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Abstract
Background Metabolism is increasingly recognized as a key regulator of the function and phenotype of the primary 
cellular constituents of the atherosclerotic vascular wall, including endothelial cells, smooth muscle cells, and 
inflammatory cells. However, a comprehensive analysis of metabolic changes associated with the transition of plaque 
from a stable to a hemorrhaged phenotype is lacking.

Methods In this study, we integrated two large mRNA expression and protein abundance datasets (BIKE, n = 126; 
MaasHPS, n = 43) from human atherosclerotic carotid artery plaque to reconstruct a genome-scale metabolic 
network (GEM). Next, the GEM findings were linked to metabolomics data from MaasHPS, providing a comprehensive 
overview of metabolic changes in human plaque.

Results Our study identified significant changes in lipid, cholesterol, and inositol metabolism, along with altered 
lysosomal lytic activity and increased inflammatory activity, in unstable plaques with intraplaque hemorrhage (IPH+) 
compared to non-hemorrhaged (IPH−) plaques. Moreover, topological analysis of this network model revealed that 
the conversion of glutamine to glutamate and their flux between the cytoplasm and mitochondria were notably 
compromised in hemorrhaged plaques, with a significant reduction in overall glutamate levels in IPH+ plaques. 
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Background
Ruptured atherosclerotic plaques are hallmarked by lipid 
accumulation, intraplaque hemorrhage (IPH), inflam-
mation, and associated proteolysis [1]. These processes 
will alter local nutrient profiles and oxygen supply, with 
repercussions for plaque cell metabolism and functions 
[2]. In turn, metabolism will impact the inflammatory 
status of plaque cells with consequences for plaque stabil-
ity [3–5].

A more precise definition of differences in cellular 
metabolism in stable advanced (IPH−) versus rupture-
prone (IPH+) plaques will benefit not only our under-
standing of plaque phenotype transition but also risk 
stratification. So far, only a few reports aimed to map the 
metabolic profile of human plaque [6–8]. Though valu-
able, these untargeted metabolomics studies were not 
designed to define the (inter)cellular source of the altered 
metabolism [6]. Moreover, metabolomic biomarker 
searches generally are designed to capture dysregulated 
metabolites, without their metabolic context, rendering it 
difficult to pinpoint the underlying dysfunctional meta-
bolic pathway.

Modeling the metabolic network in whole plaque 
might provide this information. Genome-scale metabolic 
models (GEM) [9] have been successfully applied for this 
purpose to dissect metabolic changes in complex dis-
eases including non-alcoholic fatty liver disease [10, 11], 
type 2 diabetes [12], and Alzheimer’s disease [13], as well 
as in certain types of cancer, such as hepatocellular car-
cinoma [14], prostate cancer [15], and lung cancer [16]. 
The advantage of a GEM model approach is that it allows 
to construct a genome-scale view of plaque metabo-
lism from plaque gene expression levels of metabolic 
enzymes, thereby enabling the comparison of metabolic 
profiles between plaque phenotypes.

Here, we constructed a human atherosclerotic plaque-
specific GEM by feeding the Human Metabolic Reaction 
3.0 (HMR 3.0) with transcriptomics and proteomics data 
of the Maastricht Human Plaque Study (MaasHPS) [17, 
18] and transcriptomics data of the Biobank of Karo-
linska Endarterectomies (BiKE) cohort [19, 20]. Based 
on the plaque GEM, we dissected metabolic differences 
between IPH− and IPH+ plaque; these findings were then 

confirmed and underpinned by metabolomics data from 
the same MaasHPS cohort study, after which we assessed 
the functional implications of observed changes for dis-
ease progression by in vitro experiments.

Methods
Sample collection and morphology
Carotid atherosclerotic plaque tissue samples from the 
MaasHPS cohort (n = 24) were obtained from symptom-
atic patients who had experienced a transient ischemic 
attack or minor stroke resulting from carotid stenosis 
after which they had undergone carotid endarterectomy 
(CEA) surgery within 2–14 days following the onset of 
neurological symptoms. Detailed clinical characteristics 
of the patients have been previously documented and 
are available in Table S1 [17, 18]. These samples were 
sourced from the Maastricht Pathology Tissue Collection 
(MPTC). The carotid plaque specimens were sectioned 
into parallel transverse segments, each measuring 5 mm 
in thickness. Subsequently, every other segment was rap-
idly frozen in liquid nitrogen and stored at − 80 °C, while 
the adjacent segments were fixed in formalin for 24 h and 
then subjected to decalcification for 4 h before being pro-
cessed and embedded in paraffin for histological analysis.

Plaques were phenotyped for stability by a pathologist 
(Prof. Mat Daemen) and two scientists with ample expe-
rience in human plaque phenotyping (JS and MD). Cat-
egorization of plaque stability was done at two levels: by 
absence (IPH−, IPH area = 0) or presence of intraplaque 
hemorrhage (IPH+, IPH relative area > 0) and accord-
ing to the Virmani criteria for plaque staging [21]. The 
IPH classification was determined through computer-
assisted quantitative analysis of extravascular erythrocyte 
deposits in Haematoxylin–Eosin-stained sections adja-
cent to the omics section. All IPH− plaques were staged 
either as pathological intimal thickening or as thick cap 
fibroatheroma (hence stage III–V), IPH+ plaques were 
stage VI (i.e., VIb), several of which showing intramu-
ral thrombi (VIc) or signs of dissection or rupture (VIa). 
Only CEA specimens containing both stable and unstable 
plaque segments were chosen for further investigation. 
In cases where CEA specimens were smaller, priority 
was given to transcriptomics and proteomics analysis, 

Additionally, reduced glutamate availability was associated with an increased presence of macrophages and a pro-
inflammatory phenotype in IPH+ plaques, suggesting an inflammation-prone microenvironment.

Conclusions This study is the first to establish a robust and comprehensive GEM for atherosclerotic plaque, providing 
a valuable resource for understanding plaque metabolism. The utility of this GEM was illustrated by its ability to 
reliably predict dysregulation in the cholesterol hydroxylation, inositol metabolism, and the glutamine/glutamate 
pathway in rupture-prone hemorrhaged plaques, a finding that may pave the way to new diagnostic or therapeutic 
measures.
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with metabolomics being conducted only if sample size 
permitted.

For omics analysis, samples underwent quality control 
checks, including assessments of RNA quality (based on 
RIN value > 6.0 and A260/280 ratio > 1.8; three samples 
did not pass the quality control). One sample exhibiting 
artifacts such as small surface-detached luminal fibrin 
clots, potentially resulting from surgery, was excluded. 
Additionally, samples with invalid omics profiles (one 
sample from transcriptomics, two samples from pro-
teomics) were not included in the analysis. A total of 43 
(16 IPH− and 27 IPH+) and 42 (16 IPH− and 26 IPH+) 
samples were successfully profiled for transcriptomics 
and proteomics, respectively. Further details can be 
found in Jin et al. [17].

Regarding metabolomics, a total of 35 samples (9 
IPH− and 26 IPH+) were successfully profiled (see below 
for further details). A flowchart detailing the cohort 
build-up is provided in Fig. 1A.

