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Background
Ischemia with no-obstructive coronary artery (INOCA) 
is a leading cause of hospitalizations, driving adverse out-
comes and reducing quality of life [1–6]. Endothelial dys-
function plays a crucial role in INOCA; indeed, despite 
the absence of significant coronary artery obstruction, 
in this pathologic condition endothelial cells fail to func-
tion optimally [7–10]. Such dysfunction contributes to 
the mismatch between myocardial oxygen supply and 
demand, leading to ischemia and symptoms like chest 
pain or discomfort. In particular, coronary microvas-
cular dysfunction might be playing a crucial role in the 
onset of adverse events in INOCA subjects [11–14]. 
Understanding and addressing endothelial dysfunction is 
essential in managing patients with INOCA to improve 
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Abstract
Ischemia with non-obstructive coronary artery (INOCA) is a common cause of hospital admissions, leading to 
negative outcomes and reduced quality of life. Central to its pathophysiology is endothelial dysfunction, which 
contributes to myocardial ischemia despite the absence of significant coronary artery blockage. Addressing 
endothelial dysfunction is essential in managing INOCA to alleviate symptoms and prevent cardiovascular events. 
Recent studies have identified diabetes mellitus (DM) as a significant factor exacerbating INOCA complications by 
promoting endothelial impairment and coronary microvascular dysfunction. MicroRNAs (miRNAs) have emerged 
as potential biomarkers and therapeutic targets in various biological processes, including endothelial dysfunction 
and cardiovascular diseases. However, research on miRNA biomarkers in INOCA patients is sparse. In this study, 
we examined a panel of circulating miRNAs involved in the regulation of endothelial function in INOCA patients 
with and without DM. We analyzed miRNA expression using RT-qPCR in a cohort of consecutive INOCA patients 
undergoing percutaneous coronary intervention. We detected a significant dysregulation of miR-363-5p and 
miR-92a-3p in INOCA patients with DM compared to those without DM, indicating their role as biomarkers for 
predicting and monitoring endothelial dysfunction in INOCA patients with DM.
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symptoms and prevent adverse cardiovascular events [3, 
4]. To counteract INOCA complications, our group has 
recently demonstrated that hyperglycemia is one of the 
mechanisms involved in its pathophysiology [15]. Diabe-
tes mellitus (DM) and hyperglycemia are known to drive 
endothelial impairment and coronary microvascular dys-
function [16–18].

MicroRNAs (miRNAs, miRs) are short non-coding 
RNAs that post-transcriptionally regulate gene expres-
sion by binding to the 3′ untranslated region of target 
messenger RNAs (mRNAs), leading to its degradation or 
translational repression [19, 20]. It is currently accepted 
that miRs exert their activity in many biological processes 
and, as such, have been proposed as biomarkers and 
potential targets of novel therapeutic strategies [21, 22]; 
Moreover, miRs have been linked to endothelial dysfunc-
tion and cardiovascular diseases [23–27] and may be also 
useful to monitor the evolution of cardiovascular dis-
eases and atherosclerosis [28–30].

However, currently there are no established biomarkers 
of endothelial dysfunction in INOCA patients. Hence, 
in our study, we monitored the expression of a panel of 
circulating miRs involved in the regulation of endothelial 
function in a population of individuals with a confirmed 
diagnosis of INOCA comparing patients with or without 
DM.

Methods
We evaluated consecutive INOCA patients referred to 
the Casa di Cura “Montevergine”, Mercogliano (Avel-
lino) and ASL Naples, both in Italy, for percutaneous 
coronary intervention (PCI). We defined DM according 
to the American Diabetes Association (ADA) guidelines 
[31]. Consistent with previous investigations [3, 4, 32], we 
defined INOCA as:

 	– Symptoms of myocardial ischemia;
 	– Non-obstructive coronary artery stenosis defined 

as: <50% diameter reduction and/or fractional flow 
reserve > 0.80;

 	– Objective evidence of myocardial ischemia;
 	– Impaired coronary microvascular function defined 

as: impaired coronary flow reserve (≤ 2.0), abnormal 
coronary microvascular resistance indices, coronary 
microvascular spasm, endothelial dysfunction with 
≥ 20% luminal constriction during acetylcholine 
infusion, and/or coronary slow flow phenomenon.

The study was designed and conducted according to the 
principles outlined in the Declaration of Helsinki.

