the MetSCORE adds granu-
larity to MetS progression and it may be helpful for man-
aging MetS, which usually involves improving diet [33], 
increasing physical activity [34, 35], or taking medica-
tions to control specific risk factors like blood pressure 
or blood sugar or lipid levels. Moreover, an independent 
evaluation of MetS may also be useful in diagnosing and 
managing comorbidities associated to the syndrome, 

such as cardiovascular diseases [36], NAFLD/MASLD 
[37], gout, obstructive sleep apnea, kidney failure [38] or 
certain cancers, among other diseases.

The main clinical limitation is that MetS is already 
accessible by combining standard biochemical data 
and general characteristics of the patient. That said, we 
believe that a continuous definition of MetS, based only 
on molecular descriptors is of potential clinical value 
since it allows to quantify the real risk of undergoing 
MetS.

Medication can be a confounding factor, but our pre-
liminary analyses on the effect of medication suggest that 
MetSCORE can work effectively with a broad range of 
concomitant drugs.

The DISCOVERY and VALIDATION cohorts used in 
this study are pan-European, including donors from five 
different European countries (Austria, Germany, Italy, 
Spain, and Portugal). However, the study’s composition 
of cohorts may be viewed as a limitation, primarily con-
sisting of Caucasian donors and a restricted number of 
elderly participants. Consequently, additional validations 
involving more diverse populations and a broader range 
of age groups are strongly recommended. To partially 
address the concern regarding age range, we performed 
a subgroup analysis to evaluate MetSCORE perfor-
mance across different age groups. The results, shown 
in Figure S13, indicate that MetSCORE maintains high 
performance in the < 40, 40–55, and 55–70 age groups 
with AUROCs of 1.00 (95% CI 0.99–1.00), 0.91 (95% CI 
0.87–0.94), and 0.90 (95% CI 0.88–0.93), respectively. 
However, performance decreases in the > 70 age group 
(AUROC: 0.83, 95% CI 0.77–0.88), likely due to increased 
comorbidities and greater metabolic alterations typi-
cally observed in older individuals. In turn, NMR-based 
metabolomics is robust and, therefore, has discrimina-
tion power but the technique has limited sensitivity, 
targeting mainly central metabolism and abundant co-
factors, so the mechanistic value of the information pro-
vided is also limited.

Another potential caveat is the practical transla-
tion to the clinic, since MetSCORE requires the use of 
NMR spectroscopy. Yet, the measurement of the sample 
requires less than 15  min of spectrometer time, and an 
automated algorithm can integrate signals and provide 
the result almost in real time. MetSCORE has a straight-
forward interpretation, and the standardized operating 
procedures include the sample collection and handling, 
so the method could potentially be translated into the 
clinical practice at a reasonable cost (i.e. less than 50 
EUR/sample). Additionally, we are currently explor-
ing the possibility of translating the measurements to 
a benchtop NMR spectrometer (i.e. a Fourier NMR 
spectrometer of 80  MHz), which could potentially be 
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deployed in the analytical laboratories of hospitals and 
health centers.

Conclusions
In summary, we provide a new metric for MetS, 
MetSCORE, based on the metabolomic analysis of serum 
samples. Our model offers a quantitative and comparable 
description of MetS, facilitating healthcare professionals 
to develop personalised strategies for the prevention and 
management of this complex pathology.
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