Apart from the IPH area, also plaque, media, cap, 
necrotic core, hemorrhage, and luminal thrombus area 
were quantified by morphometric analysis of H&E sec-
tions. In addition, we measured the relative area of the 
following histological features: CD31+ endothelial cells: 
CD31+ lumen-lining cells/plaque area, CD31+ microves-
sels: CD31+-lined structures with lumen/plaque area, 
CD105+CD31+ neomicrovessels (% of total plaque area), 
D2-40+ lymphangiogenesis (% of total plaque area), 
CD3+ T cell content (% of total plaque area), CD68+ mac-
rophage content (% of total plaque area), iNOS+ (M1) 
macrophage content (% of CD68+ macrophage area), 

Fig. 1 Schematic workflow. A The entire carotid endarterectomy specimen was cut in parallel 5 mm thick slices, snap-frozen in liquid nitrogen and stored 
until use. Every second slice was sectioned. After H&E staining, sections were categorized and classified histologically based on the presence/absence 
of IPH, a proxy of plaque stability. Sections were pulverized and aliquoted for transcriptomics, proteomics, and metabolomics analyses. Highly expressed 
genes in the BiKE cohort were aggregated with the MaasHPS DEGs and proteomics for building the plaque-specific GEM, after which the MaasHPS DEGs 
were used to infer the reporter metabolites from the well-annotated plaque-specific GEM, which were subsequently validated by the MaasHPS metabo-
lomics. The reporter subnetwork evolved from the GEM and was used to analyze key pathways and potential therapeutic targets for plaque stability. B 
Spearman’s correlation between IPH area and other plaque traits. *P-value < 0.05
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Arg1+ (M2) macrophage content (% of CD68+ macro-
phage area), collagen content (% Sirius red of total plaque 
area), αSMA+ smooth muscle cell (SMC) content (% of 
total plaque area), αSMA−PDGFRα+ fibroblast-like cell 
content (% of total plaque area), and calcification (% Aliz-
arin red of total plaque area). Among these plaque traits, 
the level of plaque size, IPH, iNOS+ macrophage content, 
and αSMA−PDGFRα+ cell content increased, whereas 
Arg1+ macrophage decreased in IPH+ plaques [17, 18].

Omics analysis
General
Each snap-frozen omics segment underwent pulveri-
zation and was then divided into aliquots for analysis 
across the three omics platforms. Transcriptomics and 
proteomics analyses utilized 5–20  mg of homogenized 
material each, with specific methodologies detailed in 
Jin et al. 2021 [17, 22]. For metabolomics analysis, both 
gas chromatography-mass spectrometry (GC/MS) and 
Liquid Chromatography with tandem mass spectrometry 
(LC-MS/MS) platforms were employed. The metabolo-
mics study was conducted at TNO Quality of Life (Zeist, 
the Netherlands).

Sample preparation for metabolomics
10–20  mg aliquots of tissues were weighted and placed 
inside a 2-mL Eppendorf tube. The extraction of metabo-
lites was carried out as a two-step process. Initially, polar 
analytes were extracted with 80%/20% methanol–water 
mixture used at a 1:30 w/v sample-solvent ratio. Forty-
two µL of the extract was used for targeted amino acid 
analysis. The tissue pellet was subjected to a second 
extraction step with 10%/90% dichloromethane-isopro-
panol at a 1:30 w/v sample-solvent ratio. For the rela-
tive quantification of metabolites by both GC/MS and 
LC-MS/MS, quality control (QC) reference samples, rep-
resenting the full metabolic diversity of the tissue, were 
created by pooling a total of 24 similar aliquot plaque 
tissue samples. Correspondingly, samples subjected to 
metabolomics profiling are defined as “primary samples”.

Metabolomics—GC/MS
GC/MS analysis was done according to the protocol 
of Koek et al. and Kleemann et al. [23, 24], with minor 
modifications. For GC/MS analysis, samples were trans-
ferred to autosampler vials and subsequently dried under 
nitrogen and derivatized in a two-step process. First, oxi-
mation was completed by treatment for 90 min at 40 °C 
with methoxamine hydrochloride in pyridine (30 µL), 
then trimethylsilylation was initiated by adding 100 µL of 
N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) 
(50  min at 40  °C). Finally, samples were centrifuged for 
20  min at 3500  rpm prior to injection. For normaliza-
tion, a cocktail of internal standards (i.e., d3-leucine, 

d7-glucose, d3-glutamic acid, d5-phenylalanine, d4-ala-
nine, d4-cholic acid, trifluoroacetylanthracene, difluoro-
biphenyl, and dicyclohexylphthalate) was added to each 
sample. The samples were injected using PTV injection 
into an Agilent (Santa Clara, CA, USA) 7890 N gas chro-
matograph connected to an Agilent 5975 mass spectrom-
eter. The GC/MS analysis settings were as described in 
Kleemann et al. [24]. The analytical runs were arranged 
into three randomized batches containing a total of 35 
primary and 11 QC samples. Each injection was made 
in duplicate. Components detected in the GC/MS runs 
are quantified relative to an internal standard selected 
individually for each component based on the smallest 
variability observed in the QC samples. ChemStation 
software (vsE02.00.493) was used for data processing. 
These peak area ratios were used for statistical data anal-
ysis after correction for internal standard recovery. GC/
MS analytes were identified based on known fragmenta-
tion patterns of these using the TNO library of over 400 
metabolites containing spectra and retention times and 
publicly available spectrum libraries, if opportune [24]. 
Metabolites with > 20% of the samples showing unde-
tectable levels and metabolites showing a relative stan-
dard deviation of > 50% were excluded. A total of 121 
peaks were processed and reported. Eleven of 121 peaks 
could not be identified, and the rest were mapped to 109 
unique metabolites annotated by the Chemical Abstracts 
Service (CAS) identifier (Table S2). Batch-to-batch varia-
tions were corrected by synchronizing medians of QC 
samples per batch, followed by sample visualization by 
principal component analysis to ensure the removal of 
batch effects.

Metabolomics—LC-MS/MS
Amino acid analysis (AAA) was carried out through tar-
geted mass spectrometric measurements using multiple 
reaction monitoring (MRM) scans on a 4000-QTrap 
instrument (MDS/ SCIEX, Concord, ON, Canada). This 
platform targeted 42 l-amino acids. Samples and inter-
nal standards were labeled with different isotopic vari-
ants of the 4-plex iTRAQ reagent. Ion intensities of the 
transitions from the protonated molecular ion to m/z 114 
(standards) or to m/z 115 (samples) were monitored dur-
ing the analytical runs. In a Speedvac, 40 µL of the tis-
sue extracts were dried down. Labeling of samples and 
internal standards was accomplished by using the AA 
45/32 starter kit (Applied Biosystems, Foster City, CA, 
USA). Samples were added 20 µL labeling buffer and 10 
µL iTRAQ reagent coding for the m/z 115 reporter frag-
ment. Labeling was quenched by adding 5 µL hydroxyl-
amine to the samples. The labeled samples were dried 
down and re-suspended in 50 µL of the internal stan-
dard solution that contained known concentrations of 
pre-labeled amino acids generating the m/z 114 reporter 



Page 5 of 17Jin et al. Cardiovascular Diabetology          (2024) 23:240 

fragment. Five µL of these samples were injected onto a 
C18 column on a Dionex U-3000 high-performance liq-
uid chromatography system and resolved by a 10-min-
ute gradient from 2% Solvent B (100% ACN, 0.1% formic 
acid, 0.01% heptafluorobutyric acid) to 28% B (Solvent A: 
100% H2O, 0.1% formic acid, 0.01% heptafluorobutyric 
acid). Nine QC reference samples and 35 primary sam-
ples were run in a single, randomized analytical batch.