Circulating miRs were isolated from plasma samples, 
obtained using EDTA-containing tubes. We extracted 
miRs using the miRNeasy Serum/Plasma kit (Qiagen, 
Hilden, Germany) according to the protocol provided 

by the manufacturer. RNA purity and concentration 
were evaluated by spectrophotometry using a Nano-
Drop ND-2000 (ThermoFisher, Waltham, MA); reverse 
transcription was performed using the miRCURY LNA 
Universal RT miR PCR kit (Qiagen); miRs expression was 
analyzed by RT-qPCR, as we described [27]. The quality 
of miRs was determined using the Agilent Small RNA 
Kit [33]. We analyzed a panel of miRs that we have pre-
viously demonstrated to be involved in the regulation of 
endothelial dysfunction [26]; miR expression was ana-
lyzed by quantitative real-time polymerase chain reac-
tion (RT-qPCR), as described [26]. The RNA Spike-in 
kit (Qiagen) was used as an exogenous control of RNA 
extraction following the manufacturer’s instructions. For 
quality control, we used three synthetic RNA spike-ins 
(UniSp2, UniSp4, and UniSp5) at different concentra-
tions; as a control for cDNA synthesis, we used UniSp6 
spike-in and cel-miR-39-3p.

Relative gene expression was determined using the 
2-ΔΔCT method [26]. To normalize, we first selected 
the miRs that displayed the least variability in their cycle 
threshold (Ct) values in all samples using the geNorm and 
NormFinder bioinformatic algorithms [34, 35], which 
revealed that the most stable (less variable when compar-
ing the two groups) miRs were miR-125a-5p and miR-
19a-5p. Then, we used the BestKeeper method [36] to 
calculate the geometric mean of the pair-wise Ct values 
(Ct values of miR-125a-5p and miR-19-5p); the relative 
expression data were calculated with the Ct of each target 
miR with reference to the BestKeeper value. To confirm 
the absence of hemolysis in our samples, we assessed 
the presence of cell free hemoglobin at the spectropho-
tometer measuring absorbance at 414 nm (A414). Since 
dyslipidemia could interfere with this kind of evaluation, 
we also measured the delta quantification cycle (ΔCq) of 
known blood cell-associated miRs (miR-16-5p and miR-
451a) and a control miR (miR-23a-3p) that is known to 
be invariant in plasma affected by hemolysis.

Statistical analysis
All data were analyzed using the GraphPad Prism soft-
ware v. 9.0 (Dotmatics, Boston, MA, USA). Data are 
expressed as means ± SD or as numbers and percentages. 
The differences in miR levels were analyzed using two-
tailed t-tests as appropriate after having verified the nor-
mal distribution of values via Kolmogorov–Smirnov test.

Results
42 patients agreed to enter our study (28 without DM, 14 
with DM). Clinical characteristics are shown in Table 1. 
We measured the expression levels of the panel of miRs 
that we had previously validated [26] and in INOCA 
patients with DM (compared to patients without DM) 
we detected an increased expression of several miRs that 
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have been previously associated with endothelial dys-
function, and a reduced expression of miRs that have 
been shown to be protective in terms of endothelial func-
tion (see heat map in Fig. 1).

Then, we analyzed which of these miRs was signifi-
cantly upregulated or downregulated when comparing 
INOCA patients with DM to INOCA patients without 
DM. We found that miR-363-5p was significantly down-
regulated (P < 0.001), whereas miR-92 was significantly 
upregulated (P < 0.001), in DM subjects, as shown in the 
volcano plot depicted in Fig. 2.

Discussion
In the present study, we have identified, for the first time 
to our knowledge, circulating miRs involved in endo-
thelial dysfunction that could be useful for monitoring 
INOCA patients with DM.

Endothelial dysfunction is a hallmark of diabetic vascu-
lar complications. In DM, dysregulated miR expression 
contributes to endothelial dysfunction through vari-
ous mechanisms, including the modulation of pathways 
involved in endothelial fitness, inflammation, oxidative 
stress, and angiogenesis. For example, miR-126, miR-155, 
and miR-21 have been implicated in regulating endo-
thelial cell function and angiogenesis by targeting genes 
involved in endothelial nitric oxide synthase (eNOS) sig-
naling, inflammatory pathways, and vascular endothelial 
growth factor (VEGF) signaling [37].

Furthermore, miRs can influence endothelial integ-
rity by targeting genes involved in oxidative stress and 
inflammation [38, 39], both of which are key drivers of 
endothelial dysfunction in DM. Emerging evidence sug-
gests that circulating miRs may serve as biomarkers for 
endothelial dysfunction and diabetic vascular complica-
tions; in fact, several studies have identified dysregulated 
miR expression profiles in the circulation of diabetic 
patients with endothelial dysfunction [40–42], thereby 

providing insights into the pathogenesis and progression 
of diabetic vascular complications.