Peak integration was performed using MultiQuant 
(AB/Sciex). Each amino acid was quantified against its 
own internal standard (labeled with a different iTRAQ 
tag). Since the standards were present at known amounts, 
the relative intensities of the m/z 115 and 114 peaks were 
converted into absolute concentration units using the in-
house pipeline (mole/mg tissue). Six of the 42 targeted 
amino acids were below the limit of detection. Finally, the 
AAA platform successfully measured 36 targeted amino 
acids (Table S3).

Transcriptomics data for GEM construction: The 
R package lumi (v2.38.0) [25] was used to analyze the 
MaasHPS transcriptomic data. Initially, a variance sta-
bilizing transformation was performed, followed by nor-
malization using the robust spline normalization (RSN) 
algorithm. Gene-level differential expression analysis 
was conducted using the Limma R package (v3.42.2) 
[26] with Benjamini–Hochberg correction for multiple 
testing. In instances where multiple transcript isoforms 
were present, they were mapped to the same gene utiliz-
ing the HUGO Gene Nomenclature Committee (HGNC) 
symbols, with preference given to the highest expressed 
transcript. To bolster the reliability of the GEM network 
construction and broaden its utility, microarray tran-
scriptomics profiles from 126 CEA samples from the 
BiKE cohort were integrated into our network construc-
tion process. The BiKE cohort is a biobank collection of 
carotid plaque samples taken from patients with high-
grade carotid stenosis undergoing CEA operation, with 
similar patient characteristics and omics profiling (both 
microarray) to the MaasHPS cohort. Details about sam-
ple collection, preservation and process can be found in 
previously published papers [19, 20]. Raw CEL files were 
downloaded from the Gene Expression Omnibus (GEO) 
database (accession GSE21454). To facilitate the GEM 
construction, data were processed by R package Affy 
using the robust multichip average (RMA) method, nor-
malizing for log2-transformed expression values.

Plaque-specific GEM construction
Essentially, the construction of GEM relies on the 
expressed enzyme-coding genes and detectable meta-
bolic enzymes in tissues to determine all operational 
metabolic reactions. Therefore, to ensure the detec-
tion of lowly-expressed genes and reduction of “noisy” 
genes, the plaque-specific GEM was constructed utilizing 

expressed genes mainly inferred from the BiKE transcrip-
tomics, since it provided a larger sample size (n = 126) 
than the MaasHPS transcriptomics (n = 43). Furthermore, 
we included significantly differentially expressed genes 
(DEGs, adjusted p-value < 0.01) and detectable proteins 
from the MaasHPS transcriptomics and proteomics, 
respectively, increasing the sampling pool to 169 plaques. 
In the BiKE cohort, genes with expression levels lower 
than the lower quartile of the full microarray expression 
distribution in over 80% of samples were considered not 
expressed, thus ensuring the retention of genes expressed 
in plaques while filtering out noise from transcriptomics 
data. This exclusion criterion was used to filter out noisy 
gene expression which could thwart subsequent GEM 
construction, while ensuring that meaningful low abun-
dance genes expressed by the majority of plaques is 
retained. Furthermore, we respectively defined the genes 
with maximum expression higher than the upper quar-
tile, between higher and lower quartile, and less than the 
lower quartile in the expressed genes as “high expression”, 
“medium expression” and “low expression”, respectively. 
A total of 4005, 8009, 4005, and 4170 genes are identified 
as high, medium, low, and no expression, respectively. 
Additionally, 4,648 strongly differentially expressed genes 
(adjusted p-value < 0.001) from transcriptomics and 803 
detectable proteins from proteomics were considered 
“high expression” genes based on the MaasHPS cohort to 
forcibly include potentially important genes in the model. 
Our GEM construction strategy did not average the gene 
expression values from the two independent cohorts, 
which eliminated the need for batch correction or har-
monization between the two transcriptomics datasets. 
Finally, 1486, 411, 1093, and 320 metabolic genes with 
high, medium, low, and no expression were used to build 
the plaque-specific GEM using the tINIT (task-driven 
Integrative Network Inference for Tissues) algorithm 
[27]. The final plaque-specific GEM comprised 5075 
reactions, involving 3958 metabolites across 9 different 
cellular compartments, and encompassing 2478 enzyme-
coding genes. The GEM signature was defined as the set 
of MaasHPS DEGs (adjusted p-value < 0.01) encoding 
enzymes participating in the reactions. Gene Ontology 
(GO)-based gene set overrepresentation analysis (GSOA) 
and gene set enrichment analysis (GSEA) were employed 
to analyze the GEM signature using the R packages clus-
terProfiler (v3.12.0) [28] with adjusted p-values (Ben-
jamini–Hochberg) to indicate significance.

Reporter metabolites and subnetwork analyses
In brief, reporter metabolite analysis aims to identify 
potential key hub metabolites in response to condition 
changes, based both on the significance of gene expres-
sion changes and on the topology of the genome-scale 
metabolic model [9]. All significant DEGs from the 
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MaasHPS microarray were used to infer the reporter 
metabolites. In total, we identified 186, 62, and 289 
reporter metabolites significantly associated with all, 
up-regulated, and down-regulated DEGs, respectively 
(p-value < 0.1), reflecting dysregulation of the corre-
sponding pathways. Reporter metabolites that were 
marked as “up” indicated that significantly more genes of 
the corresponding pathway were up-regulated, and vice 
versa for “down”. The reporter subnetwork algorithm [9] 
was applied on the plaque-specific GEM to identify a 
connected metabolic subnetwork that is enriched with 
reporter metabolites. For the construction of reporter 
subnetwork, common metabolites, such as H2O, CO2, 
O2, H+, HCO3

−, Na+, CoA, Pi, PPi, AMP, ADP, ATP, 
NAD+, NADH, NADP+, NADPH, PAP, PAPS, FAD and 
FADH2 were removed as they associate with a multitude 
of metabolic pathways, and hence are not discriminative. 
Inclusion of these metabolites would profoundly skew 
the metabolic reporter towards these metabolites and 
hide the true structure of the subnetwork, disqualifying 
them for reporter subnetwork analysis [10]. Their exclu-
sion will improve the precision of the GEM modeling 
without compromising detection of f.i. redox or mito-
chondrial metabolism.

A major reporter subnetwork consists of 373 nodes 
connected by 506 edges, and 101 disconnected small sub-
networks (node size ranging from 3 to 33) were obtained, 
and only the major reporter subnetwork was selected 
for further analyses. Topological analysis of the reporter 
subnetwork was conducted using the R package igraph 
(v1.2.6) [29]. The degree (number of connected nodes of 
a node), closeness centrality (length of the shortest path 
between a node and all other nodes), and betweenness 
centrality (number of node-connecting shortest paths 
that pass through a node) were calculated for every node 
in the network. The reporter subnetwork was visual-
ized by Cytoscape [30] (v3.8.0). For better visualization, 
extracellular matrix (ECM)-related metabolites and reac-
tions (28 of the total 373 nodes) were removed from the 
reporter subnetwork.

Plaque single-cell RNA-seq data
A publicly available plaque scRNA-seq dataset [31] con-
sisting of 3 entire calcified atherosclerotic core (AC) 
plaques with 3 patient-matched proximal adjacent (PA) 
portions of carotid artery tissues from patients undergo-
ing CEA, was used to explore the expression of the GEM 
signatures and key genes from our plaque-specific GEM 
in specific plaque cell populations. Expression data pro-
cessed by Cell Ranger were downloaded from the GEO 
(GSE159677). Gene expression count values of the 6 
samples were combined for pre-processing. We excluded 
cells that: (1) expressed less than 200 genes or more 
than 4000 genes; (2) had more than 10% mitochondrial 

counts; and (3) had less than 5% ribosomal counts. The 
mitochondrial genes, the MALAT1 gene, and genes 
expressed in less than 3 cells were excluded. In addition, 
we excluded 2850 cells predicted as doublets by the R 
package DoubletFinder (v2.0.3) [32], resulting in 41,318 
cells for downstream analysis.

The scRNA-seq analyses were done by the R package 
Seurat (v4.1.1) [33, 34]. Expression data were normal-
ized by the R function SCTransform, with the mitochon-
drial contamination and the differences between the 
G2M and S phase cell cycle scores regressed out. After 
normalization, the dimension of the data was reduced 
to 50 by PCA. Subsequently, the R package harmony 
(v0.1.0) [35] was used to remove batch effects induced 
by donors, whereas the differences between phenotypes 
AC and PA were maintained. Based on the harmony inte-
gration, uniform manifold approximation and projection 
(UMAP) [36] compressed the data into two dimensions 
for visualization.

Cells were manually annotated based on well-known 
markers. GEM signatures were estimated for their over-
all expression in plaque scRNA-seq data by AddMod-
uleScore using the R package Seurat. In addition, several 
enzyme-coding genes regulating the key metabolic path-
ways in our reporter subnetwork were also examined 
based on UMAP visualization.

Human blood cells isolation and culture
Buffy coats were collected from healthy volunteers from 
Uniklinik RWTH Aachen, Germany, and peripheral 
blood mononuclear cells (PBMCs) were isolated using 
ficoll-paque gradient (Sigma). Subsequently, CD14+ 
monocytes were positively selected using CD14 Micro-
Beads (Miltenyi), according to the manufacturer’s pro-
tocol. Monocytes were pooled from 6 to 8 donors and 
plated in 96-well black optical imaging plates (BD Bio-
sciences #353219) at a density of 75,000 cells/well in 
RPMI1640 (Thermofisher) supplemented with 10% FCS 
and 1% PenStrep (Gibco) and cultured in a controlled 
environment (37  °C, 5% CO2). Monocytes were differ-
entiated into macrophages through exposure to 100 ng/
ml of recombinant human macrophage colony-stimulat-
ing factor (rh-MCSF, Immunotools) for 7 days with one 
medium renewal during the process.

Stimulation of macrophages
Fully differentiated macrophages were stimulated for 
24 h at 37 °C and 5% CO2 by one of the 28 stimuli (n = 8) 
prior to functional screening.

Functional profiling of macrophages with silenced hub 
gene expression
All high content functional assays are based on fluores-
cent probes and cells were imaged using the high content 
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analyzer BD Pathway 855 (BD bioscience). Nine pictures 
were taken per well and analyzed using Attovision image 
analysis software (BD bioscience) unless stated other-
wise. A digital segmentation mask was created for each 
individual cell (region of interest, ROI). Morphological 
results (area, shape, granularity, and actin stress) were 
further processed using the CellProfiler software [37]. All 
other results were further processed using the DIVA soft-
ware (BD bioscience). All plates contained eight control 
wells with unstimulated macrophages. Normalization 
to these plate controls was applied when plate-to-plate 
fluorescent intensity variation was observed. All the 
microscale assays were benchmarked against mesoscale 
counterparts. In addition, technical controls were used to 
validate the functional assays. Three independent experi-
ments were performed with 6–8 replicates per condition 
per assay, with similar outcomes. All experiments were 
performed at 37 °C and 5% CO2 unless stated otherwise.

Apoptosis
To analyze the percentage of apoptosis, macrophages 
were incubated with 1200 nM staurosporine (Sigma) for 
24 h. Subsequently, cell nuclei were stained with Hoechst 
33,342 (Sigma) in complete medium. After washing with 
annexin binding buffer (10 mM HEPES, 140 mM NaCl, 
and 5 mM CaCl2; pH of 7.4), cells were incubated with 
2.5 ng/ml Annexin-V-OG for 15 min [38]. After washing 
with annexin binding buffer, the plate was imaged imme-
diately using a 10-fold objective. Mock-treated cells incu-
bated in the absence of staurosporine served as technical 
control.

Cell shape
 To analyze cell morphology (i.e., size, shape, actin stress, 
and granularity), cells were first fixed with 2% parafor-
maldehyde (PFA) for 15  min, and subsequently stained 
for 30  min with Hoechst 33,342 (Sigma) and Phalloidin 
594 (Santa Cruz) at room temperature. After washing 
with PBS, the plate was imaged using a 40-fold objec-
tive. To analyze the images, we used CellProfiler software 
(v3.1.9, open source) [37] to measure cell area (hypertro-
phy), form factor (morphology), actin stress (phalloidin 
594 staining intensity and pattern), and granularity.

Inflammasome activation
To analyze the activation of inflammasomes, macro-
phages were stimulated with standard lipopolysac-
charide (LPS 50 ng/ml, Invivogen) for 3  h. For negative 
control wells, a CRID3-inhibitor (2 µM, CRID3, Sigma) 
was added in the last 1  h. After washing, Nigericin (10 
µM, Invivogen) was added for 1  h. Cells were trans-
ferred to ice and washed with MACS buffer (PBS, 2mM 
EDTA, 0.5% BSA). Subsequently, cells were incubated 
with FcR-block antibody (1:20, Invitrogen) for 20 min at 

4  °C. Afterward, fixation buffer (PBS, 5 mM EDTA, 2% 
formaldehyde) was added for 20 min at 4  °C. Cells were 
washed twice with PBS and incubated in permeabili-
zation buffer (PBS, 5% fetal bovine serum, 0.5% Triton-
X100). Subsequently, cells were stained using anti-human 
ASC antibodies (1:20, Biolegend) and Fc receptor-block 
(1:20, Invitrogen) in permeabilization buffer over night at 
4 °C. Cells were washed twice with permeabilization buf-
fer and nuclei were stained with Hoechst 33,342 (Sigma) 
in PBS. The plate was imaged using a 10-fold objective.

Lipid uptake
 To analyze lipid uptake, fully-differentiated macrophages 
were incubated for 2.5 h with a mix of 8 µg/ml oxidized 
human Low-Density Lipoprotein (oxLDL, prepared as 
described before [39]) and 2  µg/ml Topfluor (Avanti 
Polar Lipids) in complete RPMI medium immediately 
after preparation. Subsequently, cell nuclei were stained 
with Hoechst 33,342 (Sigma) in complete medium and 
after washing with phosphate-buffered saline (PBS), the 
plate was imaged using a 10-fold objective. The negative 
control wells were incubated with Hoechst 33,342 only.