The identification of two miRs, namely miR-92 and 
miR-363-5p, that are differently expressed in INOCA 
patients with and without DM, is fully consistent with 
previous reports. Endothelial-derived extracellular miR-
92a promotes arterial stiffness by regulating phenotype 
changes of vascular smooth muscle cells and reduces 
oxidative stress [43, 44]. On the other hand, miR-363-5p 
reduction results in a significant decrease in endothelial 
cell tube formation [45]. Henceforth, the aforementioned 
miRs may be useful markers in the management of 
INOCA patients, with or without diabetes. Emphasizing 
the novelty of our work, we did not find any other study 
investigating miRs in INOCA patients.

The relationship between DM, endothelial dysfunc-
tion, and the pathogenesis of INOCA is complex and 
multifaceted. Indeed, endothelial dysfunction, charac-
terized by impaired endothelium-dependent vasodila-
tion and pro-inflammatory and pro-thrombotic states, 
is a common feature of both DM and INOCA [46, 47]. 
In DM, chronic hyperglycemia, insulin resistance, and 
dyslipidemia further contribute to endothelial dysfunc-
tion through various mechanisms, including increased 
oxidative stress, inflammation, and activation of the 
renin-angiotensin-aldosterone system [48, 49]. Of note, 
coronary slow flow (CSF), assessed by invasive coronary 
angiography has been frequently seen as a potential indi-
cator of coronary microvascular dysfunction in INOCA 
patients [50–52]; however, a recent prospective study has 
demonstrated that CSF is not a reliable angiographic sur-
rogate of abnormal coronary flow reserve (CFR) or index 
of microcirculatory resistance (IMR) [53].

Endothelial dysfunction and DM play central roles in 
the pathophysiology of INOCA by promoting coronary 
microvascular dysfunction, characterized by impaired 
vasodilation, increased vasoconstriction, and altered 
microvascular structure [46, 54, 55]. Dysfunction of the 
coronary microvasculature results in inadequate myocar-
dial perfusion despite the absence of significant obstruc-
tive coronary artery disease, leading to angina-like 
symptoms and ischemia [56, 57]. Additionally, impaired 
endothelial function in DM is associated with enhanced 
endothelial permeability and increased vascular inflam-
mation, which may contribute to myocardial injury and 
fibrosis, further compromising myocardial perfusion 
and function in INOCA [58, 59]. DM-related endothe-
lial dysfunction may also exacerbate, and interact with, 
other risk factors for INOCA, such as hypertension, obe-
sity, and dyslipidemia [60], further aggravating coronary 
microvascular dysfunction and ischemia. Again, we are 
the first group to highlight the importance of miR pro-
files in INOCA.

Table 1  Clinical characteristics of our INOCA patients
No-diabetes Diabetes

N 28 14
Mean age (years) 68.3 ± 10.5 73.1 ± 11.7
Fasting plasma glucose (mg/dL) 99.6 ± 12.7 179.1 ± 41.2*
HbA1c (%) 5.8 ± 0.4 7.3 ± 0.8*
Creatinine (mg/dL) 1.0 ± 0.2 1.0 ± 0.3
Total Cholesterol (mg/dL) 179.2 ± 27.4 182.5 (30.3)
Hypertension 24 (85.7) 11 (78.6)
Dyslipidemia 20 (71.4) 9 (64.3)
Smoking 11 (39.3) 2 (14.3)
Atrial fibrillation 4 (14.3) 2 (14.3)
COPD 5 (18.0) 3 (22.0)
Data are means ± SD

 COPD chronic obstructive pulmonary disease
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Fig. 1  Heat-map of the expression of circulating miRNAs in the indicated groups of patients
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Nevertheless, our work is not exempt from limitations, 
including the small size of our population and having 
limited the panel of miRs to the ones that were implied 
in endothelial dysfunction. Equally important, further 
research is needed to elucidate the specific mechanisms 
underlying the exact role of the miRs that we have dem-
onstrated to be differently expressed in DM and non-DM 
INOCA patients.

Conclusions
Understanding the role of miRs in endothelial dysfunc-
tion may provide novel insights into the pathogenesis of 
diabetic vascular complications and offer potential thera-
peutic targets for intervention in INOCA and other dia-
betic vascular complications.
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