Mitochondrial stress
To analyze mitochondrial stress, macrophages were 
incubated with 1,200 nM staurosporine (Sigma) for 2 h. 
Afterward, cells were stained with 250 nM Mitotracker 
Red (Invivogen) and Hoechst 33,342 (Sigma) for 30 min. 
Stained cells were imaged using a 20-fold objective. 
Mock-treated cells incubated in the absence of stauro-
sporine served as technical control.

Phagocytosis (bead uptake): To analyze phagocytosis, 
stimulated macrophages were incubated for 1 h with 12.5 
ng/ml of pHrodo-labelled Zymosan (Thermo Fisher Sci-
entific) per well in complete medium. Subsequently, cell 
nuclei were stained with Hoechst 33,342 (Sigma) in com-
plete medium and after washing with PBS, the plate was 
imaged using a 10-fold objective. Wells (n = 6 per plate) 
were incubated with 25 µM cytochalasin D (Sigma) for 
30 min prior to bead incubation, to inhibit bead uptake, 
and served as technical control.

TNF ELISA
Macrophages were treated with standard lipopolysac-
charide (LPS 50 ng/ml, Invivogen) for 6 h. Subsequently, 
the supernatant was collected. The TNF ELISA was per-
formed following the manufacturer’s protocol and read 
at 450 nm with the iMark microplate absorbance reader 
(Bio-Rad).

Statistical analysis
Statistical significance of metabolite abundance between 
plaque phenotypes was evaluated using a two-tailed 
Wilcoxon rank-sum test (for non-normally distributed 
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data) or Student’s t-test (for normally distributed data). 
Shapiro-Wilk test was used for the normality test. P-val-
ues were corrected based on the Benjamini–Hochberg 
procedure. Considering that the metabolomics datasets 
were used for validation of the key metabolites predicted 
by GEM, and also the moderate number of metabolites 
profiled, metabolites with an adjusted p-value < 0.1 were 
considered significant. One-Way ANOVA test was used 
for cell culture experiments. Statistical analyses were per-
formed in R (v3.6.3) or with GraphPad Prism (v8).

Results
Genome-scale metabolic modeling identifies key 
metabolic alterations in hemorrhaged versus non-
hemorrhaged human plaque
We first built a genome-scale metabolic model (GEM) 
for human carotid artery plaque, seeding the HMR 3.0 
database, a resource for automated and semi-automated 
GEM reconstruction, with plaque-expressed genes, as 
inferred from the MaasHPS (n = 43; see Table S1 for base-
line characteristics) [17] and BiKE microarray datasets 
(n = 126) [19, 20], as well as with MaasHPS proteomics 
data (protein-encoding genes; n = 42) using the tINIT 
algorithm [27] (Fig.  1A). The plaque-specific GEM con-
tained 3958 metabolites, 5075 metabolic reactions, and 
2478 enzyme-coding genes from the Human Metabolic 
Atlas (https://metabolicatlas.org/), with annotation of the 
relevant cellular compartment.

The MaasHPS cohort plaques were stratified based on 
the presence/absence of IPH– an established hallmark 
of plaque stability and event risk [40, 41]. Indeed, all 
IPH− plaques were phenotyped as stage III–V, whereas 
IPH+ plaques were stage VI. Moreover, IPH was positively 
correlated with plaque size and calcification (reflective 
of a more advanced stage), neomicrovessels, lymphan-
giogenesis, and M1 macrophage content (plaque inflam-
mation), and negatively correlated with collagen content 
(plaque fibrosis, a feature of plaque stability), suggesting 
IPH as a suitable surrogate measure of plaque vulnerabil-
ity (Fig. 1B). To address metabolic changes in IPH+ ver-
sus non-hemorrhaged IPH− plaque, we used all, up- and 
down-regulated DEGs in IPH+ versus IPH− plaques in 
MaasHPS as input. With the help of the Reporter Metab-
olite algorithm [9], we inferred reporter metabolites (i.e. 
metabolites likely reflective of plaque phenotype-associ-
ated changes in metabolite-relevant gene expression; see 
Table S4) from the plaque-specific GEM.

A first observation was that lysosome, cytosolic and 
extracellular metabolism was profoundly associated 
with IPH+ plaque, at the expense of a reduced endo-
plasmic reticulum (ER) and mitochondrial metabolic 
activity (Fig.  2A). Specifically, major changes in several 
lysosome-located amino acids (proteolysis), in degra-
dation products of chondroitin- and keratan sulfate, as 

well as in cholesterol metabolism, could be inferred from 
the IPH+ versus IPH− plaque gene expression (Fig.  2B). 
In keeping, gene set overrepresentation analysis of the 
GEM signature of IPH+ plaque revealed a shift towards 
lysosomal, lipoprotein, and glycol/sphingolipid meta-
bolic activity in IPH+ plaques, whereas phospholipid and 
mitochondrial activities were quenched (Fig.  2C). Gene 
set enrichment analysis of the IPH+ plaque GEM signa-
ture corroborated this finding, with significant activa-
tion of plasma lipoprotein, sphingolipid, cholesterol, and 
immune-related processes and lysosome compartment 
activity (Fig.  2D). A second pathway that our analysis 
predicted to be dysregulated was the inositol-pathway, as 
pathway related reporter metabolites were significantly 
“down”, meaning that the majority of pathway associated 
genes were down-regulated (Fig. 2B).

Plaque metabolomics confirms GEM predicted 
dysregulated pathways in IPH+
Next, we set out to interrogate the GEM predicted meta-
bolic activity shifts in IPH+ plaque by metabolomics. 
Hereto, we evaluated the abundance of 109 metabo-
lites in plaque GC/MS metabolomics between IPH− and 
IPH+ plaques (Table S2). Permutation testing, performed 
to estimate the random chance of finding a higher 
number of dysregulated metabolites from a category 
of metabolites (n = 100,000 runs), revealed that shifts 
in cholesterol (derivative) (2 of 3; p-value = 4.74E−02), 
sphingolipid (14 of 20; p-value < 1E−05), and glycerophos-
pholipid-related metabolites (4 of 8; p-value = 1.90E−03) 
were among the most up-regulated metabolites, whereas 
some sugar metabolites were significantly underrep-
resented in IPH+ plaques (3 of 12; p-value = 9.54E−03) 
(Fig.  3A). Zooming in on cholesterol hydroxylation and 
inositol metabolism, we observed significant increases 
of 7β-hydroxy- and 26-hydroxy-cholesterol as well as 
decreases of inositol and myo-inositol in IPH plaque 
(Fig. 3B), confirming and complementing the prediction 
in GEM analysis.

Identification of pivotal metabolic pathways in plaque-
specific GEM
Based on the inferred reporter metabolites, we next 
extracted the corresponding reporter subnetwork (in 
other words, a connected metabolic subnetwork enriched 
in reporter metabolites) from the plaque-specific GEM. 
This reporter subnetwork was subsequently analyzed to 
identify the key metabolites, guided by degree centrality, 
closeness centrality, and betweenness centrality crite-
ria (Table S5). For each of these topological criteria, the 
top 5 highest ranked metabolites were selected (Table 1), 
identifying cytoplasmic glutamate (Glu) and glutamine 
(Gln) as hub metabolites. Both metabolites were signifi-
cantly associated with the genes up-regulated in IPH+ 

https://metabolicatlas.org/
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plaque (Table  1). Of note, mitochondrial glutamate, 
which is directly linked to cytoplasmic Glu/Gln metab-
olism, appeared to be a high-ranking hub metabolite as 
well (10th for degree and 7th for betweenness centrality).

To appreciate the key metabolites in their meta-
bolic context, we visualized the identified IPH+ plaque 
reporter subnetwork (Fig. 4). Cytosol Glu and Gln were 
connected to acetate, glycine, and several top-ranked 

Fig. 2 Analysis of the plaque-specific GEM network. A Comparison of the cellular compartment of the significant reporter metabolites inferred for 
IPH+ and IPH− plaques. The letter “n” indicates the number of significantly altered reporter metabolites in each cellular apartment. B Reporter metabolites 
that were significantly associated with up-/down-regulated and all genes. The number in braces shows the number of reporter metabolites belonging to 
the same category (denoted as “products”). The number in brackets shows the cellular compartment. C Gene set overrepresentation analysis of the GEM 
signatures. Fifteen significant GO terms were selectively shown for both up- and down-regulated GEM signatures. D Gene set enrichment analysis of the 
GEM signatures. Only the ten most significant GO terms are shown. The X-axis indicates GEM signatures sorted based on the log2 fold change (IPH+ vs. 
IPH−) from high to low
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amino acids. Metabolic reactions HMR 3890 (ATP[c] 
+ NH3[c] + glutamate[c] ⇒ ADP[c] + Pi[c] + glutamine[c]) 
and HMR 9802 (H2O[c] + glutamine[c] ⇒ NH3[c] + gluta
mate[c]), which catalyze the conversion of Glu into Gln 
and vice versa, were the most central reactions (close-
ness and betweenness criteria; see Table S5). In addition, 
glutamate transport between mitochondria and cytosol, 
mediated by HMR 3825 (H+[c] + aspartate[m] + glutama
te[c] ⇒ H+[m] + aspartate[c] + glutamate[m]) and impli-
cating SLC25A13 and SLC25A12 (Table S6), ranked 17th 
and 16th among all 137 reactions based on closeness and 
betweenness centrality, respectively (Table S5). Thus, our 
findings pinpoint Glu/Gln metabolism as major, poten-
tially dysregulated, metabolic pathway in IPH+ plaque.

Besides, we observed dysregulation of cholesterol trans-
port from lysosomes to cytosol in IPH+ plaque (HMR 3540, 
H2O[l] + cholesterol-ester-myrist[l] ⇒ cholesterol[l] + myris-
tic acid[l]; and HMR 1917, cholesterol[c] ⇔ cholesterol[l]), 
potentially reflecting the formation of intracellu-
lar lipid droplets in plaque cells (HMR 0031, see 
https ://metabolicatlas .org/explore/Worm-GEM/

gem-browser/reaction/MAR00031; and HMR 0634, PC-LD 
pool[c] + cholesterol[c] ⇒ 2-lysolecithin pool[c] + choles-
terol-ester pool[c]). As our GEM network shows, this may 
alter the phosphatidylinositol pool (HMR 0663, H2O[c] + PI 
pool[c] ⇒ 1,2-diacylglycerol-LD-PI pool[c] + inositol-
1-phosphate[c]), with implications for inositol phosphate 
metabolism, glycolysis, gluconeogenesis, and glycogen 
metabolism in the IPH+ plaque (Fig. 4, upper left). Overall, 
the reporter subnetwork findings support significant shifts 
in Gln/Glu and cholesterol metabolism and trafficking in 
unstable plaque, and provides a comprehensive and inte-
grated view of metabolic changes in the IPH+ plaque at a 
sub-cellular level.

The reporter subnetwork was created from the plaque-
specific GEM based on the significant reporter metab-
olites. Key metabolites identified through network 
centrality analyses, such as cytoplasmic glutamate, gluta-
mine, serine, acetate, AKG, NH3, and mitochondrial glu-
tamate in Table 1, were denoted by a large and bold font. 
Red arrows indicate overexpression of the associated 
genes for the reactions, whereas blue arrows indicate 

Table 1 Top-ranked reporter metabolites evaluated by topological centrality
Metabolite Rank based on network centrality Reporter metabolite

 Degree  Closeness  Betweenness  Compartment  Test type P-value
Glutamate[c] 2 2 2 Cytosol Up 7.45E−03
Acetate[c] 5 43 13 Cytosol Up 1.76E−02
Glutamine[c] 12 3 1 Cytosol Up 1.87E−02
Glycine[c] 1 28 5 Cytosol Up 1.98E−02
Glutamate[m] 10 30 7 Mitochondria Down 2.24E−02
NH3[c] 3 1 3 Cytosol Down 9.99E−02
Serine[c] 27 5 106 Cytosol Up 1.37E−01
AKG[c] 4 29 4 Cytosol Up 1.46E−01
Pyruvate[c] 40 4 19 Cytosol Up 1.85E−01
For network centrality analysis, metabolites were ranked based on a total of 238 metabolites involved in the reporter subnetwork. The test type in reporter 
metabolite analysis indicates if reporter metabolites was associated with up- or down-regulated genes

Fig. 3 Prediction of metabolic pathway changes and their validation by metabolomics. A Alluvial diagram shows the categories of all the 109 detected 
metabolites by GC-MS, and the comparison of abundance levels between IPH− and IPH+ plaques. Up: significantly higher abundance in IPH+ plaques; 
down: vice versa; unchanged: no significant change between IPH− and IPH+ plaques. B Content of cholesterol-related and inositol-related metabolites in 
IPH− versus IPH+ plaques. P-values were adjusted by the Benjamini–Hochberg procedure. *Adjusted P-value < 0.1, **Adjusted P-value < 0.05

 

https://metabolicatlas.org/explore/Worm-GEM/gem-browser/reaction/MAR00031
https://metabolicatlas.org/explore/Worm-GEM/gem-browser/reaction/MAR00031
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underexpression in IPH+ plaques. Black arrows indicate 
that the associated genes were inconsistently dysregu-
lated. For simplicity, some metabolic pathways belonging 
to the same category (inositol, N-glycan, porphyrin) were 
grouped within a rectangle. Metabolic reactions with 
prefix “HMR” can be retrieved from the Human Meta-
bolic Atlas (https://metabolicatlas.org/).

Altered glutamine/glutamate pathway in plaque correlates 
with macrophage content
Next, we sought to validate the in silico predicted met-
abolic shifts using the MaasHPS metabolomics data-
set. Both GC-MS and AAA metabolomics showed a 
decrease in Glu (l-Glutamic acid) levels, whereas Gln 
levels remained unchanged in IPH+, compared with 
IPH− plaques (Fig.  5A). Importantly, in IPH+ plaques, 
Glu/Gln abundance was significantly correlated with T 
cell and macrophage content (Fig.  5B), linking the Gln/
Glu pathway in IPH+ plaque to inflammation.

We therefore verified the GEM signatures and the 
expression of critical metabolic genes involved in 
Gln/Glu conversion and/or flux in IPH+ plaques (i.e., 
genes either involved in glutamate metabolism or act 
as transporter between cytosol and mitochondria; see 
Table S6) in major immune cell populations in human 
plaque using the scRNA-seq dataset of Alsaigh et al. 
(Fig.  5C) [31]. Consistent with the GSEA functional 
analysis of GEM signatures (Fig.  2D), we found that 
the IPH+ GEM signature genes were mostly expressed 
in plaque macrophages, whereas the IPH− signature 
genes were expressed in smooth muscle cells and fibro-
blasts (Fig.  5D), suggesting that the metabolic reactions 
associated with IPH+ plaques were mostly associated 
with plaque macrophages. Further, GLUL (responsible 
for Glu-to-Gln conversion, see Table S6) was highly 
expressed in plaque macrophages, while GLS was evenly 
expressed among all cell types (Fig.  5E), with the rest 
genes mostly underexpressed (Figure S1). This highlights 

Fig. 4 Reporter subnetwork of plaque-specific GEM

 

https://metabolicatlas.org/
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the importance of GLUL over GLS in regulating Gln/
Glu metabolism in plaque macrophages. Furthermore, 
our MaasHPS cohort data confirmed that transcript 
isoforms of GLUL, and Glu transporters SLC25A12 sig-
nificantly correlated with plaque macrophage but not T 
cell content in IPH+ plaques (Fig.  5F). Of note, among 

the three GLUL transcript variants provided in our 
MaasHPS microarray data, GLUL transcript variant 2 
(NCBI reference sequence: NM_001033044.1) was sig-
nificantly upregulated (log2 fold change = 0.736, adjusted 
p-value = 3.13E−07), whereas the other two variants 
were not significantly dysregulated. Taken together, the 

Fig. 5 Plaque Glu/Gln metabolic pathway is associated with macrophage functions. A The abundance level of Glu/Gln between IPH− versus IPH+ plaques 
in the MaasHPS plaque metabolomics. P-values were adjusted by the Benjamini–Hochberg procedure. *Adjusted P-value < 0.1. B Spearman’s correlation 
between the metabolomic profiled abundance level of Glu/Gln and plaque traits in IPH+ plaques. *P-value < 0.05. C UMAP visualization showing the 
cell type derived from the scRNA-seq plaque dataset GSE159677. D The overall expression (module score) of the GEM signatures in the scRNA-seq 
dataset. E The expression level of key genes GLUL and GLS regulating Glu/Gln metabolic pathways in the scRNA-seq dataset. F Spearman’s correlation 
between the expression level of key genes for plaque Glu/Gln pathways and plaque traits in IPH+ plaques based on the MaasHPS transcriptomics dataset. 
*P-value < 0.05
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prioritized Glu/Gln pathway in IPH+ plaque seems to 
implicate shifts in macrophage metabolism.

Glu/Gln pathway dysregulation impacts macrophage 
function
Glutamine and glutamate have been shown to modu-
late the polarization of macrophages [42, 43]; more-
over, Charvet and coworkers recently showed genetic 
intervention in macrophage Gln/Glu pathway has a 
profound effect on plaque development in mice [8]. We 
here mapped the effects of glutamine and glutamate 
pathway intervention on human macrophage functions, 

(i.e., apoptosis, mitochondrial stress, lipid uptake, 
phagocytosis, inflammasome activation, and morphol-
ogy). In line with previously reported M1 polarization 
after GLUL inhibition, treatment of macrophages with 
the GLUL inhibitor methionine sulfoximine (MSO) 
resulted in increased LPS/Nigericin-induced inflamma-
some activation. In contrast, glutamine-poor medium 
blunted inflammasome activation, an effect that could 
not be rescued by MSO (Fig.  6A). Similarly, glutamine 
deprivation increased macrophage sensitivity to apopto-
sis induced by staurosporine, while MSO treatment was 
desensitizing (Fig.  6B). On the other hand, glutamine 

Fig. 6 Functional changes of macrophages induced by MSO and low glutamine. Macrophages were treated with MSO (1 mM) for 24 h in the presence of 
indicated glutamine concentrations prior to the following functional assays: A Inflammasome assay was performed with LPS (50 nM) for 3 h and Nigericin 
(10 nM) for 1 h. Representative pictures were taken at 20x magnification. Blue = nuclei; red = ASC specks. B Apoptosis was measured with staurosporine 
(1200 nM) for 1 h. Representative pictures were taken at 10× magnification. Blue = nuclei; green = Annexin-V stain. C Phagocytosis assay was performed 
with zymosan fluorescently-labeled beads for 1 h. Representative pictures were taken at 10x magnification. Blue = nuclei; red = zymosan-labeled beads. 
D Lipid Uptake was performed with oxLDL (1 µg) for 2,5 h. Representative pictures were taken at 10× magnification. Blue = nuclei; green = fluorescently-
labeled oxLDL. E Mitochondrial polarization was measured with staurosporine (1200 nM) for 2 h. Representative pictures were taken at 10× magnifica-
tion. Blue = nuclei; red = MitoTracker Red. F Cell Shape was measured at baseline. Representative pictures were taken at 40× magnification. Blue = nuclei; 
red = phalloidin stain. G Macrophages were stimulated with LPS (50 ng/ml) for 6 h. n = 7–8 replicates for HCA experiments. n = 4 for TNF-ELISA. *P-val-
ue < 0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001
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deprivation reduced phagocytosis and lipid uptake, but 
GLUL inhibition was ineffective (Fig.  6C, D). Metaboli-
cally, glutamate is an important energy source, feeding 
into the TCA cycle; indeed, glutamine deprivation sig-
nificantly reduced the membrane potential in human 
macrophages (Fig.  6E), while MSO treatment again was 
ineffective. Furthermore, the morphology of macro-
phages is not affected by MSO. However, low glutamine 
showed a trend to increase the cell area of macrophages 
and significantly decrease the roundness of the cells. 
In addition, macrophages deprived of low glutamine 
exhibited higher actin stress and a higher cell granular-
ity (Fig. 6F). Preliminary experiments showed a trend in 
a reduced inflammatory state of macrophages indicated 
by the secretion of the pro-inflammatory cytokine TNFα 
(Fig.  6G). While glutamine deprivation increased the 
secretion of the cytokine, GLUL inhibition did not affect 
its secretion. This requires further study to establish this 
finding. Collectively, the data indicate a strong effect of 
an altered Gln/Glu pathway and availability on athero-
sclerosis-related macrophage functions and phenotype in 
macrophages.

Discussion
To provide deeper insights into metabolic changes in 
human atherosclerosis, and more specifically in the 
transition from stable fibrotic to unstable hemorrhaged 
plaque, we constructed a plaque-specific genome-scale 
metabolic network (GEM) by integrating two large-sized 
CEA plaque cohorts (BiKE and MaasHPS). The GEM 
covered a broad scope of metabolites and cognate reac-
tions, enabling the prediction of key metabolic pathways 
associated with plaque instability. To our knowledge, this 
is the first GEM constructed for human atherosclerosis.

As compared to mass spectrometry-based metabolo-
mics where pathways are inferred based on abundance 
level changes in a limited number of metabolites, a 
plaque-specific GEM offers the advantage of the higher 
genome-scale coverage of gene profiling. It provides a 
reliable high-resolution view of pathway activities at the 
sub-cellular level and allows us to explore plaque dys-
regulated metabolic pathways between cellular compart-
ments. The network harbored many lipids, including 
cholesterols, sphingolipids, and glycerophospholipids, 
which were previously reported as major contributors to 
human atherosclerotic plaque inflammation and athero-
genesis [44, 45].

Compared with other publicly available GEMs for can-
cer in the Metabolic Atlas database [46], which generally 
contain less than 3,000 metabolites and reactions, our 
plaque-specific GEM is a rather extensive model, with 
almost 4000 metabolites (in different compartments) 
linked by more than 5000 reactions. This likely reflects 
the complex, highly heterogeneous cellular composition 

of atherosclerotic plaque, harboring several subsets of T 
cell, macrophage, smooth muscle cell, and endothelial 
cell amongst others.

Applying network-based topological analyses on this 
plaque-specific GEM, we pinpointed the Glu/Gln path-
way as a central dysregulated metabolic unit in the 
hemorrhaged unstable plaque. As previously reported, 
elevated GLUL mRNA level and local GLUL immuno-
reactivity are linked to macrophage M1-M2 phenotype 
and are associated with fibrous cap thinning, thus plaque 
destabilization [47]; moreover, macrophage deficiency in 
GLS1 to reduce macrophage glutaminolysis was seen to 
exacerbate atherosclerosis [8]. This is consistent with our 
findings. Interestingly, the GEM analysis was not sugges-
tive of a clear Warburg effect, the aerobic glycosylation 
response of proinflammatory M1 macrophages. This 
may be due to the fact that overall the global balance in 
M1 and M2 subsets between stable and ruptured human 
atherosclerotic plaque does not notably differ, although 
the former phenotype may be topically enriched in the 
plaque shoulder [48]. In addition, the hypoxia environ-
ment in human advanced carotid plaque, and especially 
in unstable (IPH+) plaque may also dampen aerobic 
glycosylation. Whereas our study suggested local Glu 
deficiency within the plaque was accompanied with pro-
inflammatory macrophage polarization and a vulner-
able plaque phenotype, elevated plasma Glu level was 
reported to be associated with increased carotid intima-
media thickness as well as increased inflammation [49], 
and with coronary heart disease, peripheral artery dis-
ease and type 2 diabetes [50].

Our analysis suggested glutamate transport between 
mitochondria and cytosol (HMR 3825 regulated by 
SLC25A12 and SLC25A13) to be causal in the Glu/Gln 
disparity in mitochondria versus cytosol. The changed 
flux into mitochondria will likely impact energy produc-
tion in plaque cells such as macrophages, and thereby 
their functioning. Indeed, mitochondrial glutamate pres-
ence can replenish the α-ketoglutarate pool and in this 
way spur the TCA cycle − the immunometabolic hub of 
the macrophage [51]. We show that the modulation of 
the Gln/Glu pathway is strongly affecting macrophage 
functions. The inhibition of glutamine synthetase (GLUL) 
promotes the induction of IL-1β, however, only in the 
presence of glutamine via the stabilization of HIF-1α and 
the accumulation of succinate [52, 53]. Moreover, while 
GLUL inhibition reduces apoptosis in macrophages, glu-
tamine deprivation increases their sensitivity to apopto-
sis. This effect has already been reported in several cell 
types and interestingly, is independent of energetic fail-
ure [54]. The deprivation of glutamine additionally affects 
macrophages’ ability to take up oxLDL and beads. Similar 
to reduced glutamine availability, inhibition of glutami-
nolysis resulted in impaired efferocytosis that requires 
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a non-canonical glutamine pathway for effective effero-
cytosis for this energy-demanding task [8], suggesting 
a related role in phagocytosis and lipid uptake. These 
data provide interesting insights into Gln/Glu pathway 
as a promising target for immunomodulatory therapy of 
macrophages in atherosclerosis [55, 56], and moreover, 
hint at a sensitive balance between Gln and Glu. How-
ever, further research also needs to be performed on the 
Gln:Glu ratio and its imbalance between cytosolic and 
mitochondrial availability. While our plaque-specific 
GEM was based on transcriptomics of bulk tissue, and 
only hints to the cellular source of the predicted changes, 
an obvious next step will be to refine the analysis to single 
cell level, thus to allow detection of specific metabolic 
shifts in subsets that are relevant to disease progression.

In addition, reporter metabolites associated with gluta-
thione (GSH) were altered in IPH+ plaques, with a signif-
icant overexpression of pathway related genes. Synthesis 
of GSH, a glutamate, cysteine, and glycine containing 
tripeptide is essential for intracellular redox control of 
macrophages, especially in inflammation. The impact of 
this dysregulation on GSH levels in plaque is hard to pre-
dict, and may also depend on cysteine levels and poten-
tially also by cytosol glutamate levels, if severely limiting, 
and on the prevailing pro-oxidant conditions in plaque, 
increasing its consumption [57].

While pinpointing the main dysregulated metabolic 
processes in IPH+ plaque, our study does not allow 
drawing form conclusions on causality of these changes 
in plaque destabilization. In fact, the mere presence of 
extravasated erythrocytes in plaque may directly affect 
plaque metabolism. For instance, exposure of plaque 
macrophages to erythrocyte entrapped free cholesterol 
[58], heme and iron [59], will resonate deeply with several 
key metabolic pathways in the atherosclerotic plaque, 
including cholesterol catabolism, iron trafficking, GSH 
metabolism, etc. To what extent the observed metabolic 
changes in vesicle transport and function (degranulation, 
phagosome acidification and lysosomal degradation), 
cholesterol derivative, Glu/Gln and GSH pathways syn-
thesis are preceding or ensuing the hemorrhage remains 
subject to further investigation.

Our study suggests an association of Glu/Gln pathways 
to macrophage presence and status in human plaque—a 
notion that has to be further verified in plaque single-cell 
expression data. However, this GEM mirrors the global 
metabolism in plaque, and does not provide spatial infor-
mation, which considering the high spatial heterogene-
ity is a limitation. A second limitation is that our study 
leaves it unaddressed whether the identified metabolic 
alterations are the cause or consequence of plaque desta-
bilization. This causality dilemma remains to be answered 
in future longitudinal studies. Thirdly the dichotomous 
sample collection and stratification did not allow for a 

more comprehensive monitoring of metabolic changes 
during plaque progression. Further study will be needed 
based on datasets that span the whole history of disease.

Conclusions
In conclusion, we are the first to build a comprehensive 
referential GEM for human carotid atherosclerosis. Sub-
sequent analyses of this metabolic network revealed a 
strong dysregulation of the Glu/Gln metabolic pathway 
in plaque destabilization, an effect that could be linked 
to macrophage presence, polarization, and functions. 
This GEM will be a valuable resource for the analysis of 
plaque metabolic studies and will benefit future efforts 
for immunometabolism-targeted drug design for plaque 
stabilizing therapy.
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